About this Journal Submit a Manuscript Table of Contents
Psyche
Volume 2012 (2012), Article ID 380474, 11 pages
http://dx.doi.org/10.1155/2012/380474
Review Article

Trait-Mediated Indirect Effects of Phorid Flies on Ants

School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA

Received 25 December 2011; Accepted 9 February 2012

Academic Editor: Jean Paul Lachaud

Copyright © 2012 Hsun-Yi Hsieh and Ivette Perfecto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. H. Feener Jr., “Is the assembly of ant communities mediated by parasitoids?” Oikos, vol. 90, no. 1, pp. 79–88, 2000. View at Scopus
  2. E. E. Werner and S. D. Peacor, “A review of trait-mediated indirect interactions in ecological communities,” Ecology, vol. 84, no. 5, pp. 1083–1100, 2003. View at Scopus
  3. O. J. Schmitz, V. Krivan, and O. Ovadia, “Trophic cascades: the primacy of trait-mediated indirect interactions,” Ecology Letters, vol. 7, no. 2, pp. 153–163, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Bolker, M. Holyoak, V. Krivan, L. Rowe, and O. Schmitz, “Connecting theoretical and empirical studies of trait-mediated interactions,” Ecology, vol. 84, no. 5, pp. 1101–1114, 2003. View at Scopus
  5. L. W. Morrison and S. D. Porter, “Testing for population-level impacts of introduced Pseudacteon tricuspis flies, phorid parasitoids of Solenopsis invicta fire ants,” Biological Control, vol. 33, no. 1, pp. 9–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Briano, L. Calcaterra, and L. Varone, “Fire ants (Solenopsis spp.) and their natural enemies in Southern South America,” Psyche, vol. 2012, Article ID 198084, 19 pages, 2012. View at Publisher · View at Google Scholar
  7. J. Vandermeer, I. Perfecto, and S. M. Philpott, “Ecological complexity and pest control in organic coffee production: uncovering an autonomous ecosystem service,” Bioscience, vol. 60, no. 7, pp. 527–537, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. S. D. Porter and D. A. Savignano, “Invasion of polygyne fire ants decimates native ants and disrupts arthropod community,” Ecology, vol. 71, no. 6, pp. 2095–2106, 1990. View at Scopus
  9. M. R. Orr, S. H. Seike, W. W. Benson, and L. E. Gilbert, “Flies suppress fire ants,” Nature, vol. 373, no. 6512, pp. 292–293, 1995. View at Scopus
  10. E. G. LeBrun, “Who is the top dog in ant communities? Resources, parasitoids, and multiple competitive hierarchies,” Oecologia, vol. 142, no. 4, pp. 643–652, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. Feener, M. R. Orr, K. M. Wackford, J. M. Longo, W. W. Benson, and L. E. Gilbert, “Geographic variation in resource dominance discovery in Brazilian ant communities,” Ecology, vol. 89, no. 7, pp. 1824–1836, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. W. Morrison, C. G. Dall'aglio-Holvorcem, and L. E. Gilbert, “Oviposition behavior and development of Pseudacteon flies (Diptera: Phoridae), parasitoids of Solenopsis fire ants (Hymenoptera: Formicidae),” Environmental Entomology, vol. 26, no. 3, pp. 716–724, 1997. View at Scopus
  13. D. H. Feener Jr., “Competition between ant species: outcome controlled by parasitic flies,” Science, vol. 214, no. 4522, pp. 815–817, 1981. View at Scopus
  14. D. H. Feener Jr., “Effects of parasites on foraging and defense behavior of a termitophagous ant, Pheidole titanis Wheeler (Hymenoptera: Formicidae),” Behavioral Ecology and Sociobiology, vol. 22, no. 6, pp. 421–427, 1988. View at Publisher · View at Google Scholar · View at Scopus
  15. K. A. Mathis and S. M. Phillpott, “Current understanding of future prospects of host selection, acceptance, discrimination, and regulation of phorid fly parasitoids that attack ants,” Psyche, vol. 2012, Article ID 895424, 9 pages, 2012. View at Publisher · View at Google Scholar
  16. M. R. Orr, “Parasitic flies (Diptera: Phoridae) influence foraging rhythms and caste division of labor in the leaf-cutter ant, Atta cephalotes (Hymenoptera: Formicidae),” Behavioral Ecology and Sociobiology, vol. 30, no. 6, pp. 395–402, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. L. Bragança, A. Tonhasca Jr., and T. M. C. Delia Lucia, “Reduction in the foraging activity of the leaf-cutting ant Atta sexdens caused by the phorid Neodohrniphora sp.,” Entomologia Experimentalis et Applicata, vol. 89, no. 3, pp. 305–311, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Tonhasca Jr. and M. A. L. Bragança, “Effect of leaf toughness on the susceptibility of the leaf-cutting ant Atta sexdens to attacks of a phorid parasitoid,” Insectes Sociaux, vol. 47, no. 3, pp. 220–222, 2000. View at Scopus
