About this Journal Submit a Manuscript Table of Contents
Psyche
Volume 2010 (2010), Article ID 354072, 9 pages
http://dx.doi.org/10.1155/2010/354072
Review Article

Abundance and Diversity of Native Bumble Bees Associated with Agricultural Crops: The Willamette Valley Experience

Department of Crop and Soil Science, Oregon State University, 3017 ALS, Corvallis, OR 97331, USA

Received 20 August 2009; Accepted 2 December 2009

Academic Editor: James C. Nieh

Copyright © 2010 Sujaya Rao and W. P. Stephen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Allen-Wardell, P. Bernhardt, R. Bitner, et al., “The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields,” Conservation Biology, vol. 12, no. 1, pp. 8–17, 1998. View at Publisher · View at Google Scholar
  2. C. A. Kearns, D. W. Inouye, and N. M. Waser, “Endangered mutualisms: the conservation of plant-pollinator interactions,” Annual Review of Ecology and Systematics, vol. 29, pp. 83–112, 1998. View at Publisher · View at Google Scholar
  3. C. Kremen, N. M. Williams, and R. W. Thorp, “Crop pollination from native bees at risk from agricultural intensification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 26, pp. 16812–16816, 2002. View at Publisher · View at Google Scholar · View at PubMed
  4. J. C. Biesmeijer, S. P. M. Roberts, M. Reemer, et al., “Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands,” Science, vol. 313, no. 5785, pp. 351–354, 2006. View at Publisher · View at Google Scholar · View at PubMed
  5. S. A. Corbet, I. H. Williams, and J. L. Osborne, “Bees and the pollination of crops and flowers in the European Community,” Bee World, vol. 72, pp. 47–59, 1991.
  6. S. L. Buchmann and G. P. Nabhan, The Forgotten Pollinators, Island Press, Washington, DC, USA, 1996.
  7. D. Goulson, G. C. Lye, and B. Darvill, “Decline and conservation of bumble bees,” Annual Review of Entomology, vol. 53, pp. 191–208, 2008. View at Publisher · View at Google Scholar · View at PubMed
  8. D. Kleijn, F. Berendse, R. Smit, and N. Gilissen, “Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes,” Nature, vol. 413, no. 6857, pp. 723–725, 2001. View at Publisher · View at Google Scholar · View at PubMed
  9. C. Carvell, W. R. Meek, R. F. Pywell, D. Goulson, and M. Nowakowski, “Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins,” Journal of Applied Ecology, vol. 44, no. 1, pp. 29–40, 2007. View at Publisher · View at Google Scholar
  10. C. Westphal, I. Steffan-Dewenter, and T. Tscharntke, “Mass flowering oilseed rape improves early colony growth but not sexual reproduction of bumblebees,” Journal of Applied Ecology, vol. 46, no. 1, pp. 187–193, 2009. View at Publisher · View at Google Scholar
  11. P. Wiley, No Place for Nature: The Limits of Oregon's Land Use Program in Protecting Fish and Wildlife Habitat in the Willamette Valley, Defenders of Wildlife, Washington, DC, USA, 2003.
  12. W. P. Stephen, Bumble Bees of Western America (Hymenoptera: Apoidea), Oregon State University Technical Bulletin, Oregon State University, Corvallis, Ore, USA, 1957.
  13. W. P. Stephen and S. Rao, “Unscented color traps for non-Apis bees (Hymenoptera: Apiformes),” Journal of the Kansas Entomological Society, vol. 78, no. 4, pp. 373–380, 2005. View at Publisher · View at Google Scholar
  14. W. P. Stephen and S. Rao, “Sampling native bees in proximity to a highly competitive food resource,” Journal of the Kansas Entomological Society, vol. 80, pp. 369–376, 2007.
  15. S. Rao, W. P. Stephen, and L. White, “Native bee pollinator diversity in Oregon blueberries,” Acta Horticulturae, vol. 810, pp. 539–548, 2009.
  16. S. Rao and W. P. Stephen, “Bumble bee pollinators in red clover seed production,” Crop Science, vol. 49, no. 6, pp. 2207–2214, 2009. View at Publisher · View at Google Scholar
