About this Journal Submit a Manuscript Table of Contents
Psyche
Volume 2012 (2012), Article ID 646524, 13 pages
http://dx.doi.org/10.1155/2012/646524
Research Article

Pathology of a Gammabaculovirus in Its Natural Balsam Fir Sawfly (Neodiprion abietis) Host

1Natural Resources Canada, Canadian Forest Service, Atlantic Forestry Centre, P.O. Box 4000, Fredericton, NB, Canada E3C 2G6
2Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada E3B 6C2
3Department of Biology, University of Victoria, Victoria, BC, Canada V8W 2Y2
4Sylvar Technologies Inc., P.O. Box 636, Fredericton, NB, Canada E3B 5A6
5Department of Biosystems Engineering, University of Manitoba, Room E2-376 Engineering, Information and Technology Complex, Winnipeg, MB, Canada R3T 5V6

Received 23 July 2012; Accepted 20 October 2012

Academic Editor: Claude Desplan

Copyright © 2012 Christopher J. Lucarotti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Jehle, G. W. Blissard, B. C. Bonning et al., “On the classification and nomenclature of baculoviruses: a proposal for revision,” Archives of Virology, vol. 151, no. 7, pp. 1257–1266, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Thézé, A. Bézier, G. Periquet, J.-M. Drezen, and E. A. Herniou, “Paleozoic origin of insect large dsDNA viruses,” Proceedings of the National Acadamy of Science USA, vol. 108, pp. 15931–15935, 2011. View at Publisher · View at Google Scholar
  3. E. A. Herniou, J. A. Olszewski, D. R. O'Reilly, and J. S. Cory, “Ancient coevolution of baculoviruses and their insect hosts,” Journal of Virology, vol. 78, no. 7, pp. 3244–3251, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Wang, R. G. Kleespies, A. M. Huger, and J. A. Jehle, “The genome of Gryllus bimaculatus nudivirus indicates an ancient diversification of baculovirus-related nonoccluded nudiviruses of insects,” Journal of Virology, vol. 81, no. 10, pp. 5395–5406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Wang and J. A. Jehle, “Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic,” Journal of Invertebrate Pathology, vol. 101, no. 3, pp. 187–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Wang, O. R. P. Bininda-Emonds, M. M. Van Oers, J. M. Vlak, and J. A. Jehle, “The genome of Oryctes rhinoceros nudivirus provides novel insight into the evolution of nuclear arthropod-specific large circular double-stranded DNA viruses,” Virus Genes, vol. 42, no. 3, pp. 444–456, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. W. Gaunt and M. A. Miles, “An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks,” Molecular Biology and Evolution, vol. 19, no. 5, pp. 748–761, 2002. View at Scopus
  8. D. Pisani, L. L. Poling, M. Lyons-Weiler, and S. B. Hedges, “The colonization of land by animals: molecular phylogeny and divergence times among arthropods,” BMC Biology, vol. 2, article 1, 2004. View at Scopus
  9. D. Grimaldi and M. S. Engel, Evolution of the Insects, Cambridge University Press, New York, NY, USA, 2005.
  10. J. Savard, D. Tautz, S. Richards et al., “Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of Holometabolous insects,” Genome Research, vol. 16, no. 11, pp. 1334–1338, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. B. M. Wiegmann, M. D. Trautwein, J.-W. Kim et al., “Single-copy nuclear genes resolve the phylogeny of the holometabolous insects,” BMC Biology, vol. 7, article 34, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. B. Whitfield, “Phylogenetic insights into the evolution of parasitism in Hymenoptera,” Advances in Parasitology, vol. 54, pp. 69–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. S. M. Farris and S. Schulmeister, “Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects,” Proceedings of the Royal Society B, vol. 278, no. 1707, pp. 940–951, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. D. R. Wallace and J. C. Cunningham, “Diprionid sawflies,” in Forest Insect Pests in Canada, J. A. Armstrong and W. G. H. Ives, Eds., pp. 193–232, Natural Resources Canada, Ottawa, Canada, 1995.
  15. C. R. Linnen and B. D. Farrell, “Phylogenetic analysis of nuclear and mitochondrial genes reveals evolutionary relationships and mitochondrial introgression in the sertifer species group of the genus Neodiprion (Hymenoptera: Diprionidae),” Molecular Phylogenetics and Evolution, vol. 48, no. 1, pp. 240–257, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Knerer and C. E. Atwood, “Evolutionary trends in the subsocial sawflies belonging to the Neodiprion abietis complex (Hymenoptera: Tenthredinoidea),” American Zoologist, vol. 12, no. 3, pp. 407–418, 1972. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Moreau, “Past and present outbreaks of the balsam fir sawfly in western Newfoundland: an analytical review,” Forest Ecology and Management, vol. 221, no. 1–3, pp. 215–219, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Moreau, C. J. Lucarotti, E. G. Kettela et al., “Aerial application of nucleopolyhedrovirus induces decline in increasing and peaking populations of Neodiprion abietis,” Biological Control, vol. 33, no. 1, pp. 65–73, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. J. Lucarotti, G. Moreau, and E. G. Kettela, “Abietiv—a viral biopesticide for control of the balsam fir sawfly,” in Biological Control: A Global Pespective, C. Vincent, M. Goettel, and G. Lazarovits, Eds., pp. 353–361, CABI Publishing, Wallingford, UK, 2007.
