About this Journal Submit a Manuscript Table of Contents
Sarcoma
Volume 2012 (2012), Article ID 425636, 15 pages
http://dx.doi.org/10.1155/2012/425636
Review Article

Discovery of Biomarkers for Osteosarcoma by Proteomics Approaches

1Department of Orthopedic Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
2Division of Pharmacoproteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
3Department of Orthopedic Surgery, Tachikawa Memorial Hospital, 4-2-22 Nishikichou, Tachikawa, Tokyo 190-8531, Japan
4Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan

Received 3 July 2012; Accepted 30 August 2012

Academic Editor: Norman Jaffe

Copyright © 2012 Yoshiyuki Suehara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. M. Fletcher, K. K. Unni, and F. Mertens, World health organization classification of tumours, pathology and genetics, tumours of soft tissue and bone, 2002.
  2. A. J. Provisor, L. J. Ettinger, J. B. Nachman et al., “Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the children's cancer group,” Journal of Clinical Oncology, vol. 15, no. 1, pp. 76–84, 1997. View at Scopus
  3. K. Ochi, Y. Daigo, T. Katagiri et al., “Prediction of response to neoadjuvant chemotherapy for osteosarcoma by gene-expression profiles,” International Journal of Oncology, vol. 24, no. 3, pp. 647–655, 2004. View at Scopus
  4. M. B. Mintz, R. Sowers, K. M. Brown et al., “An expression signature classifies chemotherapy-resistant pediatric osteosarcoma,” Cancer Research, vol. 65, no. 5, pp. 1748–1754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Leonard, T. Sharp, S. Henderson et al., “Gene expression array profile of human osteosarcoma,” British Journal of Cancer, vol. 89, no. 12, pp. 2284–2288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. T. K. Man, X. Y. Lu, K. Jaeweon et al., “Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma,” BMC Cancer, vol. 4, article 45, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Zielenska, J. Bayani, A. Pandita et al., “Comparative genomic hybridization analysis identifies gains of 1p35~p36 and chromosome 19 in osteosarcoma,” Cancer Genetics and Cytogenetics, vol. 130, no. 1, pp. 14–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. dos Santos Aguiar, L. de Jesus Girotto Zambaldi, A. M. dos Santos, W. Pinto Jr., and S. R. Brandalise, “Comparative genomic hybridization analysis of abnormalities in chromosome 21 in childhood osteosarcoma,” Cancer Genetics and Cytogenetics, vol. 175, no. 1, pp. 35–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. C. C. Lau, C. P. Harris, X. Y. Lu et al., “Frequent amplification and rearrangement of chromosomal bands 6p12-p21 and 17p11.2 in osteosarcoma,” Genes Chromosomes and Cancer, vol. 39, no. 1, pp. 11–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Atiye, M. Wolf, S. Kaur et al., “Gene amplifications in osteosarcoma—CGH microarray analysis,” Genes Chromosomes and Cancer, vol. 42, no. 2, pp. 158–163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Hattinger, G. Reverter-Branchat, D. Remondini et al., “Genomic imbalances associated with methotrexaate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques,” European Journal of Cell Biology, vol. 82, no. 9, pp. 483–493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Squire, J. Pei, P. Marrano et al., “High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays,” Genes Chromosomes and Cancer, vol. 38, no. 3, pp. 215–225, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Lim, J. Karaskova, B. Beheshti et al., “An integrated mBAND and submegabase resolution tiling set (SMRT) CGH array analysis of focal amplification, microdeletions, and ladder structures consistent with breakage-fusion-bridge cycle events in osteosarcoma,” Genes Chromosomes and Cancer, vol. 42, no. 4, pp. 392–403, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Chen, T. G. Gharib, C. C. Huang et al., “Discordant protein and mRNA expression in lung adenocarcinomas,” Molecular & Cellular Proteomics, vol. 1, no. 4, pp. 304–313, 2002. View at Scopus
  15. Y. Suehara, T. Kondo, K. Fujii et al., “Proteomic signatures corresponding to histological classification and grading of soft-tissue sarcomas,” Proteomics, vol. 6, no. 15, pp. 4402–4409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Kawai, T. Kondo, Y. Suehara, K. Kikuta, and S. Hirohashi, “Global protein-expression analysis of bone and soft tissue sarcomas,” Clinical Orthopaedics and Related Research, vol. 466, no. 9, pp. 2099–2106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. P. Gygi, Y. Rochon, B. R. Franza, and R. Aebersold, “Correlation between protein and mRNA abundance in yeast,” Molecular and Cellular Biology, vol. 19, no. 3, pp. 1720–1730, 1999. View at Scopus
