About this Journal Submit a Manuscript Table of Contents
Psyche
Volume 2010 (2010), Article ID 891906, 8 pages
http://dx.doi.org/10.1155/2010/891906
Research Article

Flower Constancy in the Generalist Pollinator Ceratina flavipes (Hymenoptera: Apidae): An Evaluation by Pollen Analysis

1Faculty of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
2Graduate School of Environmental Science, Faculty of Environmental Earth Science, Hokkaido University, N10W5, Sapporo 060-0810, Hokkaido, Japan

Received 25 July 2009; Accepted 11 December 2009

Academic Editor: Claus Rasmussen

Copyright © 2010 Midori Kobayashi-Kidokoro and Seigo Higashi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Heinrich, “Energetics of pollination,” Annual Review of Ecology and Systematics, vol. 6, pp. 139–170, 1975.
  2. H. Wells and P. H. Wells, “Honey bee foraging ecology: optimal diet, minimal uncertainty or individual constancy?” Journal of Animal Ecology, vol. 52, no. 3, pp. 829–836, 1983.
  3. R. S. Thorn and B. H. Smith, “The olfactory memory of the honeybee Apis Mellifera. III. Bilateral sensory input is necessary for induction and expression of olfactory blocking,” Journal of Experimental Biology, vol. 200, no. 14, pp. 2045–2055, 1997.
  4. B. Gerber and B. H. Smith, “Visual modulation of olfactory learning in honey bees,” Journal of Experimental Biology, vol. 201, pp. 2213–2217, 1998.
  5. D. Laloi, B. Roger, M. M. Blight, L. J. Wadhams, and M.-H. Pham-Delègue, “Individual learning ability and complex odor recognition in the honey bee, Apis mellifera L,” Journal of Insect Behavior, vol. 12, no. 5, pp. 585–597, 1999.
  6. S. M. Cook, J.-C. Sandoz, A. P. Martin, D. A. Murray, G. M. Poppy, and I. H. Williams, “Could learning of pollen odours by honey bees (Apis mellifera) play a role in their foraging behaviour?” Physiological Entomology, vol. 30, no. 2, pp. 164–174, 2005. View at Publisher · View at Google Scholar
  7. L. Chittka and J. D. Thomson, “Sensori-motor learning and its relevance for task specialization in bumble bees,” Behavioral Ecology and Sociobiology, vol. 41, no. 6, pp. 385–398, 1997. View at Publisher · View at Google Scholar
  8. D. Laloi, J. C. Sandoz, A. L. Picard-Nizou, et al., “Olfactory conditioning of the proboscis extension in bumble bees,” Entomologia Experimentalis et Applicata, vol. 90, no. 2, pp. 123–129, 1999. View at Publisher · View at Google Scholar
  9. D. Goulson, “Are insects flower constant because they use search images to find flowers?” Oikos, vol. 88, no. 3, pp. 547–552, 2000.
  10. R. J. Gegear and T. M. Laverty, “Flower constancy in bumblebees: a test of the trait variability hypothesis,” Animal Behaviour, vol. 69, no. 4, pp. 939–949, 2005. View at Publisher · View at Google Scholar
  11. D. White, B. W. Cribb, and T. A. Heard, “Flower constancy of the stingless bee Trigona carbonaria Smith (Hymenoptera: Apidae: Meliponini),” Australian Journal of Entomology, vol. 40, no. 1, pp. 61–64, 2001. View at Publisher · View at Google Scholar
  12. P. D. Jensen, K. M. O'Neill, and M. Lavin, “Pollen provision records for three solitary bee species of Megachile Latreille and Heriades Spinola (Hymenoptera: Megachilidae) in southwestern Montana,” Proceedings of the Entomological Society of Washington, vol. 105, no. 1, pp. 195–202, 2003.
  13. S. Matsumoto, A. Abe, and T. Maejima, “Foraging behavior of Osmia cornifrons in an apple orchard,” Scientia Horticulturae, vol. 121, no. 1, pp. 73–79, 2009. View at Publisher · View at Google Scholar
