About this Journal Submit a Manuscript Table of Contents
Psyche
Volume 2012 (2012), Article ID 239392, 10 pages
http://dx.doi.org/10.1155/2012/239392
Review Article

Towards a Better Understanding of the Evolution of Specialized Parasites of Fungus-Growing Ant Crops

Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark

Received 5 October 2011; Accepted 12 December 2011

Academic Editor: Alain Lenoir

Copyright © 2012 Sze Huei Yek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. W. Møller, Die Pilzgärten Einiger Südamerikanischer Ameisen, Gustav Fischer, Jena, Germany, 1893.
  2. N. A. Weber, Gardening Ants: The Attines, American Philosophical Society, Philadelphia, Pa, USA, 1972.
  3. U. G. Mueller, T. R. Schultz, C. R. Currie, R. M. M. Adams, and D. Malloch, “The origin of the attine ant-fungus mutualism,” The Quarterly Review of Biology, vol. 76, no. 2, pp. 169–197, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. T. R. Schultz and S. G. Brady, “Major evolutionary transitions in ant agriculture,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 14, pp. 5435–5440, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. T. R. Schultz and R. Meier, “A phylogenetic analysis of the fungus-growing ants (Hymenoptera: Formicidae: Attini) based on morphological characters of the larvae,” Systematic Entomology, vol. 20, no. 4, pp. 337–370, 1995.
  6. J. K. Wetterer, T. R. Schultz, and R. Meier, “Phylogeny of fungus-growing ants (tribe attini) based on mtDNA sequence and morphology,” Molecular Phylogenetics and Evolution, vol. 9, no. 1, pp. 42–47, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. C. Klingenberg and C. R. F. Brandão, “Revision of the fungus-growing ant genera Mycetophylax Emery and Paramycetophylax Kusnezov rev. stat., and description of Kalathomyrmex n. gen. (Formicidae: Myrmicinae: Attini),” Zootaxa, no. 2052, pp. 1–31, 2009. View at Scopus
  8. T. Eisner and G. M. Happ, “The infrabuccal pocket of a formicine ant: a social filtration device,” Psyche, vol. 69, pp. 107–116, 1962.
  9. B. Hölldobler and E. O. Wilson, The Ants, Springer Verlag, Berlin, Germany, 1990.
  10. H. von Ihering, “Die anlage neuer colonien und pilzgärten bei,” Atta Sexdens. Zoologischer Anzeiger, vol. 21, pp. 238–245, 1898.
  11. M. Autuori, “La fondation des sociétés chez le fourmis champignnonnistes du genre “Atta” (Hym. Formicidae),” in L'Instinct dans le Comportement des Animaux et de L'Homme, M. Autuori, et al., Ed., Masson & Cie, Paris, France, 1956.
  12. U. G. Mueller, S. A. Rehner, and T. R. Schultz, “The evolution of agriculture in ants,” Science, vol. 281, no. 5385, pp. 2034–2038, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. N. A. Weber, “Fungus-growing ants,” Science, vol. 153, no. 3736, pp. 587–604, 1966. View at Scopus
  14. I. H. Chapela, S. A. Rehner, T. R. Schultz, and U. G. Mueller, “Evolutionary history of the symbiosis between fungus-growing ants and their fungi,” Science, vol. 266, no. 5191, pp. 1691–1694, 1994. View at Scopus
  15. G. Hinkle, J. K. Wetterer, T. R. Schultz, and M. L. Sogin, “Phylogeny of the attine ant fungi based on analysis of small subunit ribosomal RNA gene sequences,” Science, vol. 266, no. 5191, pp. 1695–1697, 1994. View at Scopus
  16. A. S. Mikheyev, U. G. Mueller, and J. J. Boomsma, “Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi,” Molecular Ecology, vol. 16, no. 1, pp. 209–216, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. S. Mikheyev, T. Vo, and U. G. Mueller, “Phylogeography of post-pleistocene population expansion in a fungus-gardening ant and its microbial mutualists,” Molecular Ecology, vol. 17, no. 20, pp. 4480–4488, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. A. M. Green, U. G. Mueller, and R. M. M. Adams, “Extensive exchange of fungal cultivars between sympatric species of fungus-growing ants,” Molecular Ecology, vol. 11, no. 2, pp. 191–195, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. A. S. Mikheyev, U. G. Mueller, and P. Abbot, “Comparative dating of attine ant and lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord,” The American Naturalist, vol. 175, no. 6, pp. E126–E133, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. R. Sen, H. D. Ishak, T. R. Kniffin, and U. G. Mueller, “Construction of chimaeric gardens through fungal intercropping: a symbiont choice experiment in the leafcutter ant Atta texana (Attini, Formicidae),” Behavioral Ecology and Sociobiology, vol. 64, no. 7, pp. 1125–1133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. R. M. M. Adams, U. G. Mueller, A. K. Holloway, A. M. Green, and J. Narozniak, “Garden sharing and garden stealing in fungus-growing ants,” Naturwissenschaften, vol. 87, no. 11, pp. 491–493, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Poulsen, A. E. F. Little, and C. R. Currie, “Fungus-growing ant-microbe symbioses: using microbes to defend beneficial mutualisms within symbiotic communities,” in Defensive Mutualism in Microbial Symbiosis, J. F. White and M. S. Torres, Eds., CRC Press, Boca Raton, Fla, USA, 2009.