  17. L. E. Aalders and I. V. Hall, “Pollen incompatibility and fruit set in lowbush blueberry,” Canadian Journal of Genetics and Cytology, vol. 3, pp. 300–307, 1961.
  18. G. W. Eaton, “The relationship between seed number and berry weight in open-pollinated highbush blueberries,” HortScience, vol. 2, pp. 14–15, 1967.
  19. L. P. Jackson, L. E. Aalders, and I. V. Hall, “Berry size and seed number in commercial lowbush blueberry fields of Nova Scotia,” Le Naturaliste Canadien, vol. 99, pp. 615–619, 1972.
  20. M. H. Dogterom, M. L. Winston, and A. Mukai, “Effect of pollen load size and source (self, outcross) on seed and fruit production in highbush blueberry cv. ‘Bluecrop’ (Vaccinium corymbosum; Ericaceae),” American Journal of Botany, vol. 87, no. 11, pp. 1584–1591, 2000.
  21. M. Burgett, G. C. Fisher, D. Mayer, and C. A. Johansen, Evaluating Honey Bee Colonies for Pollination: A Guide for Growers and Beekeepers, Oregon State University Extension Service PNW 245, Oregon State University, Corvallis, Ore, USA, 1985.
  22. S. L. Buchmann, “Buzz pollination in angiosperms,” in Handbook of Experimental Pollination Biology, C. E. Jones and R. J. Little, Eds., pp. 73–113, Van Nostrand Reinhold, New York, NY, USA, 1983.
  23. W. P. Stephen, S. Rao, and L. White, “Abundance, diversity and foraging contribution of bumble bees to blueberry production in western Oregon,” Acta Horticulturae, vol. 810, pp. 557–562, 2009.
  24. M. L. Winston and L. H. Graf, “Native bee pollinators of berry crops in the Fraser Valley of British Columbia,” Journal of the Entomological Society of British Columbia, vol. 79, pp. 14–19, 1982.
  25. S. K. Javorek, K. E. MacKenzie, and S. P. Vander Kloet, “Comparative pollination effectiveness among bees (Hymenoptera: Apoidea) on lowbush blueberry (Ericaceae: Vaccinium angusifolium),” Annals of the Entomological Society of America, vol. 95, no. 3, pp. 345–351, 2002.
  26. K. E. MacKenzie and G. C. Eickwort, “Diversity and abundance of bees (Hymenoptera: Apoidea) foraging on highbush blueberry (Vaccinium corymbosum L.) in central New York,” Journal of the Kansas Entomological Society, vol. 69, no. 4, pp. 185–194, 1996.
  27. K. E. MacKenzie and M. L. Winston, “Diversity and abundance of native bee pollinators on berry crops and natural vegetation in the lower Fraser Valley, British Columbia,” Canadian Entomologist, vol. 116, no. 7, pp. 965–974, 1984.
  28. J. K. Tuell, J. S. Ascher, and R. Isaacs, “Wild bees (Hymenoptera: Apoidea: Anthophila) of the Michigan Highbush blueberry agroecosystem,” Annals of the Entomological Society of America, vol. 102, no. 2, pp. 275–287, 2009. View at Publisher · View at Google Scholar
  29. C. M. Ratti, H. A. Higo, T. L. Griswold, and M. L. Winston, “Bumble bees influence berry size in commercial Vaccinium spp. cultivation in British Columbia,” Canadian Entomologist, vol. 140, no. 3, pp. 348–363, 2008.
  30. N. L. Taylor and K. H. Quesenberry, Red Clover Science, Kluwer Academic Publishers, Norwell, Mass, USA, 1996.
  31. United States Department of Agriculture, National Agricultural Statistics Service, 2007 Census of Agriculture. United States—Summary and State Data, vol. 1 of Geographic Area Series, Part 51, United States Department of Agriculture, Washington, DC, USA, 2009.
  32. J. H. Westgate and H. S. Coe, Red Clover Seed Production: Pollination Studies, vol. 289 of Bulletin of the United States Department of Agriculture, 1915.
  33. R. D. Williams, Studies Concerning the Pollination, Fertilization, and Breeding of Red Clover, vol. 4 of Welsh Plant Breeding Station Bulletin Series H, 1925.
  34. R. D. Williams, Some of the Factors Influencing Yield and Quality of Red Clover Seeds, vol. 11 of Welsh Plant Breeding Station Bulletin Series H, 1930.
  35. J. B. Free, “The ability of bumblebees and honeybees to pollinate red clover,” Journal of Applied Ecology, vol. 2, pp. 289–294, 1965.