  19. S. M. Philpott, J. Maldonado, J. Vandermeer, and I. Perfecto, “Taking trophic cascades up a level: behaviorally-modified effects of phorid flies on ants and ant prey in coffee agroecosystems,” Oikos, vol. 105, no. 1, pp. 141–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. E. G. LeBrun and D. H. Feener Jr., “Linked indirect effects in ant-phorid interactions: impacts on ant assemblage structure,” Oecologia, vol. 133, no. 4, pp. 599–607, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. L. W. Morrison, “Indirect effects of phorid fly parasitoids on the mechanisms of interspecific competition among ants,” Oecologia, vol. 121, no. 1, pp. 113–122, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. N. J. Mehdiabadi and L. E. Gilbert, “Colony-level impacts of parasitoid flies on fire ants,” Proceedings of the Royal Society B, vol. 269, no. 1501, pp. 1695–1699, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. L. W. Morrison, “Mechanisms of Pseudacteon parasitoid (Diptera: Phoridae) effects on exploitative and interference competition in host Solenopsis ants (Hymenoptera: Formicidae),” Annals of the Entomological Society of America, vol. 93, no. 4, pp. 841–849, 2000. View at Scopus
  24. P. J. Folgarait and L. E. Gilbert, “Phorid parasitoids affect foraging activity of Solenopsis richteri under different availability of food in Argentina,” Ecological Entomology, vol. 24, no. 2, pp. 163–173, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. E. H. M. Vieira-Neto, F. M. Mundim, and H. L. Vasconcelos, “Hitchhiking behaviour in leaf-cutter ants: an experimental evaluation of three hypotheses,” Insectes Sociaux, vol. 53, no. 3, pp. 326–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C. B. Yackulic and O. T. Lewis, “Temporal variation in foraging activity and efficiency and the role of hitchhiking behaviour in the leaf-cutting ant, Atta cephalotes,” Entomologia Experimentalis et Applicata, vol. 125, no. 2, pp. 125–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Erthal Jr. and A. Tonhasca Jr., “Biology and oviposition behavior of the phorid Apocephalus attophilus and the response of its host, the leaf-cutting ant Atta laevigata,” Entomologia Experimentalis et Applicata, vol. 95, no. 1, pp. 71–75, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. R. T. Puckett and M. K. Harris, “Phorid flies, Pseudacteon spp. (Diptera: Phoridae), affect forager size ratios of red imported fire ants Solenopsis invicta (Hymenoptera: Formicidae) in Texas,” Environmental Entomology, vol. 39, no. 5, pp. 1593–1600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Tonhasca Jr., M. A. L. Bragança, and M. Erthal Jr., “Parasitism and biology of Myrmosicarius grandicornis (Diptera, Phoridae) in relationship to its host, the leaf-cutting ant Atta sexdens (Hymenoptera, Formicidae),” Insectes Sociaux, vol. 48, no. 2, pp. 154–158, 2001. View at Scopus
  30. H. Liere and A. Larsen, “Cascading trait-mediation: disruption of a trait-mediated mutualism by parasite-induced behavioral modification,” Oikos, vol. 119, no. 9, pp. 1394–1400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. S. M. Philpott, “Trait-mediated effects of parasitic phorid flies (Diptera: Phoridae) on ant (Hymenoptera: Formicidae) competition and resource access in coffee agro-ecosystems,” Environmental Entomology, vol. 34, no. 5, pp. 1089–1094, 2005. View at Scopus
  32. M. R. Orr and S. H. Seike, “Parasitoids deter foraging by Argentine ants (Linepithema humile) in their native habitat in Brazil,” Oecologia, vol. 117, no. 3, pp. 420–425, 1998. View at Scopus
  33. M. A. L. Bragança, L. M. de Souza, C. A. Nogueira, and T. M. C. Della Lucia, “Parasitism by Neodohrniphora spp. Malloch (Diptera, Phoridae) on workers of Atta sexdens riblopilosa Forel (Hymenoptera, Formicidae),” Revista Brasileira de Entomologia, vol. 52, no. 2, pp. 300–302, 2008.