  18. Y. Suehara, N. Tochigi, D. Kubota et al., “Secernin-1 as a novel prognostic biomarker candidate of synovial sarcoma revealed by proteomics,” Journal of Proteomics, vol. 74, no. 6, pp. 829–842, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Suehara, T. Kondo, K. Seki et al., “Pfetin as a prognostic biomarker of gastrointestinal stromal tumors revealed by proteomics,” Clinical Cancer Research, vol. 14, no. 6, pp. 1707–1717, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Suehara, K. Kikuta, R. Nakayama et al., “GST-P1 as a histological biomarker of synovial sarcoma revealed by proteomics,” Proteomics—Clinical Applications, vol. 3, no. 5, pp. 623–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Suehara, K. Kikuta, R. Nakayama et al., “Anatomic site-specific proteomic signatures of gastrointestinal stromal tumors,” Proteomics—Clinical Applications, vol. 3, no. 5, pp. 584–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Suehara, “Proteomic analysis of soft tissue sarcoma,” International Journal of Clinical Oncology, vol. 16, no. 2, pp. 92–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Kikuta, N. Tochigi, S. Saito et al., “Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidate in osteosarcoma revealed by proteomics,” Proteomics—Clinical Applications, vol. 4, no. 5, pp. 560–567, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Kikuta, D. Kubota, T. Saito, et al., “Clinical proteomics identified ATP-dependent RNA helicase DDX39 as a novel biomarker to predict poor prognosis of patients with gastrointestinal stromal tumor,” Journal of Proteomics, vol. 75, no. 4, pp. 1089–1098. View at Publisher · View at Google Scholar
  25. K. Kikuta, N. Tochigi, T. Shimoda et al., “Nucleophosmin as a candidate prognostic biomarker of ewing's sarcoma revealed by proteomics,” Clinical Cancer Research, vol. 15, no. 8, pp. 2885–2894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Li, T. A. Dang, J. Shen et al., “Plasma proteome predicts chemotherapy response in osteosarcoma patients,” Oncology Reports, vol. 25, no. 2, pp. 303–314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Yanagisawa, Y. Shyr, B. J. Xu et al., “Proteomic patterns of tumour subsets in non-small-cell lung cancer,” The Lancet, vol. 362, no. 9382, pp. 433–439, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. A. A. Alaiya, B. Franzén, A. Hagman et al., “Molecular classification of borderline ovarian tumors using hierarchical cluster analysis of protein expression profiles,” International Journal of Cancer, vol. 98, no. 6, pp. 895–899, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. M. L. Reyzer, R. L. Caldwell, T. C. Dugger et al., “Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics,” Cancer Research, vol. 64, no. 24, pp. 9093–9100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. J. W. Cui, J. Wang, K. He et al., “Proteomic analysis of human acute leukemia cells: insight into their classification,” Clinical Cancer Research, vol. 10, no. 20, pp. 6887–6896, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Varambally, J. Yu, B. Laxman et al., “Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression,” Cancer Cell, vol. 8, no. 5, pp. 393–406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Folio, M. I. Mora, M. Zalacain et al., “Proteomic analysis of chemonaïve pediatric osteosarcomas and corresponding normal bone reveals multiple altered molecular targets,” Journal of Proteome Research, vol. 8, no. 8, pp. 3882–3888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Li, T. A. Dang, J. Shen et al., “Identification of a plasma proteomic signature to distinguish pediatric osteosarcoma from benign osteochondroma,” Proteomics, vol. 6, no. 11, pp. 3426–3435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Li, Q. Liang, Y. Q. Wen et al., “Comparative proteomics analysis of human osteosarcomas and benign tumor of bone,” Cancer Genetics and Cytogenetics, vol. 198, no. 2, pp. 97–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. D. H. Conrad, J. Goyette, and P. S. Thomas, “Proteomics as a method for early detection of cancer: a review of proteomics, exhaled breath condensate, and lung cancer screening,” Journal of General Internal Medicine, vol. 23, supplement 1, pp. 78–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. A. Granville and P. A. Dennis, “An overview of lung cancer genomics and proteomics,” American Journal of Respiratory Cell and Molecular Biology, vol. 32, no. 3, pp. 169–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Alessandro, S. Fontana, E. Kohn, and G. de Leo, “Proteomic strategies and their application in cancer research,” Tumori, vol. 91, no. 6, pp. 447–455, 2005. View at Scopus
  38. T. Takahashi, T. Naka, M. Fujimoto et al., “Aberrant expression of glycosylation in juvenile gastrointestinal stromal tumors,” Proteomics—Clinical Applications, vol. 2, no. 9, pp. 1246–1254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. G. E. Holt, H. S. Schwartz, and R. L. Caldwell, “Proteomic profiling in musculoskeletal oncology by MALDI mass spectrometry,” Clinical Orthopaedics and Related Research, no. 450, pp. 105–110, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. P. A. Fetsch, N. L. Simone, P. K. Bryant-Greenwood et al., “Proteomic evaluation of archival cytologic material using SELDI affinity mass spectrometry: potential for diagnostic applications,” American Journal of Clinical Pathology, vol. 118, no. 6, pp. 870–876, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Kondo and S. Hirohashi, “Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics,” Nature Protocols, vol. 1, no. 6, pp. 2940–2956, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Kondo and S. Hirohashi, “Application of 2D-DIGE in cancer proteomics toward personalized medicine,” Methods in Molecular Biology, vol. 577, pp. 135–154, 2009. View at Scopus
  43. J. S. Minden, S. R. Dowd, H. E. Meyer, and K. Stühler, “Difference gel electrophoresis,” Electrophoresis, vol. 30, supplement 1, pp. S156–S161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Fiévet, D. Louvard, and M. Arpin, “ERM proteins in epithelial cell organization and functions,” Biochimica et Biophysica Acta, vol. 1773, no. 5, pp. 653–660, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Bulut, S. H. Hong, K. Chen et al., “Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells,” Oncogene, vol. 31, pp. 269–281, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Bretscher, K. Edwards, and R. G. Fehon, “ERM proteins and merlin: integrators at the cell cortex,” Nature Reviews Molecular Cell Biology, vol. 3, no. 8, pp. 586–599, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Ren, S. H. Hong, Q. R. Chen, et al., “Dysregulation of ezrin phosphorylation prevents metastasis and alters cellular metabolism in osteosarcoma,” Cancer Research, vol. 72, no. 4, pp. 1001–1012.
  48. S. Tsukita, S. Yonemura, and S. Tsukita, “ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction,” Current Opinion in Cell Biology, vol. 9, no. 1, pp. 70–75, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Khanna, X. Wan, S. Bose et al., “The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis,” Nature Medicine, vol. 10, no. 2, pp. 182–186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. H. R. Park, R. L. Cabrini, E. S. Araujo, M. L. Paparella, D. Brandizzi, and Y. K. Park, “Expression of ezrin and metastatic tumor antigen in osteosarcomas of the jaw,” Tumori, vol. 95, no. 1, pp. 81–86, 2009. View at Scopus
  51. H. R. Park, W. W. Jung, P. Bacchini, F. Bertoni, Y. W. Kim, and Y. K. Park, “Ezrin in osteosarcoma: comparison between conventional high-grade and central low-grade osteosarcoma,” Pathology Research and Practice, vol. 202, no. 7, pp. 509–515, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Di Cristofano, M. Leopizzi, A. Miraglia et al., “Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell,” Modern Pathology, vol. 23, no. 7, pp. 1012–1020, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Yu, J. Khan, C. Khanna, L. Helman, P. S. Meltzer, and G. Merlino, “Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators,” Nature Medicine, vol. 10, no. 2, pp. 175–181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. A. M. Davis, R. S. Bell, and P. J. Goodwin, “Prognostic factors in osteosarcoma: a critical review,” Journal of Clinical Oncology, vol. 12, no. 2, pp. 423–431, 1994. View at Scopus
  55. S. B. Lee, J. N. Ho, S. H. Yoon, G. Y. Kang, S. G. Hwang, and H. D. Um, “Peroxiredoxin 6 promotes lung cancer cell invasion by inducing urokinase-type plasminogen activator via p38 kinase, phosphoinositide 3-kinase, and Akt,” Molecules and Cells, vol. 28, no. 6, pp. 583–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. C. A. Neumann, D. S. Krause, C. V. Carman et al., “Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression,” Nature, vol. 424, no. 6948, pp. 561–565, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. T. H. Lee, S. U. Kim, S. L. Yu et al., “Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice,” Blood, vol. 101, no. 12, pp. 5033–5038, 2003. View at Scopus
  58. X. Wang, S. A. Phelan, K. Forsman-Semb et al., “Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress,” The Journal of Biological Chemistry, vol. 278, no. 27, pp. 25179–25190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Wang, S. I. Feinstein, and A. B. Fisher, “Peroxiredoxin 6 as an antioxidant enzyme: protection of lung alveolar epithelial type II cells from H2O2-induced oxidative stress,” Journal of Cellular Biochemistry, vol. 104, no. 4, pp. 1274–1285, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Wang, S. I. Feinstein, Y. Manevich, Y. S. Ho, and A. B. Fisher, “Peroxiredoxin 6 gene-targeted mice show increased lung injury with paraquat-induced oxidative stress,” Antioxidants and Redox Signaling, vol. 8, no. 1-2, pp. 229–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. S. T. Lehtonen, A. M. Svensk, Y. Soini et al., “Peroxiredoxins, a novel protein family in lung cancer,” International Journal of Cancer, vol. 111, no. 4, pp. 514–521, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Q. Li, L. Wang, F. Fei et al., “Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry,” Proteomics, vol. 6, no. 11, pp. 3352–3368, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Karihtala, A. Mäntyniemi, S. W. Kang, V. L. Kinnula, and Y. Soini, “Peroxiredoxins in breast carcinoma,” Clinical Cancer Research, vol. 9, no. 9, pp. 3418–3424, 2003. View at Scopus
  64. J. B. Lee, S. J. Yun, H. Z. Chae, Y. H. Won, Y. P. Kim, and S. C. Lee, “Expression of peroxiredoxin and thioredoxin in dermatological disorders,” British Journal of Dermatology, vol. 146, no. 4, pp. 710–712, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. V. L. Kinnula, S. Lehtonen, R. Sormunen et al., “Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma,” Journal of Pathology, vol. 196, no. 3, pp. 316–323, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Yanagawa, T. Ishikawa, T. Ishii et al., “Peroxiredoxin I expression in human thyroid tumors,” Cancer Letters, vol. 145, no. 1-2, pp. 127–132, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. W. C. Chen, W. H. McBride, K. S. Iwamoto et al., “Induction of radioprotective peroxiredoxin-I by ionizing irradiation,” Journal of Neuroscience Research, vol. 70, no. 6, pp. 794–798, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. H. Kim, P. N. Bogner, N. Ramnath, Y. Park, J. Yu, and Y. M. Park, “Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer,” Clinical Cancer Research, vol. 13, no. 13, pp. 3875–3882, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. M. Chung, Y. D. Yoo, J. K. Park, Y. T. Kim, and H. J. Kim, “Increased expression of peroxiredoxin II confers resistance to cisplatin,” Anticancer Research, vol. 21, no. 2, pp. 1129–1133, 2001. View at Scopus
  70. S. H. Park, Y. M. Chung, Y. S. Lee et al., “Antisense of human peroxiredoxin II enhances radiation-induced cell death,” Clinical Cancer Research, vol. 6, no. 12, pp. 4915–4920, 2000. View at Scopus
  71. L. Smith, K. J. Welham, M. B. Watson, P. J. Drew, M. J. Lind, and L. Cawkwell, “The proteomic analysis of cisplatin resistance in breast cancer cells,” Oncology Research, vol. 16, no. 11, pp. 497–506, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Kropotov, V. Gogvadze, O. Shupliakov et al., “Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells,” Experimental Cell Research, vol. 312, no. 15, pp. 2806–2815, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Castagna, P. Antonioli, H. Astner et al., “A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431,” Proteomics, vol. 4, no. 10, pp. 3246–3267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. X. Z. Chang, D. Q. Li, Y. F. Hou et al., “Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer,” Breast Cancer Research, vol. 9, no. 6, article R76, 2007. View at Scopus
  75. T. O. Nielsen, “Microarray analysis of sarcomas,” Advances in Anatomic Pathology, vol. 13, no. 4, pp. 166–173, 2006. View at Publisher · View at Google Scholar
  76. K. Tschoep, A. Kohlmann, M. Schlemmer, T. Haferlach, and R. D. Issels, “Gene expression profiling in sarcomas,” Critical Reviews in Oncology/Hematology, vol. 63, no. 2, pp. 111–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. T. O. Nielsen, R. B. West, S. C. Linn et al., “Molecular characterisation of soft tissue tumours: a gene expression study,” The Lancet, vol. 359, no. 9314, pp. 1301–1307, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. C. R. Antonescu, “Molecular profiling in the diagnosis and treatment of high grade sarcomas,” Ultrastructural Pathology, vol. 32, no. 2, pp. 37–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Nakayama, T. Nemoto, H. Takahashi et al., “Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma,” Modern Pathology, vol. 20, no. 7, pp. 749–759, 2007. View at Publisher · View at Google Scholar · View at Scopus