About this Journal Submit a Manuscript Table of Contents
Psyche
Volume 2010 (2010), Article ID 927463, 7 pages
http://dx.doi.org/10.1155/2010/927463
Review Article

Large Carpenter Bees as Agricultural Pollinators

Department of Science Education—Biology, University of Haifa, Oranim, Tivon 36006, Israel

Received 12 September 2009; Accepted 9 January 2010

Academic Editor: Claus Rasmussen

Copyright © 2010 Tamar Keasar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A.-M. Klein, B. E. Vaissière, J. H. Cane, et al., “Importance of pollinators in changing landscapes for world crops,” Proceedings of the Royal Society B, vol. 274, no. 1608, pp. 303–313, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. N. Gallai, J.-M. Salles, J. Settele, and B. E. Vaissière, “Economic valuation of the vulnerability of world agriculture confronted with pollinator decline,” Ecological Economics, vol. 68, no. 3, pp. 810–821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Aizen and L. D. Harder, “The global stock of domesticated honey bees is growing slower than agricultural demand for pollination,” Current Biology, vol. 19, no. 11, pp. 915–918, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. G. Allen-Wardell, P. Bernhardt, R. Bitner, et al., “The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields,” Conservation Biology, vol. 12, no. 1, pp. 8–17, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. B. P. Oldroyd, “What's killing American honey bees?” PLoS Biology, vol. 5, no. 6, article e168, pp. 1195–1199, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. van Engelsdorp, J. Hayes Jr., R. M. Underwood, and J. Pettis, “A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008,” PLoS ONE, vol. 3, no. 12, article e4071, 2008. View at Publisher · View at Google Scholar · View at PubMed
  7. P. Hoehn, T. Tscharntke, J. M. Tylianakis, and I. Steffan-Dewenter, “Functional group diversity of bee pollinators increases crop yield,” Proceedings of the Royal Society B, vol. 275, no. 1648, pp. 2283–2291, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. S. Greenleaf and C. Kremen, “Wild bees enhance honey bees' pollination of hybrid sunflower,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13890–13895, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. K. Hogendoorn, Z. Steen, and M. P. Schwarz, “Native Australian carpenter bees as a potential alternative to introducing bumble bees for tomato pollination in greenhouses,” Journal of Apicultural Research, vol. 39, no. 1-2, pp. 67–74, 2000. View at Scopus
  10. K. Hogendoorn, C. L. Gross, M. Sedgley, and M. A. Keller, “Increased tomato yield through pollination by native Australian Amegilla chlorocyanea (Hymenoptera: Anthophoridae),” Journal of Economic Entomology, vol. 99, no. 3, pp. 828–833, 2006. View at Scopus
  11. E. J. Slaa, L. A. S. Chaves, K. S. Malagodi-Braga, and F. E. Hofstede, “Stingless bees in applied pollination: practice and perspectives,” Apidologie, vol. 37, no. 2, pp. 293–315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Westerkamp and G. Gottsberger, “Diversity pays in crop pollination,” Crop Science, vol. 40, no. 5, pp. 1209–1222, 2000. View at Scopus
  13. R. L. Minckley, A Cladistic Analysis and Classification of the Subgenera and Genera of the Large Carpenter Bees, Tribe Xylocopini (Hymenoptera: Apidae), vol. 9 of Scientific Papers, University of Kansas Natural History Museum, Lawrence, Kan, USA, 1998.
  14. R. Leys, S. J. B. Cooper, and M. P. Schwarz, “Molecular phylogeny and historical biogeography of the large carpenter bees, genus Xylocopa (Hymenoptera: Apidae),” Biological Journal of the Linnean Society, vol. 77, no. 2, pp. 249–266, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. D. Michener, The Bees of the World, Johns Hopkins University, Baltimore, Md, USA, 2nd edition, 2007.
  16. P. D. Hurd and J. S. Moure, A Classification of the Large Carpenter Bee (Xylocopini), vol. 29 of University of California Publications in Entomology, University of California Press, Berkeley, Calif, USA, 1963.