  34. N. J. Mehdiabadi, E. A. Kawazoe, and L. E. Gilbert, “Phorid fly parasitoids of invasive fire ants indirectly improve the competitive ability of a native ant,” Ecological Entomology, vol. 29, no. 5, pp. 621–627, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. J. L. Mottern, K. M. Heinz, and P. J. Ode, “Evaluating biological control of fire ants using phorid flies: effects on competitive interactions,” Biological Control, vol. 30, no. 3, pp. 566–583, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. R. Orr, S. H. Seike, and L. E. Gilbert, “Foraging ecology and patterns of diversification in dipteran parasitoids of fire ants in South Brazil,” Ecological Entomology, vol. 22, no. 3, pp. 305–314, 1997. View at Scopus
  37. S. D. Porter, R. K. Vander Meer, M. A. Pesquero, S. Campiolo, and H. G. Fowler, “Solenopsis (Hymenoptera: Formicidae) fire ant reactions to attacks of Pseudacteon flies (Diptera: Phoridae) in South Eastern Brazil,” Annals of the Entomological Society of America, vol. 88, no. 4, pp. 570–575, 1995. View at Scopus
  38. K. A. Mathis, S. M. Philpott, and R. F. Moreira, “Parasite lost: chemical and visual cues used by Pseudacteon in search of Azteca instabilis,” Journal of Insect Behavior, vol. 24, no. 3, pp. 186–199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. R. Orr, D. L. Dahlsten, and W. W. Benson, “Ecological interactions among ants in the genus Linepithema, their phorid parasitoids, and ant competitors,” Ecological Entomology, vol. 28, no. 2, pp. 203–210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Tonhasca Jr., “Interaction between a parasitic fly, Neodohrniphora declinata (Diptera: Phoridae), and its host, the leaf-cutting ant Atta sexdens rubropolosa (Hymenoptera: Formicidae),” Ecotropica, vol. 2, pp. 157–164, 1996.
  41. D. H. Feener Jr., “Size-selective oviposition in Pseudacteon crawfordi (Diptera: Phoridae), a parasite of fire ants,” Annals of the Entomological Society of America, vol. 80, no. 2, pp. 148–151, 1987.
  42. S. Campiolo, M. A. Pesquero, and H. G. Fowler, “Size-selective oviposition by phorid (Diptera: Phoridae) parasitoids on workers of the fire ant, Solenopsis saevissima (Hymenoptera: Formicidae),” Etologia, vol. 4, pp. 85–86, 1994.
  43. L. W. Morrison and L. E. Gilbert, “Parasitoid-host relationships when host size varies: the case of Pseudacteon flies and Solenopsis fire ants,” Ecological Entomology, vol. 23, no. 4, pp. 409–416, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. V. S. G. Silva, O. Bailez, A. M. Viana-Bailez, A. Tonhasca Jr., and T. M. Castro Della Lucia, “Survey of Neodohrniphora spp. (Diptera: Phoridae) at colonies of Atta sexdens rubropilosa (FOREL) and specificity of attack behaviour in relation to their hosts,” Bulletin of Entomological Research, vol. 98, no. 2, pp. 203–206, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. A. L. Bragança, A. Tonhasca Jr., and T. M. C. Della Lucia, “Características biológicas e comportamentais de Neodohrniphora elongata Brown (Diptera, Phoridae), um parasitóide da saúva Atta sexdens rubropilosa Forel (Hymenoptera, Formicidae),” Revista Brasileira de Entomologia, vol. 53, no. 4, pp. 600–606, 2009. View at Scopus
  46. D. H. Feener Jr. and B. V. Brown, “Reduced foraging of Solenopsis geminata (Hymenoptera: Formicidae) in the presence of parasitic Pseudacteon spp. (Diptera: Phoridae),” Annals of the Entomological Society of America, vol. 85, no. 1, pp. 80–84, 1992.
  47. D. H. Feener Jnr Jr. and B. V. Brown, “Oviposition behavior of an ant-parasitizing fly, Neodohrniphora curvinervis (Diptera: Phoridae), and defense behavior by its leaf-cutting ant host Atta cephalotes (Hymenoptera: Formicidae),” Journal of Insect Behavior, vol. 6, no. 6, pp. 675–688, 1993. View at Scopus
  48. L. E. Tennant and S. D. Porter, “Comparison of diets of two fire ant species (Hymenoptera: Formicidae): solid and liquid components,” Entomological Sciences, vol. 26, pp. 450–465, 1991.