  14. N. M. Waser, “Flower constancy: definition, cause, and measurements,” American Naturalist, vol. 127, pp. 593–603, 1986.
  15. G. L. Woodward and T. M. Laverty, “Recall of flower handling skills by bumble bees: a test of Darwin's interference hypothesis,” Animal Behaviour, vol. 44, no. 6, pp. 1045–1051, 1992.
  16. K. Ohashi and T. Yahara, “How long to stay on, and how often to visit a flowering plant? A model for foraging strategy when floral displays vary in size,” Oikos, vol. 86, no. 2, pp. 386–391, 1999.
  17. K. Ohashi and T. Yahara, “Visit larger displays but probe proportionally fewer flowers: counterintuitive behaviour of nectar-collecting bumble bees achieves an ideal free distribution,” Functional Ecology, vol. 16, no. 4, pp. 492–503, 2002. View at Publisher · View at Google Scholar
  18. J. C. Sandoz, D. Laloi, J. F. Odoux, and M.-H. Pham-Delègue, “Olfactory information transfer in the honeybee: compared efficiency of classical conditioning and early exposure,” Animal Behaviour, vol. 59, no. 5, pp. 1025–1034, 2000. View at Publisher · View at Google Scholar · View at PubMed
  19. W. T. Wcislo, “Nest localization and recognition in a solitary bee, Lasioglossum (Dialictus) figueresi Wcislo (Hymenoptera: Halictidae), in relation to sociality,” Ethology, vol. 92, pp. 108–123, 1992.
  20. S. F. Sakagami and Y. Maeta, “Sociality, induced and/or natural, in the basically solitary small carpenter bees (Ceratina),” in Animal Societies: Theories and Facts, Scientific Society, Tokyo, Japan, 1987.
  21. Y. Maeta, E. S. de la Asensio, and S. F. Sakagami, “Comparative studies on the in-nest behaviors of small carpenter bees, the genus Ceratina (Hymenoptera, Anthophoridae, Xylocopinae). I. Ceratina (Ceratina) cucurbitina—part 1,” Japanese Journal of Entomology, vol. 65, pp. 303–319, 1997.
  22. Y. Maeta, E. S. de la Asensio, and S. F. Sakagami, “Comparative studies on the in-nest behaviors of small carpenter bees, the genus Ceratina (Hymenoptera, Anthophoridae, Xylocopinae). I. Ceratina (Ceratina) cucurbitina—part 2,” Japanese Journal of Entomology, vol. 65, pp. 471–481, 1997.
  23. M. Kidokoro, T. Kikuchi, and M. Hirata, “Prehibernal insemination and short dispersal of Ceratina flavipes (Hymenoptera: Anthophidae) in northernmost Japan,” Ecological Research, vol. 18, no. 1, pp. 99–102, 2003. View at Publisher · View at Google Scholar
  24. A. C. Kearns and D. W. Inouye, Techniques for Pollination Biologists, University of Colorado, Boulder, Colo, USA, 1993.
  25. J. Nakamura, Diagnostic Characters of Pollen Grains of Japan, Part 1, vol. 12, Special Publications from the Osaka Museum of Natural History, Osaka, Japan, 1980.
  26. J. Nakamura, Diagnostic Characters of Pollen Grains of Japan, Part 2, vol. 13, Special Publications from the Osaka Museum of Natural History, Osaka, Japan, 1980.
  27. E. L. Charnov, “Optimal foraging, the marginal value theorem,” Theoretical Population Biology, vol. 9, no. 2, pp. 129–136, 1976.
  28. T. C. Ings, N. E. Raine, and L. Chittka, “A population comparison of the strength and persistence of innate colour preference and learning speed in the bumblebee Bombus terrestris,” Behavioral Ecology and Sociobiology, vol. 63, no. 8, pp. 1207–1218, 2009. View at Publisher · View at Google Scholar
