About this Journal Submit a Manuscript Table of Contents
Sarcoma
Volume 2012 (2012), Article ID 164803, 10 pages
http://dx.doi.org/10.1155/2012/164803
Research Article

β-Catenin Does Not Confer Tumorigenicity When Introduced into Partially Transformed Human Mesenchymal Stem Cells

1The Department of Pediatrics, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
2The Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
3The Department of Orthopaedic Surgery, Montefiore Medical Center, Bronx, NY 10467, USA
4Division Hematology/Oncology, Department of Pediatrics, The Children’s Hospital at Montefiore, Room 300, Rosenthal Building, 3415 Bainbridge Avenue, Bronx, NY 10467, USA
5Oncology Section, The Department of Orthopedics Surgery, First Affiliated Hospital of PLA General Hospital, Beijing 100037, China
6The Department of Orthopedics Surgery, College of Medicine, Kosin University Gospel Hospital, Busan 602-702, Republic of Korea
7Department of Pediatrics and Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
8Division of Hematology/Oncology, Department of Pediatrics, The Children's Hospital at Montefiore, Room 300, Rosenthal Building, 3415 Bainbridge Avenue, Bronx, NY 10467, USA

Received 5 July 2012; Revised 23 September 2012; Accepted 23 September 2012

Academic Editor: H. Gelderblom

Copyright © 2012 Sajida Piperdi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Mirabello, R. J. Troisi, and S. A. Savage, “Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program,” Cancer, vol. 115, no. 7, pp. 1531–1543, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Ottaviani and N. Jaffe, “The epidemiology of osteosarcoma,” Cancer Treatment and Research, vol. 152, pp. 3–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Gorlick BS, L. Teot, J. Meyer, L. Randall, and N. Marina, “Osteosarcoma: biology, diagnosis, treatment and remaining challengings,” in Principles and Practice of Pediatric Oncology, P. A. Pizzo and D. G. Poplack, Eds., pp. 1015–1044, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2011.
  4. C. D. M. Fletcher, K. K. Unni, and F. Mertens, Eds., Pathology and Genetics of Tumors of Soft Tissue and Bone, WHO Classification of Tumors, IARC Press, Lyon, France, 2002.
  5. M. Kansara and D. M. Thomas, “Molecular pathogenesis of osteosarcoma,” DNA and Cell Biology, vol. 26, no. 1, pp. 1–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. B. Mohseny and P. C. W. Hogendoorn, “Concise review: mesenchymal tumors: when stem cells go mad,” Stem Cells, vol. 29, no. 3, pp. 397–403, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Ricafort and R. Gorlick, “Molecularly targeted therapy in osteosarcoma,” in Molecularly Targeted Therapy for Childhood Cancer, R. Arceci and P. J. Houghton, Eds., pp. 459–498, Springer, New York, NY, USA, 2010.
  8. T. Reya and H. Clevers, “Wnt signalling in stem cells and cancer,” Nature, vol. 434, no. 7035, pp. 843–850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Barker and H. C. Catenins, “Wnt signaling and cancer,” Bioessays, vol. 22, no. 11, pp. 961–965, 2000. View at Publisher · View at Google Scholar
  10. K. M. Cadigan and R. Nusse, “Wnt signaling: a common theme in animal development,” Genes and Development, vol. 11, no. 24, pp. 3286–3305, 1997. View at Scopus
  11. J. Deng, S. A. Miller, H. Y. Wang et al., “β-catenin interacts with and inhibits NF-κB in human colon and breast cancer,” Cancer Cell, vol. 2, no. 4, pp. 323–334, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. W. Qiang, Y. Endo, J. S. Rubin, and S. Rudikoff, “Wnt signaling in B-cell neoplasia,” Oncogene, vol. 22, no. 10, pp. 1536–1545, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. A. T. Weeraratna, Y. Jiang, G. Hostetter et al., “Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma,” Cancer Cell, vol. 1, no. 3, pp. 279–288, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. R. C. Haydon, A. Deyrup, A. Ishikawa et al., “Cytoplasmic and/or nuclear accumulation of the β-catenin protein is a frequent event in human osteosarcoma,” International Journal of Cancer, vol. 102, no. 4, pp. 338–342, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Mandal, A. Srivastava, E. Mahlum et al., “Severe suppression of Frzb/sFRP3 transcription in osteogenic sarcoma,” Gene, vol. 386, no. 1-2, pp. 131–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. B. H. Hoang, T. Kubo, J. H. Healey et al., “Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma,” International Journal of Cancer, vol. 109, no. 1, pp. 106–111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kansara, M. Tsang, L. Kodjabachian et al., “Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice,” Journal of Clinical Investigation, vol. 119, no. 4, pp. 837–851, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Chen, S. Fallen, H. O. Abaan et al., “Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival,” Pediatric Blood and Cancer, vol. 51, no. 3, pp. 349–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Enomoto, S. Hayakawa, S. Itsukushima et al., “Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling,” Oncogene, vol. 28, no. 