  36. E. A. Hollowell and H. M. Tysdal, “The need for seed is urgent,” in Grass: The Yearbook of Agriculture, A. Stefferud, Ed., pp. 341–346, United States Department of Agriculture, Washington, DC, USA, 1948.
  37. E. Plath, “The role of bumblebees in the pollination of certain cultivated plants,” American Naturalist, vol. 59, pp. 441–451, 1925.
  38. G. E. Bohart, “Pollination of alfalfa and red clover,” Annual Review of Entomology, vol. 2, pp. 355–380, 1957.
  39. C. Darwin, On the Origin of Species by Means of Natural Selection, John Murrray, London, UK, 1859.
  40. T. Meehan, “Mr. Darwin on the fertilization of flowers,” Pennsylvania Monthly, vol. 8, pp. 463–471, 1876.
  41. G. Peterson, B. Furgala, and F. G. Holdaway, “Pollination of red clover in Minnesota,” Journal of Economic Entomology, vol. 53, pp. 546–550, 1960.
  42. L. H. Pammel and C. M. King, “Pollination of clover,” Proceedings of the Iowa Academy of Sciences, vol. 18, pp. 35–45, 1911.
  43. F. O. Morrison, “Observations on the number and species of bumble bees visiting red clover,” in Proceedings of the 73rd Annual Report of the Entomological Society of Ontario, pp. 16–20, 1942.
  44. J. T. Medler, “Bumblebee ecology in relation to the pollination of alfalfa and red clover,” Insectes Sociaux, vol. 4, no. 3, pp. 245–252, 1957. View at Publisher · View at Google Scholar
  45. D. Thomson, “Competitive interactions between the invasive European honey bee and native bumble bees,” Ecology, vol. 85, no. 2, pp. 458–470, 2004.
  46. D. Goulson and K. R. Sparrow, “Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size,” Journal of Insect Conservation, vol. 13, no. 2, pp. 177–181, 2009. View at Publisher · View at Google Scholar
  47. A. Holzschuh, I. Steffan-Dewenter, D. Kleijn, and T. Tscharntke, “Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context,” Journal of Applied Ecology, vol. 44, no. 1, pp. 41–49, 2007. View at Publisher · View at Google Scholar
  48. S. E. Elliott, “Subalpine bumble bee foraging distances and densities in relation to flower availability,” Environmental Entomology, vol. 38, no. 3, pp. 748–756, 2009. View at Publisher · View at Google Scholar
  49. R. W. Thorp, “Bumble bees (Hymenoptera:Apidae): commercial use and environmental concerns,” in For Nonnative Crops, Whence Pollinators of the Future, K. Strickler and J. H. Cane, Eds., Thomas Say Publications in Entomology: Proceedings, pp. 21–40, Entomological Society of America, Lanham, Md, USA, 2003.
  50. R. W. Thorp and M. D. Shepherd, “Species profile: subgenus Bombus,” in Red List of Pollinator Insects of North America, M. D. Shepherd, M. Vaughan, and S. H. Black, Eds., Xerces Society for Invertebrate Conservation, Portland, Ore, USA, 2005, CD-ROM Version 1.
  51. Committee on the Status of Pollinators in North America, Status of Pollinators in North America, National Academies Press, Washington, DC, USA, 2007.
  52. H. H. W. Velthuis and A. van Doorn, “A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination,” Apidologie, vol. 37, no. 4, pp. 421–451, 2006. View at Publisher · View at Google Scholar
  53. R. Whittington and M. L. Winston, “Effects of Nosema bombi and its treatment fumagillin on bumble bee (Bombus occidentalis) colonies,” Journal of Invertebrate Pathology, vol. 84, no. 1, pp. 54–58, 2003. View at Publisher · View at Google Scholar
  54. M. C. Otterstatter and J. D. Thomson, “Does pathogen spillover from commercially reared bumble bees threaten wild pollinators?” PLoS ONE, vol. 3, no. 7, article e2771, 2008. View at Publisher · View at Google Scholar · View at PubMed
  55. S. Rao and W. P. Stephen, “Bombus (Bombus) occidentalis (Hymenoptera: Apiformes): in decline or recovery?” Pan-Pacific Entomologist, vol. 83, no. 4, pp. 360–362, 2007. View at Publisher · View at Google Scholar