  20. C. J. Lucarotti, B. Morin, R. I. Graham, and R. Lapointe, “Production, application, and field performance of Abietv, the balsam fir sawfly nucleopolyhedrovirus,” Virologica Sinica, vol. 22, no. 2, pp. 163–172, 2007. View at Scopus
  21. G. Moreau and C. J. Lucarotti, “A brief review of the past use of baculoviruses for the management of eruptive forest defoliators and recent developments on a sawfly virus in Canada,” The Forestry Chronicle, vol. 83, no. 1, pp. 105–112, 2007. View at Scopus
  22. S. P. Duffy, A. M. Young, B. Morin, C. J. Lucarotti, B. F. Koop, and D. B. Levin, “Sequence analysis and organization of the Neodiprion abietis nucleopolyhedrovirus genome,” Journal of Virology, vol. 80, no. 14, pp. 6952–6963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. S. P. Duffy, E. M. Becker, B. H. Whittome, C. J. Lucarotti, and D. B. Levin, “In vivo replication kinetics and transcription patterns of the nucleopolyhedrovirus (NeabNPV) of the balsam fir sawfly, Neodiprion abietis,” Journal of General Virology, vol. 88, no. 7, pp. 1945–1951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. F. T. Bird and M. M. Whalen, “Stages in the development of two insect viruses,” Canadian Journal of Microbiology, vol. 1, no. 3, pp. 170–174, 1954. View at Scopus
  25. B. A. Federici, “Baculovirus pathogenesis,” in The Baculoviruses, L. K. Miller, Ed., pp. 8–59, Plenum Press, New York, NY, USA, 1997.
  26. C. J. Lucarotti, B. H. Whittome-Waygood, and D. B. Levin, “Histology of the larval Neodiprion abietis (Hymenoptera: Diprionidae) digestive tract,” Psyche, vol. 2011, Article ID 910286, 10 pages, 2011. View at Publisher · View at Google Scholar
  27. W. J. Carroll, Some aspects of the Neodiprion abietis (Harr.) complex in Newfoundland [Ph.D. thesis], State University of Forestry, Syracuse University, Syracuse, NY, USA, 1962.
  28. H. A. M. Lauzon, C. J. Lucarotti, P. J. Krell, Q. Feng, A. Retnakaran, and B. M. Arif, “Sequence and organization of the Neodiprion lecontei nucleopolyhedrovirus genome,” Journal of Virology, vol. 78, no. 13, pp. 7023–7035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. B. A. Moser, J. J. Becnel, S. E. White et al., “Morphological and molecular evidence that Culex nigripalpus baculovirus is an unusual member of the family Baculoviridae,” Journal of General Virology, vol. 82, no. 2, pp. 283–297, 2001. View at Scopus
  30. M. A. Bertone, G. W. Courtney, and B. M. Wiegmann, “Phylogenetics and temporal diversification of the earliest true flies (Insecta: Diptera) based on multiple nuclear genes,” Systematic Entomology, vol. 33, no. 4, pp. 668–687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Garcia-Maruniak, J. E. Maruniak, P. M. A. Zanotto et al., “Sequence analysis of the genome of the Neodiprion sertifer nucleopolyhedrovirus,” Journal of Virology, vol. 78, no. 13, pp. 7036–7051, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. M. N. Pearson, R. L. Q. Russell, and G. F. Rohrmann, “Characterization of a baculovirus-encoded protein that is associated with infected-cell membranes and budded virions,” Virology, vol. 291, no. 1, pp. 22–31, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. M. N. Pearson, C. Groten, and G. F. Rohrmann, “Identification of the Lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of the Baculoviridae,” Journal of Virology, vol. 74, no. 13, pp. 6126–6131, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. Liang, X. Zhang, X. Yin, S. Sumei Cao, and F. Xu, “Genomic sequencing and analysis of Clostera anachoreta granulovirus,” Archives of Virology, vol. 156, no. 7, pp. 1185–1198, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. A. B. Miele, M. J. Garavaglia, M. N. Belaich, and P. D. Ghiringhelli, “Baculovirus: molecular insights on their diversity and conservation,” International Journal of Evolutionary Biology, vol. 2011, Article ID 379424, 15 pages, 2011. View at Publisher · View at Google Scholar
  36. C. L. Afonso, E. R. Tulman, Z. Lu et al., “Genome sequence of a baculovirus pathogenic for Culex nigripalpus,” Journal of Virology, vol. 75, no. 22, pp. 11157–11165, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. S. M. Thiem, “Baculovirus genes affecting host function,” In Vitro Cell and Development, vol. 45, no. 3-4, pp. 111–126, 2009. View at Scopus
