About this Journal Submit a Manuscript Table of Contents
Sarcoma
Volume 2013 (2013), Article ID 147541, 11 pages
http://dx.doi.org/10.1155/2013/147541
Research Article

Dkk-3, a Secreted Wnt Antagonist, Suppresses Tumorigenic Potential and Pulmonary Metastasis in Osteosarcoma

1Department of Oncology, CHOC Children’s Hospital, 455 South Main Street, Orange, CA 92868, USA
2Department of Orthopaedic Surgery, University of California, Irvine, 101 The City Drive South, Orange, CA 92868, USA
3Department of Obstetrics and Gynecology, University of California, Irvine, 101 The City Drive South, Building 56, Suite 260, Orange, CA 92868, USA
4Department of Urology, University of California, Irvine, 101 The City Drive South, Building 55, Suite 302, Orange, CA 92868, USA
5Department of Pharmaceutical Sciences, University of California, Irvine, 101 The City Drive South, Orange, CA 92868, USA
6Department of Orthopaedic Surgery and Chao Family Comprehensive Cancer Center, University of California, Irvine, 101 The City Drive South, Orange, CA 92868, USA

Received 7 July 2012; Revised 10 December 2012; Accepted 16 December 2012

Academic Editor: H. Gelderblom

Copyright © 2013 Carol H. Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Bacci, S. Ferrari, F. Bertoni et al., “Long-term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma-2 protocol: an updated report,” Journal of Clinical Oncology, vol. 18, no. 24, pp. 4016–4027, 2000. View at Scopus
  2. S. S. Bielack, B. Kempf-Bielack, G. Delling et al., “Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1,702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols,” Journal of Clinical Oncology, vol. 20, no. 3, pp. 776–790, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Kager, A. Zoubek, U. Pötschger et al., “Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant cooperative osteosarcoma study group protocols,” Journal of Clinical Oncology, vol. 21, no. 10, pp. 2011–2018, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Mialou, T. Philip, C. Kalifa et al., “Metastatic osteosarcoma at diagnosis: prognostic factors and long-term outcome—the French pediatric experience,” Cancer, vol. 104, no. 5, pp. 1100–1109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. Hayden and B. H. Hoang, “Osteosarcoma: basic science and clinical implications,” Orthopedic Clinics of North America, vol. 37, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. B. T. MacDonald, K. Tamai, and X. He, “Wnt/β-catenin signaling: components, mechanisms, and diseases,” Developmental Cell, vol. 17, no. 1, pp. 9–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. T. Moon, “Wnt/beta-catenin pathway,” Science's STKE, vol. 2005, no. 271, article cm1, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Jamieson, M. Sharma, and B. R. Henderson, “Wnt signaling from membrane to nucleus: beta-catenin caught in a loop,” The International Journal of Biochemistry & Cell Biology, vol. 44, no. 6, pp. 847–850, 2012. View at Publisher · View at Google Scholar
  9. H. H. Luu, R. Zhang, R. C. Haydon et al., “Wnt/β-catenin signaling pathway as novel cancer drug targets,” Current Cancer Drug Targets, vol. 4, no. 8, pp. 653–671, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. B. H. Hoang, T. Kubo, J. H. Healey et al., “Dickkopf 3 inhibits invasion and motility of saos-2 osteosarcoma cells by modulating the Wnt-β-catenin pathway,” Cancer Research, vol. 64, no. 8, pp. 2734–2739, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Y. Hsieh, P. S. Hsieh, C. T. Chiu, and W. Y. Chen, “Dickkopf-3/REIC functions as a suppressor gene of tumor growth,” Oncogene, vol. 23, no. 57, pp. 9183–9189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Zhang, M. Watanabe, Y. Kashiwakura et al., “Expression pattern of REIC/Dkk-3 in various cell types and the implications of the soluble form in prostatic acinar development,” International Journal of Oncology, vol. 37, no. 6, pp. 1495–1501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. I. L. Jung, J. K. Hyo, C. K. Kug, and G. K. In, “Knockdown of the Dickkopf 3 gene induces apoptosis in a lung adenocarcinoma,” International Journal of Molecular Medicine, vol. 26, no. 1, pp. 33–38, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Kuphal, S. Lodermeyer, F. Bataille, M. Schuierer, B. H. Hoang, and A. K. Bosserhoff, “Expression of Dickkopf genes is strongly reduced in malignant melanoma,” Oncogene, vol. 25, no. 36, pp. 5027–5036, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Polakis, “Wnt signaling and cancer,” Genes and Development, vol. 14, no. 15, pp. 1837–1851, 2000. View at Scopus