  49. R. A. Ramirez II, D. C. Thompson, and M. D. Remmenga, “Influence of low humidity, Pseudacteon flies (Diptera: Phoridae), and competition by Solenopsis xyloni on Solenopsis invicta (Hymenoptera: Formicidae),” Environmental Entomology, vol. 35, no. 4, pp. 1037–1048, 2006. View at Scopus
  50. E. B. Wilkinson and D. H. Feener Jr., “Habitat complexity modifies ant-parasitoid interactions: implications for community dynamics and the role of disturbance,” Oecologia, vol. 152, no. 1, pp. 151–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. E. B. Wilkinson and D. H. Feener Jr., “Variation in resource size distribution around colonies changes ant-parasitoid interactions,” Insectes Sociaux, vol. 57, no. 4, pp. 385–391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. R. Savolainen and K. Vepsäläinen, “A competition hierarchy among boreal ants: impact on resource partitioning and community structure,” Oikos, vol. 51, no. 2, pp. 135–155, 1988. View at Scopus
  53. M. R. Orr, R. X. de Camargo, and W. W. Benson, “Interactions between ant species increase arrival rates of an ant parasitoid,” Animal Behaviour, vol. 65, no. 6, pp. 1187–1193, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Perfecto and J. Vandermeer, “Discovery dominance tradeoff: the case of Pheidole subarmata and Solenopsis geminata (Hymenoptera: Formicidae) in neotropical pastures,” Environmental Entomology, vol. 40, no. 5, pp. 999–1006, 2011. View at Publisher · View at Google Scholar
  55. S. M. Philpqtt, I. Perfecto, J. Vandermeer, and S. Uno, “Spatial scale and density dependence in a host parasitoid system: an arboreal ant, Azteca instabilis, and its Pseudacteon phorid parasitoid,” Environmental Entomology, vol. 38, no. 3, pp. 790–796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. L. W. Morrison, E. A. Kawazoe, R. Guerra, and L. E. Gilbert, “Ecological interactions of Pseudacteon parasitoids and Solenopsis ant hosts: environmental correlates of activity and effects on competitive hierarchies,” Ecological Entomology, vol. 25, no. 4, pp. 433–444, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. D. C. Henne and S. J. Johnson, “Laboratory evaluation of aggregation, direct mutual interference, and functional response characteristics of Pseudacteon tricuspis Borgmeier (Diptera: Phoridae),” Biological Control, vol. 55, no. 1, pp. 63–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. B. Hölldobler and E. O. Wilson, The Ants, Harvard University Press, Cambridge, UK, 1990.
  59. P. J. Folgarait, O. A. Bruzzone, and L. E. Gilbert, “Seasonal patterns of activity among species of black fire ant parasitoid flies (Pseudacteon: Phoridae) in Argentina explained by analysis of climatic variables,” Biological Control, vol. 28, no. 3, pp. 368–378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Chen, E. O. Onagbola, and H. Y. Fadamiro, “Effects of temperature, sugar availability, gender, mating, and size on the longevity of phorid fly Pseudacteon tricuspis (Diptera: Phoridae),” Environmental Entomology, vol. 34, no. 2, pp. 246–255, 2005. View at Scopus
  61. E. G. LeBrun, R. M. Plowes, and L. E. Gilbert, “Dynamic expansion in recently introduced populations of fire ant parasitoids (Diptera: Phoridae),” Biological Invasions, vol. 10, no. 7, pp. 989–999, 2008. View at Publisher · View at Google Scholar
  62. L. W. Buss, “Competitive intransitivity and size-frequency distributions of interacting populations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 9, pp. 5355–5359, 1980. View at Scopus
  63. J. Huisman, A. M. Johansson, E. O. Folmer, and F. J. Weissing, “Towards a solution of the plankton paradox: the importance of physiology and life history,” Ecology Letters, vol. 4, no. 5, pp. 408–411, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Kerr, M. A. Riley, M. W. Feldman, and B. J. M. Bohannan, “Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors,” Nature, vol. 418, no. 6894, pp. 171–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. R. A. Laird and B. S. Schamp, “Does local competition increase the coexistence of species in intransitive networks?” Ecology, vol. 89, no. 1, pp. 237–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Rojas-Echenique and S. Allesina, “Interaction rules affect species coexistence in intransitive networks,” Ecology, vol. 92, no. 5, pp. 1174–1180, 2011. View at Publisher · View at Google Scholar
  67. J. Vandermeer and S. Yitbarek, “Self-organized spatial pattern determines biodiversity in spatial competition,” Journal of Theoretical Biology, vol. 300, no. 1, pp. 48–56, 2012. View at Publisher · View at Google Scholar