  38. C. Detvisitsakun, E. L. Cain, and A. L. Passarelli, “The Autographa californica M nucleopolyhedrovirus fibroblast growth factor accelerates host mortality,” Virology, vol. 365, no. 1, pp. 70–78, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. C. Means and A. L. Passarelli, “Viral fibroblast growth factor, matrix metalloproteases, and caspases are associated with enhancing systemic infection by baculoviruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 21, pp. 9825–9830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. A. L. Passarelli, “Barriers to success: how baculoviruses establish efficient systemic infections,” Virology, vol. 411, no. 2, pp. 383–392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. L. S. Lepore, P. R. Roelvink, and R. R. Granados, “Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (NPV) infections, is a metalloprotease,” Journal of Invertebrate Pathology, vol. 68, no. 2, pp. 131–140, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Wang and R. R. Granado, “An intestinal mucin is the target substrate for a baculovirus enhancin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 13, pp. 6977–6982, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. R. F. Chapman, “Structure of the digestive system,” in Comprehensive Insect Physiology, Biochemistry, and Pharmacology, G. A. Kerkut and L. L. Gilbert, Eds., pp. 165–211, Pergamon Press, Oxford, UK, 1985.
  44. H. A. M. Lauzon, A. Garcia-Maruniak, P. M. A. Zanotto et al., “Genomic comparison of Neodiprion sertifer and Neodiprion lecontei nucleopolyhedroviruses and identification of potential hymenopteran baculovirus-specific open reading frames,” Journal of General Virology, vol. 87, no. 6, pp. 1477–1489, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. N. N. Danial and S. J. Korsmeyer, “Cell death: critical control points,” Cell, vol. 116, no. 2, pp. 205–219, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. G. V. Williams and P. Faulkner, “Cytological changes and viral morphogenesis during baculovirus infection,” in The Baculoviruses, L. K. Miller, Ed., pp. 61–107, Plenum Press, New York, NY, USA, 1997.
  47. T. Nagamine, Y. Kawasaki, A. Abe, and S. Matsumoto, “Nuclear marginalization of host cell chromatin associated with expansion of two discrete virus-induced subnuclear compartments during baculovirus infection,” Journal of Virology, vol. 82, no. 13, pp. 6409–6418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Arif, S. Escasa, and L. Pavlik, “Biology and genomics of viruses within the genus Gammabaculovirus,” Viruses, vol. 3, pp. 2214–2222, 2011. View at Publisher · View at Google Scholar
  49. B. A. Federici and V. M. Stern, “Replication and occlusion of a granulosis virus in larval and adult midgut epithelium of the western grapeleaf skeletonizer, Harrisina brillians,” Journal of Invertebrate Pathology, vol. 56, no. 3, pp. 401–414, 1990. View at Scopus
  50. M. M. van Oers, J. T. M. Flipsen, C. B. E. M. Reusken, E. L. Sliwinsky, R. W. Goldback, and J. M. Vlak, “Functional domains of the p10 protein of Autographa californica nuclear polyhedrosis virus,” Journal of General Virology, vol. 74, no. 4, pp. 563–574, 1993. View at Scopus
  51. M. M. van Oers, J. T. M. Flipsen, C. B. E. M. Reusken, and J. M. Vlak, “Specificity of baculovirus p10 functions,” Virology, vol. 200, no. 2, pp. 513–523, 1994. View at Publisher · View at Google Scholar · View at Scopus
  52. D. E. Maxwell, “The comparative internal larval anatomy of sawflies (Hymenoptera: Symphyta),” The Canadian Entomologist, vol. 87, pp. 1–132, 1955.
  53. M. J. Lehane, “The foregut,” in Microscopic Anatomy of Invertebrates, F. W. Harrison and M. Locke, Eds., vol. 11 of Insecta, pp. 713–724, Wiley-Liss, New York, NY, USA, 1998.
  54. R. Graves, C. J. Lucarotti, and D. T. Quiring, “Spread of a Gammabaculovirus within larval populations of its natural balsam fir sawfly (Neodiprion abietis) host following its aerial application,” Insects, vol. 2012, no. 3, pp. 912–929, 2012. View at Publisher · View at Google Scholar
  55. C. S. Campbell, D. T. Quiring, E. G. Kettela, and C. J. Lucarotti, “Application of balsam fir sawfly nucleopolyhedrovirus against its natural host Neodiprion abietis (Hymenoptera: Diprionidae),” in Proceedings of the IUFRO Workshop on Forest Insect Population Dynamics and Host Influences, pp. 86–89, Kanazawa, Japan, September 2006.
  56. R. Graves, D. T. Quiring, and C. J. Lucarotti, “Transmission of a Gammabaculovirus within cohorts of balsam fir sawfly (Neodiprion abietis) larvae,” Insects, vol. 2012, no. 3, 18 pages, 2012.
  57. W. J. Kaupp, “Persistence of Neodiprion sertifer (Hymenoptera: Diprionidae) nuclear polyhedrosis virus on Pinus contorta foliage,” The Canadian Entomologist, vol. 115, pp. 869–873, 1983.