About this Journal Submit a Manuscript Table of Contents
Sarcoma
Volume 2012 (2012), Article ID 937506, 13 pages
http://dx.doi.org/10.1155/2012/937506
Research Article

Genes Regulated in Metastatic Osteosarcoma: Evaluation by Microarray Analysis in Four Human and Two Mouse Cell Line Systems

Laboratory for Orthopedic Research, Balgrist University Hospital, Forchstrasse 340, 8008 Zurich, Switzerland

Received 6 July 2012; Accepted 7 September 2012

Academic Editor: Norman Jaffe

Copyright © 2012 Roman Muff et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. F. Jia, L. L. Worth, and E. S. Kleinerman, “A nude mouse model of human osteosarcoma lung metastases for evaluating new therapeutic strategies,” Clinical and Experimental Metastasis, vol. 17, no. 6, pp. 501–506, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Kimura, T. Nakano, Y. B. Park et al., “Establishment of human osteosarcoma cell lines with high metastatic potential to lungs and their utilities for therapeutic studies on metastatic osteosarcoma,” Clinical and Experimental Metastasis, vol. 19, no. 6, pp. 477–485, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. S. Rhim, H. Y. Cho, and R. J. Huebner, “Non producer human cells induced by murine sarcoma virus,” International Journal of Cancer, vol. 15, no. 1, pp. 23–29, 1975. View at Scopus
  4. X. B. Shi, A. M. Chen, X. H. Cai, F. J. Guo, G. N. Liao, and D. Ma, “Establishment and characterization of cell sublines with high and low metastatic potential derived from human osteosarcoma,” Chinese Medical Journal, vol. 118, no. 8, pp. 687–690, 2005. View at Scopus
  5. T. Asai, T. Ueda, K. Itoh, et al., “Establishment and characterization of a murine osteosarcoma cell line (LM8) with high metastatic potential to the lung,” International Journal of Cancer, vol. 76, no. 3, pp. 418–422, 1998.
  6. C. Khanna, J. Prehn, C. Yeung, J. Caylor, M. Tsokos, and L. Helman, “An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential,” Clinical and Experimental Metastasis, vol. 18, no. 3, pp. 261–271, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Nakano, M. Tani, Y. Ishibashi et al., “Biological properties and gene expression associated with metastatic potential of human osteosarcoma,” Clinical and Experimental Metastasis, vol. 20, no. 7, pp. 665–674, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Khanna, J. Khan, P. Nguyen et al., “Metastasis-associated differences in gene expression in a murine model of osteosarcoma,” Cancer Research, vol. 61, no. 9, pp. 3750–3759, 2001. View at Scopus
  9. R. J. Flores, Y. Li, A. Yu, et al., “A systems biology approach reveals common metastatic pathways in osteosarcoma,” BMC Systems Biology, vol. 6, no. 1, p. 50, 2012.
  10. M. Curto and A. I. McClatchey, “Ezrin... A metastatic detERMinant?” Cancer Cell, vol. 5, no. 2, pp. 113–114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. W. Martin, M. Zielenska, G. S. Stein, J. A. Squire, and A. J. van Wijnen, “The role of RUNX2 in osteosarcoma oncogenesis,” Sarcoma, vol. 2011, Article ID 282745, 13 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. P. J. Stephens, C. D. Greenman, B. Fu et al., “Massive genomic rearrangement acquired in a single catastrophic event during cancer development,” Cell, vol. 144, no. 1, pp. 27–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Bacci, F. Bertoni, A. Longhi et al., “Neoadjuvant chemotherapy for high-grade central osteosarcoma of the extremity: histologic response to preoperative chemotherapy correlates with histologic subtype of the tumor,” Cancer, vol. 97, no. 12, pp. 3068–3075, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Muff, N. Nigg, P. Gruber, D. Walters, W. Born, and B. Fuchs, “Altered morphology, nuclear stability and adhesion of highly metastatic derivatives of osteoblast-like SAOS-2 osteosarcoma cells,” Anticancer Research, vol. 27, no. 6, pp. 3973–3979, 2007. View at Scopus
  15. C. Chipoy, M. Berreur, S. Couillaud et al., “Downregulation of osteoblast markers and induction of the glial fibrillary acidic protein by oncostatin M in osteosarcoma cells require PKCdelta and STAT3,” Journal of Bone and Mineral Research, vol. 19, no. 11, pp. 1850–1861, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Schmidt, G. P. Strauss, A. Schon et al., “Establishement and characterization of osteogenic cell lines from a spontaneous murine osteosarcoma,” Differentiation, vol. 39, no. 3, pp. 151–160, 1988. View at Scopus
  17. K. Husmann, R. Muff, M. E. Bolander, G. Sarkar, W. Born, and B. Fuchs, “Cathepsins and osteosarcoma: expression analysis identifies cathepsin K as an indicator of metastasis,” Molecular Carcinogenesis, vol. 47, no. 1, pp. 66–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Long, “Building strong bones: molecular regulation of the osteoblast lineage,” Nature Reviews Molecular Cell Biology, vol. 13, no. 1, pp. 27–38, 2012.