  68. D. W. Davidson, “An experimental study of diffuse competition in harvester ants,” American Naturalist, vol. 125, no. 4, pp. 500–506, 1985. View at Scopus
  69. J. H. Fellers, “Interference and exploitation in a guild of woodland ants,” Ecology, vol. 68, no. 5, pp. 1466–1478, 1987. View at Scopus
  70. J. M. Herbers, “Community structure in north temperate ants: temporal and spatial variation,” Oecologia, vol. 81, no. 2, pp. 201–211, 1989. View at Publisher · View at Google Scholar · View at Scopus
  71. A. N. Andersen and A. D. Patel, “Meat ants as dominant members of Australian ant communities: an experimental test of their influence on the foraging success and forage abundance of other species,” Oecologia, vol. 98, no. 1, pp. 15–24, 1994. View at Scopus
  72. I. Perfecto, “Foraging behavior as a determinant of asymmetric competitive interaction between two ant species in a tropical agroecosystem,” Oecologia, vol. 98, no. 2, pp. 184–192, 1994. View at Scopus
  73. K. G. Human and D. M. Gordon, “Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species,” Oecologia, vol. 105, no. 3, pp. 405–412, 1996. View at Scopus
  74. I. Perfecto and J. Vandermeer, “Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem,” Oecologia, vol. 108, no. 3, pp. 577–582, 1996. View at Scopus
  75. N. J. Sanders and D. M. Gordon, “Resource-dependent interactions and the organization of desert ant communities,” Ecology, vol. 84, no. 4, pp. 1024–1031, 2003. View at Scopus
  76. C. L. Parr, B. J. Sinclair, A. N. Andersen, K. J. Gaston, and S. L. Chown, “Constraint and competition in assemblages: a cross-continental and modeling approach for ants,” American Naturalist, vol. 165, no. 4, pp. 481–494, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. B. T. Bestelmeyer, “The trade-off between thermal tolerance and behavioural dominance in a subtropical South American ant community,” Journal of Animal Ecology, vol. 69, no. 6, pp. 998–1009, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. T. M. Palmer, T. P. Young, M. L. Stanton, and E. Wenk, “Short-term dynamics of an acacia ant community in Laikipia, Kenya,” Oecologia, vol. 123, no. 3, pp. 425–435, 2000. View at Scopus
  79. X. Cerdá, J. Retana, and S. Cros, “Thermal disruption of transitive hierarchies in Mediterranean ant communities,” Journal of Animal Ecology, vol. 66, no. 3, pp. 363–374, 1997. View at Scopus
  80. M. Kaspari, “Worker size and seed size selection by harvester ants in a Neotropical forest,” Oecologia, vol. 105, no. 3, pp. 397–404, 1996. View at Scopus
  81. X. Cerdá, J. Retana, and S. Cros, “Critical thermal limits in Mediterranean ant species: trade-off between mortality risk and foraging performance,” Functional Ecology, vol. 12, no. 1, pp. 45–55, 1998. View at Publisher · View at Google Scholar · View at Scopus
  82. L. W. Morrison, “Community organization in a recently assembled fauna: the case of Polynesian ants,” Oecologia, vol. 107, no. 2, pp. 243–256, 1996. View at Scopus
  83. D. A. Holway, “Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant,” Ecology, vol. 80, no. 1, pp. 238–251, 1999. View at Scopus
  84. L. Lach, “Interference and exploitation competition of three nectar-thieving invasive ant species,” Insectes Sociaux, vol. 52, no. 3, pp. 257–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. E. G. Lebrun and D. H. Feener Jr., “When trade-offs interact: balance of terror enforces dominance discovery trade-off in a local ant assemblage,” Journal of Animal Ecology, vol. 76, no. 1, pp. 58–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. E. G. LeBrun, C. V. Tillberg, A. V. Suarez, P. J. Folgarait, C. R. Smith, and D. A. Holway, “An experimental study of competition between fire ants and Argentine ants in their native range,” Ecology, vol. 88, no. 1, pp. 63–75, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. L. A. Calcaterra, J. P. Livore, A. Delgado, and J. A. Briano, “Ecological dominance of the red imported fire ant, Solenopsis invicta, in its native range,” Oecologia, vol. 156, no. 2, pp. 411–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Tilman, “Competition and biodiversity in spatially structured habitats,” Ecology, vol. 75, no. 1, pp. 2–16, 1994. View at Scopus
  89. F. R. Adler and J. Mosquera Losada, “Super- and coinfection: filling the range,” in Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, U. Dieckmann, J. A. J. Metz, M. W. Sabelis, and K. Sigmund, Eds., Cambridge Studies in Adaptive Dynamics, pp. 138–149, Cambridge University Press, Cambridge, UK, 2002.