  17. D. Gottlieb, T. Keasar, A. Shmida, and U. Motro, “Possible foraging benefits of bimodal daily activity in Proxylocopa olivieri (Lepeletier) (Hymenoptera: Anthophoridae),” Environmental Entomology, vol. 34, no. 2, pp. 417–424, 2005. View at Scopus
  18. D. Gerling, H. H. W. Velthuis, and A. Hefetz, “Bionomics of the large carpenter bees of the genus Xylocopa,” Annual Review of Entomology, vol. 34, pp. 163–190, 1989. View at Scopus
  19. Z. Steen and M. P. Schwarz, “Nesting and life cycle of the Australian green carpenter bees Xylocopa (Lestis) aeratus Smith and Xylocopa (Lestis) bombylans (Fabricius) (Hymenoptera: Apidae: Xylocopinae),” Australian Journal of Entomology, vol. 39, no. 4, pp. 291–300, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Gerling, P. D. Hurd, and A. Hefetz, “In-nest behavior of the carpenter bee, Xylocopa pubescens Spinola (Hymenoptera: Anthophoridae),” Journal of the Kansas Entomological Society, vol. 54, pp. 209–218, 1981.
  21. D. Gerling, P. D. Hurd, and A. Hefetz, Comparative Behavioral Biology of Two Middle East Species of Carpenter Bees (Xylocopa Latreille) (Hymenoptera: Apoidea), vol. 369 of Smithsonian Contributions to Zoology, no. 369, Smithsonian Institution Press, Washington, DC, USA, 1983.
  22. Z. Steen, Social behaviour in endemic Australian carpenter bees, Ph.D. thesis, Flinders University, Adelaide, Australia, 2000.
  23. Y. Ben Mordechai, R. Cohen, D. Gerling, and E. Moscovitz, “The biology of Xylocopa pubescens Spinola (Hymenoptera: Anthophoridae) in Israel,” Israel Journal of Entomology, vol. 12, pp. 107–121, 1978.
  24. E. Camillo and C. A. Garofalo, “On the bionomics of Xylocopa frontalis (Oliver) and Xylocopa grisescens (Lepeltier) in southern Brazil. I. Nest construction and biological cycle,” Revista Brasileira de Biologia, vol. 42, pp. 571–582, 1982.
  25. E. Camillo, C. A. Garofalo, and G. Mucillo, “On the bionomics of Xylocopa suspecta (Moure) in southern Brazil: nest construction and biological cycle (Hymeoptera, Anthophoridae),” Revista Brasileira de Biologia, vol. 46, pp. 383–393, 1986.
  26. N. Sugiura, “Burrow construction by the Japanese carpenter bee, Xylocopa appendiculata circumvolans Smith, for overwintering (Hymenoptera: Anthophoridae),” Journal of the Kansas Entomological Society, vol. 68, no. 1, pp. 116–119, 1995. View at Scopus
  27. R. Leys and K. Hogendoorn, “Correlated evolution of mating behaviour and morphology in large carpenter bees (Xylocopa),” Apidologie, vol. 39, no. 1, pp. 119–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Leys, “Mate locating strategies of the green carpenter bees Xylocopa (Lestis) aeratus and X. (L.) bombylans,” Journal of Zoology, vol. 252, no. 4, pp. 453–462, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Sugiura, “Male territorial behaviour of the endemic large carpenter bee, Xylocopa (Koptortosoma) ogasawarensis (Hymenoptera: Apidae), on the oceanic Ogasawara Islands,” European Journal of Entomology, vol. 105, no. 1, pp. 153–157, 2008. View at Scopus
  30. A. Hefetz, “Function of secretion of mandibular gland of male in territorial behavior of Xylocopa sulcatipes (Hymenoptera: Anthophoridae),” Journal of Chemical Ecology, vol. 9, no. 7, pp. 923–931, 1983. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Rosenboim, Mating strategies in three solitary bee species, M.S. thesis, Tel-Aviv University, Tel-Aviv, Israel, 1994.
  32. J. Alcock, “Differences in the site fidelity among territorial males of the carpenter bee Xylocopa varipuncta (Hymenoptera: Anthophoridae),” Behaviour, vol. 125, no. 3-4, pp. 199–217, 1993. View at Scopus
  33. R. H. Watmouth, “Biology and behavior of carpenter bees in southern Africa,” Journal of the Entomological Society of South Africa, vol. 37, pp. 261–281, 1974.
  34. B. Bonelli, “Osservazioni etoecologiche sugli Imenotteri aculeati dell'Etiopia. VII Xylocopa (Mesotrichia) combusta Smith (Hymenoptera Anthophoridae),” Bollettino dell'Istituto di Entomologia della Universita degli Studi di Bologna, vol. 33, pp. 1–31, 1976.
