About this Journal Submit a Manuscript Table of Contents
Psyche
Volume 2012 (2012), Article ID 432151, 6 pages
http://dx.doi.org/10.1155/2012/432151
Research Article

Sporadic Infection of Wolbachia in a Recently Established Population of Formica fusca

Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA

Received 1 October 2011; Revised 7 December 2011; Accepted 12 December 2011

Academic Editor: Alain Lenoir

Copyright © 2012 Krista K. Ingram et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Hilgenböecker, P. Hammerstein, P. Schlattmann, A. Telschow, and J. H. Werren, “How many species are infected with Wolbachia?—a statistical analysis of current data,” FEMS Microbiology Letters, vol. 281, no. 2, pp. 215–220, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. A. Jeyaprakash and M. A. Hoy, “Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species,” Insect Molecular Biology, vol. 9, no. 4, pp. 393–405, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. F. M. Jiggins, J. H. G. von der Schulenburg, G. D. D. Hurst, and M. E. N. Majerus, “Recombination confounds interpretations of Wolbachia evolution,” Proceedings of the Royal Society of London B, vol. 268, no. 1474, pp. 1423–1427, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. F. Vavre, F. Fleury, J. Varaldi, P. Fouillet, and M. Bouletreau, “Evidence for female mortality in Wolbachia-mediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences,” Evolution, vol. 54, no. 1, pp. 191–200, 2000. View at Scopus
  5. L. Viljakainen, M. Reuter, and P. Pamilo, “Wolbachia transmission dynamics in Formica wood ants,” BMC Evolutionary Biology, vol. 8, no. 1, article no. 55, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. J. H. Werren, “Wolbachia and speciation,” in Endless Forms: Species and Speciation, D. Howard and S. Berloches, Eds., pp. 245–260, Oxford University Press, Oxford, UK, 1998.
  7. J. H. Werren and D. M. Windsor, “Wolbachia infection frequencies in insects: evidence of a global equilibrium?” Proceedings of the Royal Society of London B, vol. 267, no. 1450, pp. 1277–1285, 2000. View at Scopus
  8. T. Wenseleers, F. T. Ito, S. Van Borm, R. Huybrechts, F. Volckaert, and J. Billen, “Widespread occurrence of the micro-organism Wolbachia in ants,” Proceedings of the Royal Society of London B, vol. 265, no. 1404, pp. 1447–1452, 1998. View at Scopus
  9. P. Kittayapong, W. Jamnongluk, A. Thipaksorn, J. R. Milne, and C. Sindhusake, “Wolbachia infection complexity among insects in the tropical rice-field community,” Molecular Ecology, vol. 12, no. 4, pp. 1049–1060, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Reuter and L. Keller, “High levels of multiple Wolbachia infection and recombination in the ant Formica exsecta,” Molecular Biology and Evolution, vol. 20, no. 5, pp. 748–753, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. D. D. Shoemaker, L. Keller, E. L. Vargo, and J. H. Werren, “Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.),” Insect Molecular Biology, vol. 9, no. 6, pp. 661–673, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Van Borm, T. Wenseleers, J. Billen, and J. J. Boomsma, “Wolbachia in leafcutter ants: a widespread symbiont that may induce male killing or incompatible matings,” Journal of Evolutionary Biology, vol. 14, no. 5, pp. 805–814, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Van Borm, T. Wenseleers, J. Billen, and J. J. Boomsma, “Cloning and sequencing of wsp encoding gene fragments reveals a diversity of co-infecting Wolbachia strains in Acromyrmex leafcutter ants,” Molecular Phylogenetics and Evolution, vol. 26, no. 1, pp. 102–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Wenseleers, L. Sundström, and J. Billen, “Deleterious Wolbachia in the ant Formica truncorum,” Proceedings of the Royal Society of London B, vol. 269, no. 1491, pp. 623–629, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. A. M. Bouwma and D. Shoemaker, “Wolbachia wSinvictaA infections in natural populations of the fire ant Solenopsis invicta : testing for phenotypic effects,” Journal of Insect Science, vol. 11, pp. 1–19, 2011. View at Publisher · View at Google Scholar · View at PubMed
  16. L. D. Hurst, “The incidences, mechanisms and evolution of cytoplasmic sex ratio distorters in animals,” Biological Reviews, vol. 68, no. 1, pp. 121–193, 1993. View at Scopus