  29. F. Gilbert, S. Azmeh, C. Barnard, et al., “Individually recognizable scent marks on flowers made by a solitary bee,” Animal Behaviour, vol. 61, no. 1, pp. 217–229, 2001. View at Publisher · View at Google Scholar · View at PubMed
  30. S. G. Potts, A. Dafni, and G. Ne'Eman, “Pollination of a core flowering shrub species in Mediterranean phrygana: variation in pollinator diversity, abundance and effectiveness in response to fire,” Oikos, vol. 92, no. 1, pp. 71–80, 2001.
  31. I. Steffan-Dewenter, U. Münzenberg, C. Bürger, C. Thies, and T. Tscharntke, “Scale-dependent effects of landscape context on three pollinator guilds,” Ecology, vol. 83, no. 5, pp. 1421–1432, 2002.
  32. L. Chittka, J. D. Thomson, and N. M. Waser, “Flower constancy, insect psychology, and plant evolution,” Naturwissenschaften, vol. 86, no. 8, pp. 361–377, 1999. View at Publisher · View at Google Scholar
  33. R. Menzel, “Searching for the memory trace in a mini-brain, the honeybee,” Learning and Memory, vol. 8, no. 2, pp. 53–62, 2001. View at Publisher · View at Google Scholar · View at PubMed
  34. S. Andersson, “Floral display and pollination success in Senecio jacobaea (Asteraceae): interactive effects of head and corymb size,” American Journal of Botany, vol. 83, no. 1, pp. 71–75, 1996.
  35. P. Wilson, M. C. Castellanos, J. N. Hogue, J. D. Thomson, and W. S. Armbruster, “A multivariate search for pollination syndromes among penstemons,” Oikos, vol. 104, no. 2, pp. 345–361, 2004. View at Publisher · View at Google Scholar
  36. S. F. Sakagami, “Multi-female nests and rudimentary castes of an “almost” solitary bee Ceratina flavipes, with additional observations on multi-female nests of Ceratina japonica (Hymenoptera, Apodiea),” Kontyu Tokyo, vol. 55, pp. 391–409, 1987.
  37. Y. Maeta, N. Sugiura, and M. Goubara, “Patterns of offspring production and sex allocation in the small carpenter bee, Ceratina flavipes Smith (Hymenoptera, Xylocopinae),” Japanese Journal of Entomology, vol. 60, pp. 175–190, 1992.
  38. Y. Maeta, K. Saito, K. Hyodo, and S. F. Sakagami, “Diapause and non-delayed eusociality in a univoltine and basically solitary bee, Ceratina japonica (Hymenoptera, Anthophoridae). I. Diapause termination by cooling and application of juvenile hormone analog,” Japanese Journal of Entomology, vol. 61, pp. 203–211, 1993.
  39. S. F. Sakagami and Y. Maeta, “Task allocation in artificially induced colonies of a basically solitary bee Ceratina (Ceratinidia) okinawana, with a comparison of sociality between Ceratina and Xylocopa (Hymenoptera, Anthophoridae, Xylocopinae),” Japanese Journal of Entomology, vol. 63, pp. 115–150, 1995.
  40. J. W. Truman, “The eclosion hormone system of insects,” Progress in Brain Research, vol. 92, pp. 361–374, 1992.
  41. M. L. Peach, D. G. Alston, and V. J. Tepedio, “Sublethal effects of carbaryl bran bait on nesting performance, parental investment, and offspring size and sex ratio of the alfalfa leafcutting bee (Hymenoptera: Megachilidae),” Environmental Entomology, vol. 24, pp. 34–39, 1995.
  42. K. Hogendoorn, N. L. Watiniasih, and M. P. Schwarz, “Extended alloparental care in the almost solitary bee Exoneurella eremophila (Hymenoptera: Apidae),” Behavioral Ecology and Sociobiology, vol. 50, no. 3, pp. 275–282, 2001. View at Publisher · View at Google Scholar
  43. J. Bosch and N. Vicens, “Body size as an estimator of production costs in a solitary bee,” Ecological Entomology, vol. 27, no. 2, pp. 129–137, 2002. View at Publisher · View at Google Scholar