  23. S. A. Frank, “Models of parasite virulence,” The Quarterly Review of Biology, vol. 71, no. 1, pp. 37–78, 1996.
  24. M. Poulsen and J. J. Boomsma, “Mutualistic fungi control crop diversity in fungus-growing ants,” Science, vol. 307, no. 5710, pp. 741–744, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. U. G. Mueller, J. J. Scott, H. D. Ishak, M. Cooper, and A. Rodrigues, “Monoculture of leafcutter ant gardens,” PLoS One, vol. 5, no. 9, Article ID e12668, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. Clay and P. X. Kover, “The Red Queen Hypothesis and plant/pathogen interactions,” Annual Review of Phytopathology, vol. 34, pp. 29–50, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. W. D. Hamilton, “Sex versus non-sex versus parasite,” Oikos, vol. 35, no. 2, pp. 282–290, 1980.
  28. L. T. Morran, O. G. Schmidt, I. A. Gelarden, R. C. Parrish II, and C. M. Lively, “Running with the Red Queen: host-parasite coevolution selects for biparental sex,” Science, vol. 333, no. 6039, pp. 216–218, 2011. View at Publisher · View at Google Scholar · View at PubMed
  29. R. J. Ladle, “Parasites and sex: catching the red queen,” Trends in Ecology and Evolution, vol. 7, no. 12, pp. 405–408, 1992. View at Scopus
  30. J. Jokela, M. F. Dybdahl, and C. M. Lively, “The maintenance of sex, clonal dynamics, and host-parasite coevolution in a mixed population of sexual and asexual snails,” The American Naturalist, vol. 174, no. 1, pp. S43–S53, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. G. Stahel and D. C. Geijskes, “Weitere untersuchungen über nestbau und gartenpilz von Atta cephalotes L. und Atta sexdens L. (Hym. Formicidae),” Revista Entomology, vol. 12, pp. 243–268, 1940.
  32. C. R. Currie, U. G. Mueller, and D. Malloch, “The agricultural pathology of ant fungus gardens,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 14, pp. 7998–8002, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Koch, “Üeber den augenblicklichen stand der bakteriologischen choleradiagnose,” Zeitschrift für Hygiene und Infektionskrankheiten, vol. 14, no. 1, pp. 319–338, 1893. View at Publisher · View at Google Scholar · View at Scopus
  34. C. R. Currie, The ecology and evolution of a quadripartite symbiosis: examining the interactions among attine ants, fungi, and actinomycetes, Ph.D. thesis, Department of Botany, University of Toronto, 2000.