  17. R. Stouthamer, J. A. Breeuwer, and G. D. Hurst, “Wolbachia pipientis : microbial manipulator of arthropod reproduction,” Annual Review of Microbiology, vol. 53, pp. 71–102, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. I. Negri, M. Pellecchia, P. J. Mazzoglio, A. Patetta, and A. Alma, “Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/XO sex-determination system,” Proceedings of the Royal Society of London B, vol. 273, no. 1599, pp. 2409–2416, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. H. Werren, “Biology of Wolbachia,” Annual Review of Entomology, vol. 42, pp. 587–609, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. L. Keller, C. Liautard, M. Reuter, W. D. Brown, L. Sundström, and M. Chapuisat, “Sex ratio and Wolbachia infection in the ant Formica exsecta,” Heredity, vol. 87, no. 2, pp. 227–233, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. E. Hulgens, R. F. Luck, R. H. G. Klaassen, M. Maas, M. Timmermans, and R. Stouthamer, “Infectious parthenogenesis,” Nature, vol. 405, no. 6783, pp. 178–179, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. N. D. Tsutsui, S. N. Kauppinen, A. F. Oyafuso, and R. K. Grosberg, “The distribution and evolutionary history of Wolbachia infection in native and introduced populations of the invasive argentine ant (Linepithema humile),” Molecular Ecology, vol. 12, no. 11, pp. 3057–3068, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Vavre, F. Fleury, D. Lepetit, P. Fouillet, and M. Boulétreau, “Phylogenetic evidence for horizontal transmission of Wolbachia in host- parasitoid associations,” Molecular Biology and Evolution, vol. 16, no. 12, pp. 1711–1723, 1999. View at Scopus
  24. J. A. Russell, B. Goldman-Huertas, C. S. Moreau et al., “Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies,” Evolution, vol. 63, no. 3, pp. 624–640, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. M. Hannonen, H. Helanterä, and L. Sundström, “Habitat age, breeding system and kinship in the ant Formica fusca,” Molecular Ecology, vol. 13, no. 6, pp. 1579–1588, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. R. Savolainen, “Colony success of the submissive ant Formica fusca within territories of the dominant Formica polyctena,” Ecological Entomology, vol. 15, no. 1, pp. 79–85, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. A. V. Goropashnaya, V. B. Fedorov, and P. Pamilo, “Recent speciation in the Formica rufa group ants (Hymenoptera, Formicidae): inference from mitochondrial DNA phylogeny,” Molecular Phylogenetics and Evolution, vol. 32, no. 1, pp. 198–206, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. K. E. Tuzzolino and W. D. Brown, “Effects of nest size and dispersion on brood production in a North American population of wood ant Formica fusca (Hymenoptera: Formicidae),” Entomological Science, vol. 13, no. 1, pp. 162–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. P. J. Clark and F. C. Evans, “Distance to nearest neighbor as a measure of spatial relationships in populations,” Ecology, vol. 35, no. 4, pp. 445–453, 1954.
  30. D. A. Grasso, T. Wenseleers, A. Mori, F. Le Moli, and J. Billen, “Thelytokous worker reproduction and lack of Wolbachia infection in the harvesting ant Messor capitatus,” Ethology Ecology and Evolution, vol. 12, no. 3, pp. 309–314, 2000. View at Scopus
  31. W. Zhou, F. Rousset, and S. O'Neill, “Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences,” Proceedings of the Royal Society of London B, vol. 265, no. 1395, pp. 509–515, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. N. Gyllenstrand, P. J. Gertsch, and P. Pamilo, “Polymorphic microsatellite DNA markers in the ant Formica exsecta,” Molecular Ecology Notes, vol. 1, no. 1, pp. 67–69, 2002. View at Scopus
  33. M. Chapuisat, “Characterization of microsatellite loci in Formica lugubris B and their variability in other ant species,” Molecular Ecology, vol. 5, no. 4, pp. 599–601, 1996. View at Scopus
  34. E. Hasegawa and S. Imai, “Characterization of microsatellite loci in red wood ants Formica (s. str.) spp. and the related genus Polyergus,” Molecular Ecology Notes, vol. 4, no. 2, pp. 200–203, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. J. B. Krieger and L. Keller, “Mating frequency and genetic structure of the Argentine ant Linepithema humile,” Molecular Ecology, vol. 9, no. 2, pp. 119–126, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Reuter, J. S. Pedersen, and L. Keller, “Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile,” Heredity, vol. 94, no. 3, pp. 364–369, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. R. H. Crozier and P. Pamilo, “Evolution of social insect colonies,” in Sex Allocation and Kin-Selection, Oxford University Press, Oxford, UK, 1996.