About this Journal Submit a Manuscript Table of Contents
Sarcoma
Volume 2012 (2012), Article ID 782970, 14 pages
http://dx.doi.org/10.1155/2012/782970
Research Article

A Novel Role of IGF1 in Apo2L/TRAIL-Mediated Apoptosis of Ewing Tumor Cells

1Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
2Institute of Food Chemistry, The University of Münster, Corrensstrasse 45, 48149 Münster, Germany
3Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
4Department of Orthopedic Surgery, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany

Received 25 June 2012; Accepted 15 August 2012

Academic Editor: Maria Tsokos

Copyright © 2012 Frans van Valen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Dirksen and H. Jürgens, “Approaching Ewing sarcoma,” Future Oncology, vol. 6, no. 7, pp. 1155–1162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. E. C. Toomey, J. D. Schiffman, and S. L. Lessnick, “Recent advances in the molecular pathogenesis of Ewing's sarcoma,” Oncogene, vol. 29, no. 32, pp. 4504–4516, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. F. van Valen, W. Winkelmann, and H. Jurgens, “Type I and Type II insulin-like growth factor receptors and their function in human Ewing's sarcoma cells,” Journal of Cancer Research and Clinical Oncology, vol. 118, no. 4, pp. 269–275, 1992. View at Scopus
  4. D. Yee, R. E. Favoni, G. S. Lebovic et al., “Insulin-like growth factor I expression by tumors of neuroectodermal origin with the t(11;22) chromosomal translocation. A potential autocrine growth factor,” Journal of Clinical Investigation, vol. 86, no. 6, pp. 1806–1814, 1990. View at Scopus
  5. A. Prieur, F. Tirode, P. Cohen, and O. Delattre, “EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3,” Molecular and Cellular Biology, vol. 24, no. 16, pp. 7275–7283, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Hofbauer, G. Hamilton, G. Theyer, K. Wollmann, and F. Gabor, “Insulin-like growth factor-I-dependent growth and in vitro chemosensitivity of Ewing's sarcoma and peripheral primitive neuroectodermal tumour cell lines,” European Journal of Cancer Part A, vol. 29, no. 2, pp. 241–245, 1993. View at Scopus
  7. J. A. Toretsky, M. Thakar, A. E. Eskenazi, and C. N. Frantz, “Phosphoinositide 3-hydroxide kinase blockade enhances apoptosis in the Ewing's sarcoma family of tumors,” Cancer Research, vol. 59, no. 22, pp. 5745–5750, 1999. View at Scopus
  8. S. R. Wiley, K. Schooley, P. J. Smolak et al., “Identification and characterization of a new member of the TNF family that induces apoptosis,” Immunity, vol. 3, no. 6, pp. 673–682, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. R. M. Pitti, S. A. Marsters, S. Ruppert, C. J. Donahue, A. Moore, and A. Ashkenazi, “Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family,” Journal of Biological Chemistry, vol. 271, no. 22, pp. 12687–12690, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Ashkenazi, R. C. Pai, S. Fong et al., “Safety and antitumor activity of recombinant soluble Apo2 ligand,” Journal of Clinical Investigation, vol. 104, no. 2, pp. 155–162, 1999. View at Scopus
  11. C. Falschlehner, U. Schaefer, and H. Walczak, “Following TRAIL's path in the immune system,” Immunology, vol. 127, no. 2, pp. 145–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. S. Herbst, S. G. Eckhardt, R. Kurzrock et al., “Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer,” Journal of Clinical Oncology, vol. 28, no. 17, pp. 2839–2846, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. van Valen, S. Fulda, B. Truckenbrod, et al., “Apoptotic responsiveness of the Ewing's sarcoma family of tumours to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL),” International Journal of Cancer, vol. 88, no. 2, pp. 252–259, 2000.