  19. C. R. Dass, A. P. W. Nadesapillai, D. Robin et al., “Downregulation of uPAR confirms link in growth and metastasis of osteosarcoma,” Clinical and Experimental Metastasis, vol. 22, no. 8, pp. 643–652, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Fuchs, K. Zhang, M. E. Bolander, and G. Sarkar, “Identification of differentially expressed genes by mutually subtracted RNA fingerprinting,” Analytical Biochemistry, vol. 286, no. 1, pp. 91–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Wiggan and P. A. Hamel, “Pax3 regulates morphogenetic cell behavior in vitro coincident with activation of a PCP/non-canonical Wnt-signaling cascade,” Journal of Cell Science, vol. 115, no. 3, pp. 531–541, 2002. View at Scopus
  22. O. Wiggan, M. P. Fadel, and P. A. Hamel, “Pax3 induces cell aggregation and regulates phenotypic mesenchymal-epithelial interconversion,” Journal of Cell Science, vol. 115, no. 3, pp. 517–529, 2002. View at Scopus
  23. P. Kloen, M. C. Gebhardt, A. Perez-Atayde, et al., “Expression of transforming growth factor-beta (TGF-beta) isoforms in osteosarcomas: TGF-beta3 is related to disease progression,” Cancer, vol. 80, no. 12, pp. 2230–2239, 1997.
  24. M. Paoloni, S. Davis, S. Lana et al., “Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression,” BMC Genomics, vol. 10, article 625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Chipoy, B. Brounais, V. Trichet et al., “Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53,” Oncogene, vol. 26, no. 46, pp. 6653–6664, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Brounais, C. Chipoy, K. Mori et al., “Oncostatin M induces bone loss and sensitizes rat osteosarcoma to the antitumor effect of midostaurin in vivo,” Clinical Cancer Research, vol. 14, no. 17, pp. 5400–5409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Huang, H. Dai, and Q. N. Guo, “TSSC3 overexpression reduces stemness and induces apoptosis of osteosarcoma tumor-initiating cells,” Apoptosis, vol. 17, no. 8, pp. 749–761, 2012.
  28. H. Dai, Y. Huang, Y. Li, G. Meng, Y. Wang, and Q. N. Guo, “TSSC3 overexpression associates with growth inhibition, apoptosis induction and enhances chemotherapeutic effects in human osteosarcoma,” Carcinogenesis, vol. 33, no. 1, pp. 30–40, 2012.
  29. S. K. Halder, Y. J. Cho, A. Datta, et al., “Elucidating the mechanism of regulation of transforming growth factor beta Type II receptor expression in human lung cancer cell lines,” Neoplasia, vol. 13, no. 10, pp. 912–922, 2011.
  30. A. P. G. Crijns, P. de Graeff, D. Geerts et al., “MEIS and PBX homeobox proteins in ovarian cancer,” European Journal of Cancer, vol. 43, no. 17, pp. 2495–2505, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. R. Vriens, W. Moses, J. Weng et al., “Clinical and molecular features of papillary thyroid cancer in adolescents and young adults,” Cancer, vol. 117, no. 2, pp. 259–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. Chen, J. Li, K. Kiriluk, et al., “Deregulation of a hox protein regulatory network spanning prostate cancer initiation and progression,” Clinical Cancer Research, vol. 18, no. 16, pp. 4291–4302, 2012.
  33. M. C. Bouton, Y. Boulaftali, B. Richard, V. Arocas, J. B. Michel, and M. Jandrot-Perrus, “Emerging role of serpinE2/protease nexin-1 in hemostasis and vascular biology,” Blood, vol. 119, no. 11, pp. 2452–2457, 2012.