36, pp. 3197–3208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. B. H. Hoang, T. Kubo, J. H. Healey et al., “Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-β-catenin pathway,” Cancer Research, vol. 64, no. 8, pp. 2734–2739, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. E. M. Rubin, Y. Guo, K. Tu, J. Xie, X. Zi, and B. H. Hoang, “Wnt inhibitory factor 1 decreases tumorigenesis and metastasis in osteosarcoma,” Molecular Cancer Therapeutics, vol. 9, no. 3, pp. 731–741, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. W. C. Hahn, C. M. Counter, A. S. Lundberg, R. L. Beijersbergen, M. W. Brooks, and R. A. Weinberg, “Creation of human tumour cells with defined genetic elements,” Nature, vol. 400, no. 6743, pp. 464–468, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Li, R. Yang, W. Zhang, H. Dorfman, P. Rao, and R. Gorlick, “Genetically transforming human mesenchymal stem cells to sarcomas: changes in cellular phenotype and multilineage differentiation potential,” Cancer, vol. 115, no. 20, pp. 4795–4806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Miura, Y. Miura, H. M. Padilla-Nash et al., “Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation,” Stem Cells, vol. 24, no. 4, pp. 1095–1103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Tolar, A. J. Nauta, M. J. Osborn et al., “Sarcoma derived from cultured mesenchymal stem cells,” Stem Cells, vol. 25, no. 2, pp. 371–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. B. Mohseny, K. Szuhai, S. Romeo et al., “Osteosarcoma originates from mesenchymal stem cells in consequence of aneuploidization and genomic loss of Cdkn2,” Journal of Pathology, vol. 219, no. 3, pp. 294–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. V. S. Spiegelman, T. J. Slaga, M. Pagano, T. Minamoto, Z. Ronai, and S. Y. Fuchs, “Wnt/β-catenin signaling induces the expression and activity of βTrCP ubiquitin ligase receptor,” Molecular Cell, vol. 5, no. 5, pp. 877–882, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. D. M. Thomas, “Wnts, bone and cancer,” Journal of Pathology, vol. 220, no. 1, pp. 1–4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Guo, E. M. Rubin, J. Xie, X. Zi, and B. H. Hoang, “Dominant negative LRP5 decreases tumorigenicity and metastasis of osteosarcoma in an animal model,” Clinical Orthopaedics and Related Research, vol. 466, no. 9, pp. 2039–2045, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Guo, X. Zi, Z. Koontz et al., “Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells,” Journal of Orthopaedic Research, vol. 25, no. 7, pp. 964–971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. C. Leow, Q. Tian, Z. Y. Ong, Z. Yang, and P. L. R. Ee, “Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/β-catenin antagonists against human osteosarcoma cells,” Investigational New Drugs, vol. 28, no. 6, pp. 766–782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Lee, A. J. Smolarz, S. Olson et al., “A potential role for Dkk-1 in the pathogenesis of osteosarcoma predicts novel diagnostic and treatment strategies,” British Journal of Cancer, vol. 97, no. 11, pp. 1552–1559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Iwaya, H. Ogawa, M. Kuroda, M. Izumi, T. Ishida, and K. Mukai, “Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis,” Clinical and Experimental Metastasis, vol. 20, no. 6, pp. 525–529, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. T. J. Stein, K. E. Holmes, A. Muthuswamy, V. Thompson, and M. K. Huelsmeyer, “Characterization of β-catenin expression in canine osteosarcoma,” Veterinary and Comparative Oncology, vol. 9, no. 1, pp. 65–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. M. Cleton-Jansen, J. K. Anninga, I. H. Briaire-de Bruijn et al., “Profiling of high-grade central osteosarcoma and its putative progenitor cells identifies tumourigenic pathways.,” British Journal of Cancer, vol. 101, no. 12, article 2064, 2009. View at Scopus
  36. Y. Cai, A. B. Mohseny, M. Karperien, P. C. W. Hogendoorn, G. Zhou, and A. M. Cleton-Jansen, “Inactive Wnt/β-catenin pathway in conventional high-grade osteosarcoma,” Journal of Pathology, vol. 220, no. 1, pp. 24–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Gong, R. B. Slee, N. Fukai, et al., “LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development,” Cell, vol. 107, no. 4, pp. 513–523, 2001. View at Publisher · View at Google Scholar
  38. L. M. Boyden, J. Mao, J. Belsky et al., “High bone density due to a mutation in LDL-receptor-related protein 5,” The New England Journal of Medicine, vol. 346, no. 20, pp. 1513–1521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. L. van Wesenbeeck, E. Cleiren, J. Gram et al., “Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density,” American Journal of Human Genetics, vol. 72, no. 3, pp. 763–771, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Tang, W. X. Song, J. Luo, R. C. Haydon, and T. C. He, “Osteosarcoma development and stem cell differentiation,” Clinical Orthopaedics and Related Research, vol. 466, no. 9, pp. 2114–2130, 2008. View at Publisher · View at Google Scholar · View at Scopus