  35. K. Hogendoorn and R. Leys, “The superseded female's dilemma: ultimate and proximate factors that influence guarding behaviour of the carpenter bee Xylocopa pubescens,” Behavioral Ecology and Sociobiology, vol. 33, no. 6, pp. 371–381, 1993. View at Scopus
  36. D. Gerling and H. R. Hermann, “Biology and mating behavior of Xylocopa virginica L. (Hymenoptera, Anthophoridae),” Behavioral Ecology and Sociobiology, vol. 3, no. 2, pp. 99–111, 1978. View at Publisher · View at Google Scholar · View at Scopus
  37. R. E. Stark, “Sex ratio and maternal investment in the multivoltine large carpenter bee Xylocopa sulcatipes (Apoidea: Anthophoridae),” Ecological Entomology, vol. 17, no. 2, pp. 160–166, 1992. View at Scopus
  38. R. E. Stark, A. Hefetz, D. Gerling, and H. H. W. Velthuis, “Reproductive competition involving oophagy in the socially nesting bee Xylocopa sulcatipes,” Naturwissenschaften, vol. 77, no. 1, pp. 38–40, 1990. View at Scopus
  39. K. Hogendoorn and H. H. W. Velthuis, “Task allocation and reproductive skew in social mass provisioning carpenter bees in relation to age and size,” Insectes Sociaux, vol. 46, no. 3, pp. 198–207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. D. Gerling, “Nesting biology and flower relationships of Xylocopa sonorina Smith in Hawaii (Hymenoptera: Anthophoridae),” Pan-Pacific Entomologist, vol. 58, pp. 336–351, 1983.
  41. E. Camillo and C. A. Garofalo, “Social organization in reactivated nests of three species of Xylocopa (Hymenoptera, Anthophoridae) in southeastern Brasil,” Insectes Sociaux, vol. 36, no. 2, pp. 92–105, 1989. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Hogendoorn and H. H. W. Velthuis, “Task allocation and reproductive skew in social mass provisioning carpenter bees in relation to age and size,” Insectes Sociaux, vol. 46, no. 3, pp. 198–207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. A. R. Smith, W. T. Wcislo, and S. O'Donnell, “Assured fitness returns favor sociality in a mass-provisioning sweat bee, Megalopta genalis (Hymenoptera: Halictidae),” Behavioral Ecology and Sociobiology, vol. 54, no. 1, pp. 14–21, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. W. V. Balduf, “Life of the carpenter bee, Xylocopa virginica (Linn.) (Xylocopidae, Hymenoptera),” Annals of the Entomological Society of America, vol. 55, pp. 263–271, 1962.
  45. K. Hogendoorn and H. H. W. Velthuis, “The sociality of Xylocopa pubescens: does a helper really help?” Behavioral Ecology and Sociobiology, vol. 32, no. 4, pp. 247–257, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Hogendoorn and H. H. W. Velthuis, “The role of young guards in Xylocopa pubescens,” Insectes Sociaux, vol. 42, no. 4, pp. 427–448, 1995. View at Scopus
  47. T. Keasar, A. Sadeh, M. Shilo, and Y. Ziv, “Social organization and pollination efficiency in the carpenter bee Xylocopa pubescens (Hymenoptera: Apidae: Anthophorinae),” Entomologia Generalis, vol. 29, no. 2–4, pp. 225–236, 2007. View at Scopus
  48. G. N. Luow and S. W. Nicolson, “Thermal, energetic and nutritional considerations in the foraging and reproduction of the carpenter bee Xylocopa capitata,” Journal of the Entomological Society of South Africa, vol. 46, pp. 227–240, 1983.
  49. W. M. Schaffer, D. B. Jensen, D. E. Hobbs, J. Gurevitch, J. R. Todd, and M. V. Schaffer, “Competition, foraging energetics, and the cost of sociality in three species of bees,” Ecology, vol. 60, pp. 976–987, 1979.