  35. C. R. Currie, “Prevalence and impact of a virulent parasite on a tripartite mutualism,” Oecologia, vol. 128, no. 1, pp. 99–106, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. H. T. Reynolds and C. R. Currie, “Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivated fungus,” Mycologia, vol. 96, no. 5, pp. 955–959, 2004. View at Scopus
  37. C. R. Currie, B. Wong, A. E. Stuart et al., “Ancient tripartite coevolution in the attine ant-microbe symbiosis,” Science, vol. 299, no. 5605, pp. 386–388, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. S. J. Taerum, M. J. Cafaro, A. E. F. Little, T. R. Schultz, and C. R. Currie, “Low host-pathogen specificity in the leaf-cutting ant-microbe symbiosis,” Proceedings of the Royal Society B, vol. 274, no. 1621, pp. 1971–1978, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. N. M. Gerardo, U. G. Mueller, and C. R. Currie, “Complex host-pathogen coevolution in the Apterostigma fungus-growing ant-microbe symbiosis,” BMC Evolutionary Biology, vol. 6, article 88, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. N. M. Gerardo, S. R. Jacobs, C. R. Currie, and U. G. Mueller, “Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis,” PLoS Biology, vol. 4, no. 8, pp. 1358–1363, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. N. M. Gerardo, U. G. Mueller, S. L. Price, and C. R. Currie, “Exploiting a mutualism: parasite specialization on cultivars within the fungus-growing ant symbiosis,” Proceedings of the Royal Society B, vol. 271, no. 1550, pp. 1791–1798, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. A. S. Mikheyev, U. G. Mueller, and P. Abbot, “Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10702–10706, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. N. M. Gerardo and E. J. Caldera, “Labile associations between fungus-growing ant cultivars and their garden pathogens,” The ISME Journal, vol. 1, no. 5, pp. 373–384, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. C. R. Currie and A. E. Stuart, “Weeding and grooming of pathogens in agriculture by ants,” Proceedings of the Royal Society B, vol. 268, no. 1471, pp. 1033–1039, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. D. Abramowski, C. R. Currie, and M. Poulsen, “Caste specialization in behavioral defenses against fungus garden parasites in Acromyrmex octospinosus leaf-cutting ants,” Insectes Sociaux, vol. 58, no. 1, pp. 65–75, 2010. View at Publisher · View at Google Scholar
  46. A. Gerstner, M. Poulsen, and C. R. Currie, “Recruitment of minor workers for defense against a specialized parasite of Atta leaf-cutting ant fungus gardens,” Ethology, Ecology and Evolution, vol. 23, no. 1, pp. 61–75, 2011.
  47. H. Fernández-Marín, J. K. Zimmerman, S. A. Rehner, and W. T. Wcislo, “Active use of the metapleural glands by ants in controlling fungal infection,” Proceedings of the Royal Society B, vol. 273, no. 1594, pp. 1689–1695, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. A. N. M. Bot, D. Ortius-Lechner, K. Finster, R. Maile, and J. J. Boomsma, “Variable sensitivity of fungi and bacteria to compounds produced by the metapleural glands of leaf-cutting ants,” Insectes Sociaux, vol. 49, no. 4, pp. 363–370, 2002. View at Scopus
  49. A. E. F. Little, T. Murakami, U. G. Mueller, and C. R. Currie, “Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens,” Biology Letters, vol. 2, no. 1, pp. 12–16, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. C. R. Currie, J. A. Scott, R. C. Summerbell, and D. Malloch, “Erratum: fungus-growing ants use antibiotic-producing bacteria to control garden parasites,” Nature, vol. 398, pp. 701–704, 1999.
  51. C. R. Currie, A. N. M. Bot, and J. J. Boomsma, “Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites,” Oikos, vol. 101, no. 1, pp. 91–102, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. C. R. Currie, M. Poulsen, J. Mendenhall, J. J. Boomsma, and J. Billen, “Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants,” Science, vol. 311, no. 5757, pp. 81–83, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. S. H. Yek and U. G. Mueller, “The metapleural gland of ants,” Biological Reviews, vol. 91, no. 3-4, pp. 201–224, 2010.
  54. H. Fernández-Marín, J. K. Zimmerman, D. R. Nash, J. J. Boomsma, and W. T. Wcislo, “Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants,” Proceedings of the Royal Society B, vol. 276, no. 1665, pp. 2263–2269, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. J. Cafaro, M. Poulsen, A. E. F. Little, et al., “Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria,” Proceedings of the Royal Society B, vol. 278, no. 1713, pp. 1814–1822, 2011.