  16. Y. Mizobuchi, K. Matsuzaki, K. Kuwayama et al., “REIC/Dkk-3 induces cell death in human malignant glioma,” Neuro-Oncology, vol. 10, no. 3, pp. 244–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Ueno, H. Hirata, S. Majid et al., “Wnt antagonist DICKKOPF-3 (Dkk-3) induces apoptosis in human renal cell carcinoma,” Molecular Carcinogenesis, vol. 50, no. 6, pp. 449–457, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Zenzmaier, G. Untergasser, M. Hermann, S. Dirnhofer, N. Sampson, and P. Berger, “Dysregulation of Dkk-3 expression in benign and malignant prostatic tissue,” Prostate, vol. 68, no. 5, pp. 540–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Tanimoto, F. Abarzua, M. Sakaguchi et al., “REIC/Dkk-3 as a potential gene therapeutic agent against human testicular cancer,” International Journal of Molecular Medicine, vol. 19, no. 3, pp. 363–368, 2007. View at Scopus
  20. Z. R. Yang, W. G. Dong, X. F. Lei, et al., “Overexpression of Dickkopf-3 induces apoptosis through mitochondrial pathway in human colon cancer,” World Journal of Gastroenterology, vol. 18, no. 14, pp. 1590–1601, 2012. View at Publisher · View at Google Scholar
  21. Y. Guo, X. Zi, Z. Koontz et al., “Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells,” Journal of Orthopaedic Research, vol. 25, no. 7, pp. 964–971, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Veeck and E. Dahl, “Targeting the Wnt pathway in cancer: the emerging role of Dickkopf-3,” Biochimica et Biophysica Acta, vol. 1825, no. 1, pp. 18–28, 2012. View at Publisher · View at Google Scholar
  23. B. Wu, S. P. Crampton, and C. C. W. Hughes, “Wnt Signaling induces matrix metalloproteinase expression and regulates T cell transmigration,” Immunity, vol. 26, no. 2, pp. 227–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Uchibori, Y. Nishida, T. Nagasaka, Y. Yamada, K. Nakanishi, and N. Ishiguro, “Increased expression of membrane-type matrix metalloproteinase-1 is correlated with poor prognosis in patients with osteosarcoma,” International Journal of Oncology, vol. 28, no. 1, pp. 33–42, 2006. View at Scopus
  25. K. F. Becker, E. Rosivatz, K. Blechschmidt, E. Kremmer, M. Sarbia, and H. Höfler, “Analysis of the E-cadherin repressor snail in primary human cancers,” Cells Tissues Organs, vol. 185, no. 1–3, pp. 204–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. P. McQueen, S. Ghaffar, Y. Guo, et al., “The Wnt signaling pathway: implications for therapy in osteosarcoma,” Expert Review of Anticancer Therapy, vol. 11, no. 8, pp. 1223–1232, 2011. View at Publisher · View at Google Scholar
  27. Y. Kang and J. Massagué, “Epithelial-mesenchymal transitions: twist in development and metastasis,” Cell, vol. 118, no. 3, pp. 277–279, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. L. R. Howe, O. Watanabe, J. Leonard, and A. M. C. Brown, “Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation,” Cancer Research, vol. 63, no. 8, pp. 1906–1913, 2003. View at Scopus
  29. S. C. Garrett, K. M. Varney, D. J. Weber, and A. R. Bresnick, “S100A4, a mediator of metastasis,” Journal of Biological Chemistry, vol. 281, no. 2, pp. 677–680, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Fujiwara, T. G. Kashima, A. Kunita et al., “Stable knockdown of S100A4 suppresses cell migration and metastasis of osteosarcoma,” Tumour Biology, vol. 32, no. 3, pp. 611–622, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Zhang, M. Li, J. Jin, et al., “Knockdown of S100A4 decreases tumorigenesis and metastasis in osteosarcoma cells by repression of matrix metalloproteinase-9,” Asian Pacific Journal of Cancer Prevention, vol. 12, no. 8, pp. 2075–2080, 2011.
  32. N. Coltella, M. C. Manara, V. Cerisano et al., “Role of the MET/HGF receptor in proliferation and invasive behavior of osteosarcoma,” The FASEB Journal, vol. 17, no. 9, pp. 1162–1164, 2003. View at Scopus
  33. B. H. Hoang, T. Kubo, J. H. Healey et al., “Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma,” International Journal of Cancer, vol. 109, no. 1, pp. 106–111, 2004. View at Publisher · View at Google Scholar · View at Scopus