  90. F. R. Adler, E. G. LeBrun, and D. H. Feener Jr., “Maintaining diversity in an ant community: modeling, extending, and testing the dominance-discovery trade-off,” American Naturalist, vol. 169, no. 3, pp. 323–333, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. P. J. Folgarait, “Ant biodiversity and its relationship to ecosystem functioning: a review,” Biodiversity and Conservation, vol. 7, no. 9, pp. 1221–1244, 1998. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Vandermeer and I. Perfecto, “The diverse faces of ecosystem engineers in agroecosystems,” in Ecosystems Engineers-Plants to Protists, K. Cuddington, J. E. Byers, W. G. Wilson, and A. Hastings, Eds., pp. 367–385, Academic Press, Elsevier, New York, NY, USA, 2007.
  93. L. Lach, C. L. Parr, and K. L. Abbott, Ant Ecology, Oxford University Press, Oxford, UK, 2010.
  94. W. W. Kempf, “A study of some Neotropical ants of genus Pheidole Westwood. I. (Hymenoptera: Formicidae),” Studia Entomologica, vol. 15, pp. 449–464, 1972.
  95. J. Vandermeer, I. Perfecto, and S. M. Philpott, “Clusters of ant colonies and robust criticality in a tropical agroecosystem,” Nature, vol. 451, no. 7177, pp. 457–459, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Vandermeer and I. Perfecto, “A keystone mutualism drives pattern in a power function,” Science, vol. 311, no. 5763, pp. 1000–1002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. J. Vandermeer, I. Perfecto, G. Ibarra Nuñez, S. Phillpott, and A. Garcia Ballinas, “Ants (Azteca sp.) as potential biological control agents in shade coffee production in Chiapas, Mexico,” Agroforestry Systems, vol. 56, no. 3, pp. 271–276, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. A. de la Mora, G. Livingston, and S. M. Philpott, “Arboreal ant abundance and leaf miner damage in coffee agroecosystems in Mexico,” Biotropica, vol. 40, no. 6, pp. 742–746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. D. J. Gonthier, G. L. Pardee, and S. M. Philpott, “Azteca instabilis ants and the defence of a coffee shade tree: an ant-plant association without mutual rewards in Chiapas, Mexico,” Journal of Tropical Ecology, vol. 26, no. 3, pp. 343–346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. G. L. Pardee and S. M. Philpott, “Cascading indirect effects in a coffee agroecosystem: effects of parasitic phorid flies on ants and the coffee berry borer in a high-shade and low-shade habitat,” Environmental Entomology, vol. 40, no. 3, pp. 581–588, 2011. View at Publisher · View at Google Scholar
  101. I. Perfecto and J. Vandermeer, “Spatial pattern and ecological process in the coffee agroforestry system,” Ecology, vol. 89, no. 4, pp. 915–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. D. Jackson, J. Vandermeer, and I. Perfecto, “Spatial and temporal dynamics of a fungal pathogen promote pattern formation in a tropical agroecosystem,” The Open Ecology Journal, vol. 2, pp. 62–73, 2009.
  103. J. Vandermeer, I. Perfecto, and H. Liere, “Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii, through a complex ecological web,” Plant Pathology, vol. 58, no. 4, pp. 636–641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. S. M. Philpott, “A canopy dominant ant affects twig-nesting ant assembly in coffee agroecosystems,” Oikos, vol. 119, no. 12, pp. 1954–1960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. B. V. Brown and S. M. Philpott, “Pseudacteon parasitoids of Azteca instabilis ants in Southern Mexico (Diptera: Phoridae, Hymenoptera: Formicidae),” Psyche, vol. 2012, Article ID 351232, 2012.
  106. H. Liere and I. Perfecto, “Cheating on a mutualism: indirect benefits of ant attendance to a coccidophagous coccinellid,” Environmental Entomology, vol. 37, no. 1, pp. 143–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. M. P. Hassell, H. N. Comins, and R. M. May, “Spatial structure and chaos in insect population dynamics,” Nature, vol. 353, no. 6341, pp. 255–258, 1991. View at Scopus