  56. M. Poulsen, M. Cafaro, J. J. Boomsma, and C. R. Currie, “Specificity of the mutualistic association between actinomycete bacteria and two sympatric species of Acromyrmex leaf-cutting ants,” Molecular Ecology, vol. 14, no. 11, pp. 3597–3604, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. U. G. Mueller, D. Dash, C. Rabeling, and A. Rodrigues, “Coevolution between attine ants and actinomycete bacteria: a reevaluation,” Evolution, vol. 62, no. 11, pp. 2894–2912, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. S. Haeder, R. Wirth, H. Herz, and D. Spiteller, “Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 12, pp. 4742–4746, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. C. Kost, T. Lakatos, I. Bottcher, W. R. Arendholz, M. Redenbach, and R. Wirth, “Non-specific association between filamentous bacteria and fungus-growing ants,” Naturwissenschaften, vol. 94, no. 10, pp. 821–828, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. J. Barke, R. F. Seipke, S. Grüschow et al., “A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus,” BMC Biology, vol. 8, no. 1, article 109, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. I. Schoenian, M. Spiteller, M. Ghaste, R. Wirth, H. Herz, and D. Spiteller, “Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 5, pp. 1955–1960, 2011.
  62. A. Rodrigues, F. C. Pagnocca, M. Bacci Jr., M. J. A. Hebling, O. C. Bueno, and L. H. Pfenning, “Variability of non-mutualistic filamentous fungi associated with Atta sexdens rubropilosa nests,” Folia Microbiologica, vol. 50, no. 5, pp. 421–425, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. S. J. Taerum, M. Cafaro, and C. R. Currie, “Presence of multiparasite infections within individual colonies of leaf-cutter ants,” Environmental Entomology, vol. 39, no. 1, pp. 105–113, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. Poulsen, D. Erhardt, A. E. F. Little, et al., “Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants,” Environmental Microbiology Reports, vol. 2, no. 4, pp. 534–540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Sen, H. D. Ishak, E. Dora, S. E. Dowd, E. Hong, and U. G. Mueller, “Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 42, pp. 17805–17810, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. R. M. Nesse, “Tinbergen's Four Questions Organized,” 2000, http://nesse.us.
  67. N. Tinbergen, “On aims and methods of ethology,” Zeitschrift für Tierpsychologie, vol. 20, no. 4, pp. 410–433, 1963.
  68. E. Mayr, “Adaptation and selection,” Italian Journal of Zoology, vol. 48, pp. 66–77, 1981.
  69. D. Ortius-Lechner, R. Maile, E. D. Morgan, and J. J. Boomsma, “Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: new compounds and their functional significance,” Journal of Chemical Ecology, vol. 26, no. 7, pp. 1667–1683, 2000. View at Publisher · View at Google Scholar · View at Scopus
  70. A. E. F. Little, T. Murakami, U. G. Mueller, and C. R. Currie, “The infrabuccal pellet piles of fungus-growing ants,” Ethology, Ecology and Evolution, vol. 90, no. 12, pp. 558–562, 2003.
  71. D. C. Oh, M. Poulsen, C. R. Currie, and J. Clardy, “Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis,” Nature Chemical Biology, vol. 5, no. 6, pp. 391–393, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. M. Poulsen, A. N. M. Bot, M. G. Nielsen, and J. J. Boomsma, “Experimental evidence for the costs and hygienic significance of the antibiotic metapleural gland secretion in leaf-cutting ants,” Behavioral Ecology and Sociobiology, vol. 52, no. 2, pp. 151–157, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Poulsen, A. N. M. Bot, C. R. Currie, M. G. Nielsen, and J. J. Boomsma, “Within-colony transmission and the cost of a mutualistic bacterium in the leaf-cutting ant Acromyrmex octospinosus,” Functional Ecology, vol. 17, no. 2, pp. 260–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. D. A. Dewsbury, “The 1973 Nobel prize for physiology or medicine: recognition for behavioral science?” American Psychologist, vol. 58, no. 9, pp. 747–752, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. J. R. Krebs and N. B. Davies, An Introduction to Behavioural Ecology, Blackwell Publisher, 1993.
  76. E. L. Charnov and S. W. Skinner, “Complementary approaches to the understanding of parasitoid oviposition decisions,” Environmental Entomology, vol. 14, no. 4, pp. 383–391, 1985.