  34. D. Xu, C. M. McKee, Y. Cao, Y. Ding, B. M. Kessler, and R. J. Muschel, “Matrix metalloproteinase-9 regulates tumor cell invasion through cleavage of protease nexin-1,” Cancer Research, vol. 70, no. 17, pp. 6988–6998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Buchholz, A. Biebl, A. Neeße et al., “SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo,” Cancer Research, vol. 63, no. 16, pp. 4945–4951, 2003. View at Scopus
  36. S. Bergeron, E. Lemieux, V. Durand et al., “The serine protease inhibitor serpinE2 is a novel target of ERK signaling involved in human colorectal tumorigenesis,” Molecular Cancer, vol. 9, article 271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Selzer-Plon, J. Bornholdt, S. Friis et al., “Expression of prostasin and its inhibitors during colorectal cancer carcinogenesis,” BMC Cancer, vol. 9, article 201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. B. J. Candia, W. C. Hines, C. M. Heaphy, J. K. Griffith, and R. A. Orlando, “Protease nexin-1 expression is altered in human breast cancer,” Cancer Cell International, vol. 6, article 16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Nagahara, M. Nakayama, D. Oka et al., “SERPINE2 is a possible candidate promotor for lymph node metastasis in testicular cancer,” Biochemical and Biophysical Research Communications, vol. 391, no. 4, pp. 1641–1646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Fayard, F. Bianchi, J. Dey et al., “The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression,” Cancer Research, vol. 69, no. 14, pp. 5690–5698, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Gao, A. Krogdahl, J. A. Sørensen, T. M. Kousted, E. Dabelsteen, and P. A. Andreasen, “Overexpression of protease nexin-1 mRNA and protein in oral squamous cell carcinomas,” Oral Oncology, vol. 44, no. 3, pp. 309–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Yang, Q. Dong, M. Yao et al., “Establishment of an experimental human lung adenocarcinoma cell line SPC-A-1BM with high bone metastases potency by 99mTc-MDP bone scintigraphy,” Nuclear Medicine and Biology, vol. 36, no. 3, pp. 313–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Taniguchi, R. Takeya, S. Suetsugu et al., “Mammalian formin Fhod3 regulates actin assembly and sarcomere organization in striated muscles,” Journal of Biological Chemistry, vol. 284, no. 43, pp. 29873–29881, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Jurmeister, M. Baumann, A. Balwierz, et al., “MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F,” Molecular and Cellular Biology, vol. 32, no. 3, pp. 633–651, 2012.
  45. J. Blake and M. R. Ziman, “Aberrant PAX3 and PAX7 expression. A link to the metastatic potential of embryonal rhabdomyosarcoma and cutaneous malignant melanoma?” Histology and Histopathology, vol. 18, no. 2, pp. 529–539, 2003. View at Scopus
  46. J. D. Kubic, K. P. Young, R. S. Plummer, A. E. Ludvik, and D. Lang, “Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease,” Pigment Cell and Melanoma Research, vol. 21, no. 6, pp. 627–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. T. W. Schulte, J. A. Toretsky, E. Ress, L. Helman, and L. M. Neckers, “Expression of PAX3 in Ewing's sarcoma family of tumors,” Biochemical and Molecular Medicine, vol. 60, no. 2, pp. 121–126, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. S. B. Haga, S. Fu, J. E. Karp et al., “BP1, a new homeobox gene, is frequently expressed in acute leukemias,” Leukemia, vol. 14, no. 11, pp. 1867–1875, 2000. View at Scopus
  49. Y. G. Man, S. W. Fu, A. Schwartz, J. J. Pinzone, S. J. Simmens, and P. E. Berg, “Expression of BP1, a novel homeobox gene, correlates with breast cancer progression and invasion,” Breast Cancer Research and Treatment, vol. 90, no. 3, pp. 241–247, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Hara, S. Samuel, J. Liu, D. Rosen, R. R. Langley, and H. Naora, “A homeobox gene related to Drosophila distal-less promotes ovarian tumorigenicity by inducing expression of vascular endothelial growth factor and fibroblast growth factor-2,” American Journal of Pathology, vol. 170, no. 5, pp. 1594–1606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. A. M. Schwartz, Y. G. Man, M. K. Rezaei, S. J. Simmens, and P. E. Berg, “BP1, a homeoprotein, is significantly expressed in prostate adenocarcinoma and is concordant with prostatic intraepithelial neoplasia,” Modern Pathology, vol. 22, no. 1, pp. 1–6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Q. Trinh, N. Barengo, and H. Naora, “Homeodomain protein DLX4 counteracts key transcriptional control mechanisms of the TGF-β cytostatic program and blocks the antiproliferative effect of TGF-β,” Oncogene, vol. 30, no. 24, pp. 2718–2729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Sun, X. Lu, L. Yin, F. Zhao, and Y. Feng, “Inhibition of DLX4 promotes apoptosis in choriocarcinoma cell lines,” Placenta, vol. 27, no. 4-5, pp. 375–383, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Fu, Y. Lian, K. S. Kim, et al., “BP1 homeoprotein enhances metastatic potential in ER-negative breast cancer,” Journal of Cancer, vol. 1, pp. 54–62, 2010.
  55. S. Tomida, K. Yanagisawa, K. Koshikawa et al., “Identification of a metastasis signature and the DLX4 homeobox protein as a regulator of metastasis by combined transcriptome approach,” Oncogene, vol. 26, no. 31, pp. 4600–4608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Qiao, X. Jiang, S. T. Lee, R. K. M. Karuturi, S. C. Hooi, and Q. Yu, “FOXQ1 regulates epithelial-mesenchymal transition in human cancers,” Cancer Research, vol. 71, no. 8, pp. 3076–3086, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Zhang, F. Meng, G. Liu et al., “Forkhead transcription factor Foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis,” Cancer Research, vol. 71, no. 4, pp. 1292–1301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Feuerborn, P. K. Srivastava, S. Küffer et al., “The Forkhead factor FoxQ1 influences epithelial differentiation,” Journal of Cellular Physiology, vol. 226, no. 3, pp. 710–719, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Kaneda, T. Arao, K. Tanaka et al., “FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth,” Cancer Research, vol. 70, no. 5, pp. 2053–2063, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Pischon, J. M. Mäki, P. Weisshaupt et al., “Lysyl oxidase (Lox) gene deficiency affects osteoblastic phenotype,” Calcified Tissue International, vol. 85, no. 2, pp. 119–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. Siddikuzzaman, V. M. Grace, and C. Guruvayoorappan, “Lysyl oxidase: a potential target for cancer therapy,” Inflammopharmacology, vol. 19, no. 3, pp. 117–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. E. P. von Strandmann, S. Senkel, G. Ryffel, and U. R. Hengge, “Dimerization co-factor of hepatocyte nuclear factor 1/pterin-4α-carbinolamine dehydratase is necessary for pigmentation in Xenopus and overexpressed in primary human melanoma lesions,” American Journal of Pathology, vol. 158, no. 6, pp. 2021–2029, 2001. View at Scopus
  63. R. Eskinazi, B. Thöny, M. Svoboda et al., “Overexpression of Pterin-4a-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 in human colon cancer,” American Journal of Pathology, vol. 155, no. 4, pp. 1105–1113, 1999. View at Scopus
  64. J. He, Y. Pan, J. Hu, C. Albarracin, Y. Wu, and L. D. Jia, “Profile of Ets gene expression in human breast carcinoma,” Cancer Biology and Therapy, vol. 6, no. 1, pp. 76–82, 2007. View at Scopus
  65. K. Brenne, D. A. Nymoen, T. E. Hetland, C. G. Trope, and B. Davidson, “Expression of the Ets transcription factor EHF in serous ovarian carcinoma effusions is a marker of poor survival,” Human Pathology, vol. 43, no. 4, pp. 496–505, 2012.
  66. J. Ferragud, A. Avivar-Valderas, A. Pla, J. De Las Rivas, and J. F. de Mora, “Transcriptional repression of the tumor suppressor DRO1 by AIB1,” FEBS Letters, vol. 585, no. 19, pp. 3041–3046, 2011.
  67. G. T. Bommer, C. Jäger, E. M. Dürr et al., “DRO1, a gene down-regulated by oncogenes, mediates growth inhibition in colon and pancreatic cancer cells,” Journal of Biological Chemistry, vol. 280, no. 9, pp. 7962–7975, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Prunier, B. A. Hocevar, and P. H. Howe, “Wnt signaling: physiology and pathology,” Growth Factors, vol. 22, no. 3, pp. 141–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. H. T. Xu, L. H. Yang, Q. C. Li et al., “Disabled-2 and Axin are concurrently colocalized and underexpressed in lung cancers,” Human Pathology, vol. 42, no. 10, pp. 1491–1498, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. J. A. Karam, S. F. Shariat, H. Y. Huang et al., “Decreased DOC-2/DAB2 expression in urothelial carcinoma of the bladder,” Clinical Cancer Research, vol. 13, no. 15, part 1, pp. 4400–4406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Hannigan, P. Smith, G. Kalna et al., “Epigenetic downregulation of human disabled homolog 2 switches TGF-β from a tumor suppressor to a tumor promoter,” Journal of Clinical Investigation, vol. 120, no. 8, pp. 2842–2857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. H. Tong, D. C. Ng, S. L. Chau et al., “Putative tumour-suppressor gene DAB2 is frequently down regulated by promoter hypermethylation in nasopharyngeal carcinoma,” BMC Cancer, vol. 10, article 253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Anupam, C. Tusharkant, S. D. Gupta, and R. Ranju, “Loss of disabled-2 expression is an early event in esophageal squamous tumorigenesis,” World Journal of Gastroenterology, vol. 12, no. 37, pp. 6041–6045, 2006. View at Scopus
  74. J. C. Martin, B. S. Herbert, and B. A. Hocevar, “Disabled-2 downregulation promotes epithelial-to-mesenchymal transition,” British Journal of Cancer, vol. 103, no. 11, pp. 1716–1723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. S. A. R. Bagadi, C. P. Prasad, A. Srivastava, R. Prashad, S. D. Gupta, and R. Ralhan, “Frequent loss of Dab2 protein and infrequent promoter hypermethylation in breast cancer,” Breast Cancer Research and Treatment, vol. 104, no. 3, pp. 277–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Chao, C. Y. Lin, Y. S. Lee et al., “Regulation of ovarian cancer progression by microRNA-187 through targeting Disabled homolog-2,” Oncogene, vol. 31, pp. 764–775, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. P. M. Siegel and J. Massagué, “Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer,” Nature Reviews Cancer, vol. 3, no. 11, pp. 807–820, 2003. View at Scopus
  78. S. L. Grant and C. G. Begley, “The oncostatin M signalling pathway: reversing the neoplastic phenotype?” Molecular Medicine Today, vol. 5, no. 9, pp. 406–412, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. E. David, P. Guihard, B. Brounais et al., “Direct anti-cancer effect of oncostatin M on chondrosarcoma,” International Journal of Cancer, vol. 128, no. 8, pp. 1822–1835, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. S. L. Fossey, M. D. Bear, W. C. Kisseberth, M. Pennell, and C. A. London, “Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines,” BMC Cancer, vol. 11, article 125, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Choi, D. Kim, S. Kim, S. Jeong, E. Song, and D. M. Helfman, “From skeletal muscle to cancer: insights learned elucidating the function of tropomyosin,” Journal of Structurl Biology, vol. 177, no. 1, pp. 63–69, 2012.
  82. V. Mlakar, G. Berginc, M. Volavšek, Z. Štor, M. Rems, and D. Glavač, “Presence of activating KRAS mutations correlates significantly with expression of tumour suppressor genes DCN and TPM1 in colorectal cancer,” BMC Cancer, vol. 9, article 282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. G. N. Raval, S. Bharadwaj, E. A. Levine et al., “Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors,” Oncogene, vol. 22, no. 40, pp. 6194–6203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Zhu, M. L. Si, H. Wu, and Y. Y. Mo, “MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1),” Journal of Biological Chemistry, vol. 282, no. 19, pp. 14328–14336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Zhao, X. Xiong, and Y. Sun, “DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy,” Molecular Cell, vol. 44, no. 2, pp. 304–316, 2011.
  86. T. R. Peterson, M. Laplante, C. C. Thoreen et al., “DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival,” Cell, vol. 137, no. 5, pp. 873–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. C. H. Yen, Y. C. Lu, C. H. Li, et al., “Functional characterization of glycine N-methyltransferase and its interactive protein DEPDC6/DEPTOR in hepatocellular carcinoma,” Molecular Medicine, vol. 18, no. 1, pp. 286–296, 2012.
  88. M. A. Nagai, J. H. T. G. Fregnani, M. M. Netto, M. M. Brentani, and F. A. Soares, “Down-regulation of PHLDA1 gene expression is associated with breast cancer progression,” Breast Cancer Research and Treatment, vol. 106, no. 1, pp. 49–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. R. Neef, M. A. Kuske, E. Pröls, and J. P. Johnson, “Identification of the human PHLDA1/TDAG51 gene: down-regulation in metastatic melanoma contributes to apoptosis resistance and growth deregulation,” Cancer Research, vol. 62, no. 20, pp. 5920–5929, 2002. View at Scopus