  14. A. Ashkenazi, “Directing cancer cells to self-destruct with pro-apoptotic receptor agonists,” Nature Reviews Drug Discovery, vol. 7, no. 12, pp. 1001–1012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. S. Ola, M. Nawaz, and H. Ahsan, “Role of Bcl-2 family proteins and caspases in the regulation of apoptosis,” Molecular and Cellular Biochemistry, vol. 351, no. 1-2, pp. 41–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Sensintaffar, F. L. Scott, R. Peach, and J. H. Hager, “XIAP is not required for human tumor cell survival in the absence of an exogenous death signal,” BMC Cancer, vol. 10, article 11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. C. Dan, M. Sun, S. Kaneko et al., “Akt phosphorylation and stabilization of x-linked inhibitor of apoptosis protein (XIAP),” Journal of Biological Chemistry, vol. 279, no. 7, pp. 5405–5412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Liu, J. A. D'Ercole, and P. Ye, “Blunting type 1 insulin-like growth factor receptor expression exacerbates neuronal apoptosis following hypoxic/ischemic injury,” BMC Neuroscience, vol. 12, article 64, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Poulaki, C. S. Mitsiades, V. Kotoula et al., “Regulation of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in thyroid carcinoma cells,” American Journal of Pathology, vol. 161, no. 2, pp. 643–654, 2002. View at Scopus
  20. M. Fakler, S. Loeder, M. Vogler et al., “Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance,” Blood, vol. 113, no. 8, pp. 1710–1722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Chen, H. Thakkar, F. Tyan et al., “Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer,” Oncogene, vol. 20, no. 42, pp. 6073–6083, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Asakuma, M. Sumitomo, T. Asano, T. Asano, and M. Hayakawa, “Selective Akt inactivation and tumor necrosis factor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel,” Cancer Research, vol. 63, no. 6, pp. 1365–1370, 2003. View at Scopus
  23. F. van Valen, “Ewing's sarcoma family of tumors,” in Human Cell Culture, J. R. W. Masters and B. O. Palsson, Eds., vol. 1, pp. 55–85, Kluwer Academic Publishers, London, UK, 1999.
  24. J. Bielawski, Z. M. Szulc, Y. A. Hannun, and A. Bielawska, “Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry,” Methods, vol. 39, no. 2, pp. 82–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. M. Chi, A. L. Schlein, and K. H. Moley, “High insulin-like growth factor 1 (IGF-1) and insulin concentrations trigger apoptosis in the mouse blastocyst via down-regulation of the IGF-1 receptor,” Endocrinology, vol. 141, no. 12, pp. 4784–4792, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Schmitz-Peiffer, D. L. Craig, and T. J. Biden, “Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate,” Journal of Biological Chemistry, vol. 274, no. 34, pp. 24202–24210, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. B. J. Kroesen, S. Jacobs, B. J. Pettus et al., “BcR-induced apoptosis involves differential regulation of C16 and C24-ceramide formation and sphingolipid-dependent activation of the proteasome,” Journal of Biological Chemistry, vol. 278, no. 17, pp. 14723–14731, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. T. D. Mullen, Y. A. Hannun, and L. M. Obeid, “Ceramide synthases at the centre of sphingolipid metabolism and biology,” Biochemical Journal, vol. 441, no. 3, pp. 789–802, 2012.
  29. K. Scotlandi, S. Benini, M. Sarti et al., “Insulin-like growth factor I receptor-mediated circuit in Ewing's sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target,” Cancer Research, vol. 56, no. 20, pp. 4570–4574, 1996. View at Scopus
  30. K. Scotlandi, S. Benini, P. Nanni et al., “Blockage of insulin-like growth factor-I receptor inhibits the growth of Ewing's sarcoma in athymic mice,” Cancer Research, vol. 58, no. 18, pp. 4127–4131, 1998. View at Scopus
  31. H. Kato, T. N. Faria, B. Stannard, C. T. Roberts, and D. LeRoith, “Role of tyrosine kinase activity in signal transduction by the insulin-like growth factor-I (IGF-I) receptor. Characterization of kinase-deficient IGF-I receptors and the action of an IGF-I-mimetic antibody (αIR-3),” Journal of Biological Chemistry, vol. 268, no. 4, pp. 2655–2661, 1993. View at Scopus
  32. D. D. De Leon, D. M. Wilson, M. Powers, and R. G. Rosenfeld, “Effects of insulin-like growth factors (IGFs) and IGF receptor antibodies on the proliferation of human breast cancer cells,” Growth Factors, vol. 6, no. 4, pp. 327–336, 1992. View at Scopus
  33. C. Duan, S. B. Hawes, T. Prevette, and D. R. Clemmons, “Insulin-like growth factor-I (IGF-I) regulates IGF-binding protein-5 synthesis through transcriptional activation of the gene in aortic smooth muscle cells,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4280–4288, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. R. S. Warren, H. Yuan, M. R. Matli, N. Ferrara, and D. B. Donner, “Induction of vascular endothelial growth factor by insulin-like growth factor 1 in colorectal carcinoma,” Journal of Biological Chemistry, vol. 271, no. 46, pp. 29483–29488, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. C. Zhang, X. P. Wang, L. Y. Zhang, A. L. Song, Z. M. Kou, and X. S. Li, “Effect of blocking IGF-I receptor on growth of human hepatocellular carcinoma cells,” World Journal of Gastroenterology, vol. 12, no. 25, pp. 3977–3982, 2006. View at Scopus
  36. M. Hotfilder, P. Sondermann, A. Senss, F. van Valen, H. Jürgens, and J. Vormoor, “PI3K/AKT is involved in mediating survival signals that rescue Ewing tumour cells from fibroblast growth factor 2-induced cell death,” British Journal of Cancer, vol. 92, no. 4, pp. 705–710, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Rui, T. L. Fisher, J. Thomas, and M. F. White, “Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2,” Journal of Biological Chemistry, vol. 276, no. 43, pp. 40362–40367, 2001. View at Scopus
  38. B. Ogretmen and Y. A. Hannun, “Biologically active sphingolipids in cancer pathogenesis and treatment,” Nature Reviews Cancer, vol. 4, no. 8, pp. 604–616, 2004. View at Scopus
  39. M. Eto, J. Bennouna, O. C. Hunter et al., “C16 ceramide accumulates following androgen ablation in LNCaP prostate cancer cells,” Prostate, vol. 57, no. 1, pp. 66–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Sauane, Z. Z. Su, R. Dash et al., “Ceramide plays a prominent role in MDA-7/IL-24-induced cancer-specific apoptosis,” Journal of Cellular Physiology, vol. 222, no. 3, pp. 546–555, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Seumois, M. Fillet, L. Gillet et al., “De novo C16- and C24-ceramide generation contributes to spontaneous neutrophil apoptosis,” Journal of Leukocyte Biology, vol. 81, no. 6, pp. 1477–1486, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. W. J. van Blitterswijk, A. H. van der Luit, R. J. Veldman, M. Verheij, and J. Borst, “Ceramide: second messenger or modulator of membrane structure and dynamics?” Biochemical Journal, vol. 369, no. 2, pp. 199–211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Remacle-Bonnet, F. Garrouste, G. Baillat, F. Andre, J. Marvaldi, and G. Pommier, “Membrane rafts segregate pro- from anti-apoptotic insulin-like growth factor-I receptor signaling in colon carcinoma cells stimulated by members of the tumor necrosis factor superfamily,” American Journal of Pathology, vol. 167, no. 3, pp. 761–773, 2005. View at Scopus
  44. B. Pennarun, A. Meijer, E. G. E. de Vries, J. H. Kleibeuker, F. Kruyt, and S. de Jong, “Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer,” Biochimica et Biophysica Acta, vol. 1805, no. 2, pp. 123–140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Kawakami, T. Nakashima, M. Tsuboi et al., “Insulin-like growth factor I stimulates proliferation and Fas-mediated apoptosis of human osteoblasts,” Biochemical and Biophysical Research Communications, vol. 247, no. 1, pp. 46–51, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Saini, N. Al-Shanti, S. H. Faulkner, and C. E. Stewart, “Pro- and anti-apoptotic roles for IGF-I in TNF-α-induced apoptosis: a MAP kinase mediated mechanism,” Growth Factors, vol. 26, no. 5, pp. 239–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. C. U. Niesler, B. Urso, J. B. Prins, and K. Siddle, “IGF-I inhibits apoptosis induced by serum withdrawal, but potentiates TNF-α-induced apoptosis, in 3T3-L1 preadipocytes,” Journal of Endocrinology, vol. 167, no. 1, pp. 165–174, 2000. View at Scopus
  48. C. Mauz-Körholz, M. Kachel, B. Harms-Schirra, A. Klein-Vehne, P. U. Tunn, and D. Körholz, “Drug-induced caspase-3 activation in a Ewing tumor cell line and primary Ewing tumor cells,” Anticancer Research, vol. 24, no. 1, pp. 145–149, 2004. View at Scopus
  49. P. Schotte, W. Declercq, S. Van Huffel, P. Vandenabeele, and R. Beyaert, “Non-specific effects of methyl ketone peptide inhibitors of caspases,” Federation of European Biochemical Societies Letters, vol. 442, no. 1, pp. 117–121, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. T. J. Smith, “Insulin-like growth factor-I regulation of immune function: a potential therapeutic target in autoimmune diseases?” Pharmacological Reviews, vol. 62, no. 2, pp. 199–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Kooijman, M. Willems, G. T. Rijkers et al., “Effects of insulin-like growth factors and growth hormone on the in vitro proliferation of T lymphocytes,” Journal of Neuroimmunology, vol. 38, no. 1-2, pp. 95–104, 1992. View at Scopus
  52. C. J. Auernhammer, H. Feldmeier, R. Nass, K. Pachmann, and C. J. Strasburger, “Insulin-like growth factor I is an independent coregulatory modulator of natural killer (NK) cell activity,” Endocrinology, vol. 137, no. 12, pp. 5332–5336, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Liu, H. K. W. Law, and Y. L. Lau, “Insulin-like growth factor I promotes maturation and inhibits apoptosis of immature cord blood monocyte-derived dendritic cells through MEK and PI 3-kinase pathways,” Pediatric Research, vol. 54, no. 6, pp. 919–925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. G. De Angulo, M. Hernandez, J. Morales-Arias et al., “Early lymphocyte recovery as a prognostic indicator for high-risk Ewing sarcoma,” Journal of Pediatric Hematology/Oncology, vol. 29, no. 1, pp. 48–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Suminoe, A. Matsuzaki, H. Hattori, Y. Koga, and T. Hara, “Immunotherapy with autologous dendritic cells and tumor antigens for children with refractory malignant solid tumors,” Pediatric Transplantation, vol. 13, no. 6, pp. 746–753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Cho, D. R. Shook, N. Shimasaki, Y. H. Chang, H. Fujisaki, and D. Campana, “Cytotoxicity of activated natural killer cells against pediatric solid tumors,” Clinical Cancer Research, vol. 16, no. 15, pp. 3901–3909, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. A. L. Ho and G. K. Schwartz, “Targeting of insulin-like growth factor type 1 receptor in Ewing sarcoma: unfulfilled promise or a promising beginning?” Journal of Clinical Oncology, vol. 29, no. 34, pp. 4581–4583, 2011.
  58. H. Jürgens, N. C. Daw, B. Geoerger, et al., “Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma,” Journal of Clinical Oncology, vol. 29, no. 34, pp. 4534–4540, 2011.