  77. D. M. Zeifman, “An ethological analysis of human infant crying: answering Tinbergen's four questions,” Developmental Psychobiology, vol. 39, no. 4, pp. 265–285, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. R. Buchholz, “Behavioural biology: an effective and relevant conservation tool,” Trends in Ecology and Evolution, vol. 22, no. 8, pp. 401–407, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. J. N. Thompson, “Specific hypotheses on the geographic mosaic of coevolution,” The American Naturalist, vol. 153, no. S5, pp. S1–S14, 1999. View at Publisher · View at Google Scholar · View at Scopus
  80. M. E. Hudson, “Sequencing breakthroughs for genomic ecology and evolutionary biology,” Molecular Ecology Resources, vol. 8, no. 1, pp. 3–17, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. A. Rokas and P. Abbot, “Harnessing genomics for evolutionary insights,” Trends in Ecology and Evolution, vol. 24, no. 4, pp. 192–200, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. S. Nygaard, G. J. Zhang, M. Schiøtt, et al., “The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming,” Genome Research, vol. 21, pp. 1339–1348, 2011.
  83. G. Suen, C. Teiling, L. Li, et al., “The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle,” PLoS Genetics, vol. 7, no. 2, Article ID e1002007, 2011. View at Publisher · View at Google Scholar · View at PubMed
  84. R. M. Anderseon and R. M. May, “The population dynamics of microparasites and their invertebrate hosts,” Philosophical Transactions of the Royal Society of London B, vol. 291, no. 1054, pp. 451–524, 1981. View at Publisher · View at Google Scholar
  85. C. R. Currie, “A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis,” Annual Review of Microbiology, vol. 55, pp. 357–380, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. H. Fernández-Marín, J. K. Zimmerman, and W. T. Wcislo, “Nest-founding in Acromyrmex octospinosus (Hymenoptera, Formicidae, Attini): demography and putative prophylactic behaviors,” Insectes Sociaux, vol. 50, no. 4, pp. 304–308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. F. J. Richard and C. Errard, “Hygienic behavior, liquid-foraging, and trophallaxis in the leafcutting ants, Acromyrmex subterraneus and Acromyrmex octospinosus,” Journal of Insect Science, vol. 9, article 63, 2009. View at Scopus
  88. A. Rodrigues, M. Bacci Jr., U. G. Mueller, A. Ortiz, and F. C. Pagnocca, “Microfungal “weeds” in the leafcutter ant symbiosis,” Microbial Ecology, vol. 56, no. 4, pp. 604–614, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. A. Rodrigues, U. G. Mueller, H. D. Ishak, M. Bacci Jr., and F. C. Pagnocca, “Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas,” FEMS Microbiology Ecology, vol. 78, no. 2, pp. 244–255, 2011. View at Publisher · View at Google Scholar · View at PubMed
  90. E. Caldera, M. Poulsen, G. Suen, and C. R. Currie, “Insect symbioses—a case study of past, present, and future fungus-growing ant research,” Environmental Entomology, vol. 38, no. 1, pp. 78–92, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. J. J. Muchovej and T. M. Della Lucia, “Escovopsis, a new genus from leaf cutting ant nests to replace Phialocladus nomem invalidum,” Mycotaxon, vol. 37, pp. 191–195, 1990.
  92. K. A. Seifert, R. A. Samson, and I. H. Chapela, “Escovopsis aspergilloides, a rediscovered Hyphomycete from leaf-cutting ant nests,” Mycologia, vol. 87, no. 3, pp. 407–413, 1995.
  93. J. N. Thompson, The Geographic Mosaic of Coevolution, The University of Chicago Press, Chicago, Ill, USA, 2005.
  94. D. H. Jennings and G. Lysek, Fungal Biology: Understanding the Fungal Lifestyle, Bios Scientific Publishers, Guildford, UK, 1996.
  95. R. D. Tinline and B. H. MacNeill, “Parasexuality in plant pathogenic fungi,” Annual Review of Phytopathology, vol. 7, pp. 147–168, 1969.
  96. A. Buckling and P. B. Rainey, “Antagonistic coevolution between a bacterium and a bacteriophage,” Proceedings of the Royal Society B, vol. 269, no. 1494, pp. 931–936, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus