About this Journal Submit a Manuscript Table of Contents
Sarcoma
Volume 2012 (2012), Article ID 960194, 7 pages
http://dx.doi.org/10.1155/2012/960194
Clinical Study

FDG PET/CT in Initial Staging of Adult Soft-Tissue Sarcoma

1Department of Radiation Oncology, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada H3G 1A4
2Department of Radiation Oncology, Notre-Dame Hospital, CHUM, 1560 Sherbrooke Street East, Montreal, QC, Canada H2L 4M1
3Department of Nuclear Medicine, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada H3G 1A4
4Department of Orthopaedic Surgery, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC, Canada H3G 1A4

Received 9 September 2012; Accepted 8 November 2012

Academic Editor: Alberto Pappo

Copyright © 2012 David Roberge et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Siegel, E. Ward, O. Brawley, et al., “Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths,” CA: A Cancer Journal for Clinicians, vol. 61, pp. 212–236, 2011.
  2. L. Mariani, R. Miceli, M. W. Kattan et al., “Validation and adaptation of a nomogram for predicting the survival of patients with extremity soft tissue sarcoma using a three-grade system,” Cancer, vol. 103, no. 2, pp. 402–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. D. A. Potter, J. Glenn, T. Kinsella, et al., “Patterns of recurrence in patients with high-grade soft-tissue sarcomas,” Journal of Clinical Oncology, vol. 3, no. 3, pp. 353–366, 1985. View at Scopus
  4. D. M. King, D. A. Hackbarth, C. M. Kilian, and G. F. Carrera, “Soft-tissue sarcoma metastases identified on abdomen and pelvis CT imaging,” Clinical Orthopaedics and Related Research, vol. 467, no. 11, pp. 2838–2844, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Conill, X. Setoain, L. Colomo et al., “Diagnostic efficacy of bone scintigraphy, magnetic resonance imaging, and positron emission tomography in bone metastases of myxoid liposarcoma,” Journal of Magnetic Resonance Imaging, vol. 27, no. 3, pp. 625–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. C. Moreau, R. Turcotte, P. Ferguson, et al., “Myxoid\round cell liposarcoma (MRCLS) revisited: an analysis of 418 primarily managed cases,” Annals of Surgical Oncology, vol. 19, pp. 1081–1088, 2012.
  7. R. J. Hicks, G. C. Toner, and P. F. Choong, “Clinical applications of molecular imaging in sarcoma evaluation,” Cancer Imaging, vol. 5, no. 1, pp. 66–72, 2005. View at Scopus
  8. M. R. Benz, J. Czernin, M. S. Allen-Auerbach et al., “FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas,” Clinical Cancer Research, vol. 15, no. 8, pp. 2856–2863, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. L. Folpe, R. H. Lyles, J. T. Sprouse, E. U. Conrad, and J. F. Eary, “(F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma,” Clinical Cancer Research, vol. 6, no. 4, pp. 1279–1287, 2000. View at Scopus
  10. E. Bastiaannet, B. Groen, P. L. Jager et al., “The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis,” Cancer Treatment Reviews, vol. 30, no. 1, pp. 83–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. F. Eary, F. O'Sullivan, Y. Powitan et al., “Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis,” European Journal of Nuclear Medicine, vol. 29, no. 9, pp. 1149–1154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Roberge, M. Hickeson, M. Charest, and R. E. Turcotte, “Initial McGill experience with fluorodeoxyglucose PET/CT staging of soft-tissue sarcoma,” Current Oncology, vol. 17, no. 6, pp. 18–22, 2010. View at Scopus
  13. M. Charest, M. Hickeson, R. Lisbona, J. A. Novales-Diaz, V. Derbekyan, and R. E. Turcotte, “FDG PET/CT imaging in primary osseous and soft tissue sarcomas: a retrospective review of 212 cases,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 12, pp. 1944–1951, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. Lucas, M. J. O'Doherty, J. C. H. Wong et al., “Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas,” Journal of Bone and Joint Surgery B, vol. 80, no. 3, pp. 441–447, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. M. H. M. Schwarzbach, A. Dimitrakopoulou-Strauss, F. Willeke et al., “Clinical value of [18-F] fluorodeoxyglucose positron emission tomography imaging in soft tissue sarcomas,” Annals of Surgery, vol. 231, no. 3, pp. 380–386, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. G. R. Johnson, H. Zhuang, J. Khan, S. B. Chiang, and A. Alavi, “Roles of positron emission tomography with fluorine-18-deoxyglucose in the detection of local recurrent and distant metastatic sarcoma,” Clinical Nuclear Medicine, vol. 28, no. 10, pp. 815–820, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Kumar, A. Chauhan, A. K. Vellimana, and M. Chawla, “Role of PET/PET-CT in the management of sarcomas,” Expert Review of Anticancer Therapy, vol. 6, no. 8, pp. 1241–1250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. G. C. Toner and R. J. Hicks, “PET for sarcomas other than gastrointestinal stromal tumors,” Oncologist, vol. 13, supplement 2, pp. 22–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. U. Tateishi, U. Yamaguchi, K. Seki, T. Terauchi, Y. Arai, and E. E. Kim, “Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging,” Radiology, vol. 245, no. 3, pp. 839–847, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Iagaru, A. Quon, I. R. McDougall, and S. S. Gambhir, “F-18 FDG PET/CT evaluation of osseous and soft tissue sarcomas,” Clinical Nuclear Medicine, vol. 31, no. 12, pp. 754–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Piperkova, M. Mikhaeil, A. Mousavi et al., “Impact of PET and CT in PET/CT studies for staging and evaluating treatment response in bone and soft tissue sarcomas,” Clinical Nuclear Medicine, vol. 34, no. 3, pp. 146–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. W. De Wever, L. Meylaerts, L. Ceuninck, S. Stroobants, and J. A. Verschakelen, “Additional value of integrated PET-CT in the detection and characterization of lung metastases: correlation with CT alone and PET alone,” European Radiology, vol. 17, no. 2, pp. 467–473, 2007. View at Publisher · View at Google Scholar · View at Scopus