  50. B. Heinrich and S. L. Buchmann, “Thermoregulatory physiology of the carpenter bee, Xylocopa varipuncta,” Journal of Comparative Physiology B, vol. 156, no. 4, pp. 557–562, 1986. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Volynchik, M. Plotkin, N. Y. Ermakov, D. J. Bergman, and J. S. Ishay, “Presence of a thermoregulatory hot spot in the prothorax of the large carpenter bee and the bumble bee,” Microscopy Research and Technique, vol. 69, no. 11, pp. 903–912, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. B. F. Viana, A. M. P. Kleinert, and F. O. Silva, “Ecology of Xylocopa (Neoxylocopa) cearensis (Hymenoptera: Anthophoridae) in Abaeté sand dunes, Salvador, Bahia,” Iheringia, Série Zoologia, vol. 92, no. 4, pp. 47–57, 2002.
  53. A. S. Bernardino and M. C. Gaglianone, “Nest distribution and nesting habits of Xylocopa ordinaria Smith (Hymenoptera, Apidae) in a restinga area in the northern Rio de Janeiro State, Brazil,” Revista Brasileira de Entomologia, vol. 52, no. 3, pp. 434–440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. D. P. Abrol, “Influence of thermal and energetic constraints on the pollination activity of carpenter bee Xylocopa pubescens,” Environmental Ecology, vol. 5, pp. 90–93, 1987.
  55. D. H. Janzen, “Notes on the behavior of four subspecies of the carpenter bee, Xylocopa (Notoxylocopa) tabaniformis, in Mexico,” Annals of the Entomological Society of America, vol. 57, pp. 296–301, 1964.
  56. H. Somanathan and R. M. Borges, “Nocturnal pollination by the carpenter bee Xylocopa tenuiscapa (Apidae) and the effect of floral display on fruit set of heterophragma quadriloculare (Bignoniaceae) in India,” Biotropica, vol. 33, no. 1, pp. 78–89, 2001. View at Scopus
  57. M. Burgett, P. Sukumalanand, and G. Vorwohl, “Pollen species resources for Xylocopa (Nyctomelitta) tranquebarica (F.), a night-flying carpenter bee (Hymenoptera: Apidae) of Southeast Asia,” ScienceAsia, vol. 31, pp. 65–68, 2005.
  58. S. W. Nicolson and G. N. Luow, “Simulataneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee,” Journal of Experimental Zoology, vol. 222, pp. 287–296, 1982.
  59. P. G. Willmer, “The role of insect water balance in pollination ecology: Xylocopa and Calotropis,” Oecologia, vol. 76, no. 3, pp. 430–438, 1988. View at Publisher · View at Google Scholar · View at Scopus
  60. K. S. Delaplane, “Bee foragers and their pollen loads in south Georgia rabbiteye blueberry,” American Bee Journal, vol. 135, pp. 825–826, 1995.
  61. S. Dedej and K. S. Delaplane, “Nectar-robbing carpenter bees reduce seed-setting capability of honey bees (Hymenoptera: Apidae) in rabbiteye blueberry, Vaccinium ashei, ‘Climax’,” Environmental Entomology, vol. 33, no. 1, pp. 100–106, 2004. View at Scopus
  62. B. J. Sampson, R. G. Danka, and S. J. Stringer, “Nectar robbery by bees Xylocopa virginica and Apis mellifera contributes to the pollination of rabbiteye blueberry,” Journal of Economic Entomology, vol. 97, no. 3, pp. 735–740, 2004. View at Scopus
  63. J. Guitiàn, J. M. Sànchez, and P. Guitiàn, “Pollination ecology of Petrocoptis grandiflora Rothm. (Caryophyllaceae); a species endemic to the north-west part of the Iberian Peninsula,” Botanical Journal of the Linnean Society, vol. 115, no. 1, pp. 19–27, 1994. View at Publisher · View at Google Scholar · View at Scopus
  64. P. E. Scott, S. L. Buchmann, and M. K. O'Rourke, “Evidence for mutualism between a flower-piercing carpenter bee and ocotillo: use of pollen and nectar by nesting bees,” Ecological Entomology, vol. 18, no. 3, pp. 234–240, 1993. View at Scopus
  65. Y.-W. Zhang, G. W. Robert, Y. Wang, and Y.-H. Guo, “Nectar robbing of a carpenter bee and its effects on the reproductive fitness of Glechoma longituba (Lamiaceae),” Plant Ecology, vol. 193, no. 1, pp. 1–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Navarro and R. Medel, “Relationship between floral tube length and nectar robbing in Duranta erecta L. (Verbenaceae),” Biological Journal of the Linnean Society, vol. 96, no. 2, pp. 392–398, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. J. S. Raju and S. P. Rao, “Nesting habits, floral resources and foraging ecology of large carpenter bees (Xylocopa latipes and Xylocopa pubescens) in India,” Current Science, vol. 90, no. 9, pp. 1210–1217, 2006. View at Scopus
  68. S. M. Perez and K. D. Waddington, “Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies,” American Zoologist, vol. 36, no. 4, pp. 435–446, 1996. View at Scopus
  69. C. M. Mcguire, “Passiflora incarnata (Passifloraceae): a new fruit crop,” Economic Botany, vol. 53, no. 2, pp. 161–176, 1999. View at Scopus
  70. S. A. Corbett and P. G. Willmer, “Pollination of the yellow passionfruit: nectar, pollen and carpenter bees,” Journal of Agricultural Science, vol. 95, pp. 655–666, 1980.
  71. D. W. Roubik, Pollination of Cultivated Plants in the Tropics, United Nations Food and Agriculture Organization, Rome, Italy, 1995.
  72. B. M. Freitas and J. H. Oliveira, “Rational nesting boxes for carpenter bees (Xylocopa frontalis) in the pollination of passionfruit (Passiflora edulis),” Ciência Rural, vol. 33, pp. 1135–1139, 2003.
  73. K. M. M. de Siqueira, L. H. P. Kiill, C. F. Martins, I. B. Lemos, S. P. Monteiro, and E. A. Feitoza, “Ecology of pollination of the yellow passion fruit (Passiflora edulis sims f. flavicarpa deg.), in the region of São Francisco Valley,” Revista Brasileira de Fruticultura, vol. 31, no. 1, pp. 1–12, 2009. View at Scopus
  74. A. Sadeh, A. Shmida, and T. Keasar, “The carpenter bee Xylocopa pubescens as an agricultural pollinator in greenhouses,” Apidologie, vol. 38, no. 6, pp. 508–517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. G. D. Waller, B. E. Vissiere, J. O. Moffett, and J. H. Martin, “Comparison of carpenter bees (Xylocopa varipuncta Patton) (Hymenoptera: Anthophoridae) and honey bees (Apis mellifera L.) (Hymenoptera: Apidae) as pollinators of male-sterile cotton in cages,” Journal of Economic Entomology, vol. 78, pp. 558–561, 1985.
  76. J. Weiss, A. Nerd, and Y. Mizrahi, “Flowering and pollination requirements in Cereus peruvianus cultivated in Israel,” Israel Journal of Plant Sciences, vol. 42, no. 2, pp. 149–158, 1994. View at Scopus
  77. S. H. Skaife, “The yellow-banded carpenter bee, Mesotrichia caffra Linn, and its symbiotic mite, Dinogamasus Braunsi Vitzthun,” Journal of the Entomological Society of South Africa, vol. 15, pp. 63–76, 1952.
  78. J. H. Oliviera and B. M. Freitas, “Colonization and reproductive biology of carpenter bees (Xylocopa frontalis) in a model of rational nesting box,” Ciência Rural, vol. 33, pp. 693–697, 2003.
  79. K. Hogendoorn, “On promoting solitary bee species for use as crop pollinators in greenhouses,” in Solitary Bees: Conservation, Rearing and Management for Pollination, B. M. Freitas and J. O. P. Pereira, Eds., pp. 213–221, Imprensa Universitária, Fortaleza, Brazil, 2004.
  80. J. Bosch and W. P. Kemp, How to Manage the Blue Orchard Bee as an Orchard Pollinator, Sustainable Agriculture Networdk Handbook Series Book no. 5, National Agricultural Library, Beltsville, Md, USA, 2002.
  81. J. Bosch, “Improvement of field management of Osmia cornuta (Latreille) (Hymenoptera, Megachilidae) to pollinate almond,” Apidologie, vol. 25, no. 1, pp. 71–83, 1994. View at Scopus
  82. S. G. Potts, B. Vulliamy, S. Roberts, et al., “Role of nesting resources in organising diverse bee communities in a Mediterranean landscape,” Ecological Entomology, vol. 30, no. 1, pp. 78–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. I. Steffan-Dewenter and S. Schiele, “Do resources or natural enemies drive bee population dynamics in fragmented habitats?” Ecology, vol. 89, no. 5, pp. 1375–1387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Bosch and W. P. Kemp, “Developing and establishing bee, species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees,” Bulletin of Entomological Research, vol. 92, no. 1, pp. 3–16, 2002. View at Scopus