About this Journal Submit a Manuscript Table of Contents
Sarcoma
Volume 2013 (2013), Article ID 153640, 10 pages
http://dx.doi.org/10.1155/2013/153640
Review Article

Can Bone Tissue Engineering Contribute to Therapy Concepts after Resection of Musculoskeletal Sarcoma?

1Regenerative Medicine Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4049, Australia
2Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, University of Würzburg, Brettreich Straße 11, 97072 Würzburg, Germany
3Department of Orthopaedics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
4Department of Orthopaedic Surgery, Klinikum Rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany
5Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany
6Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University Munich, Ismaninger Straße 22, 81675 Munich, Germany
7The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive Northwest, Atlanta, GA 30332, USA

Received 16 October 2012; Accepted 10 December 2012

Academic Editor: Hans Rechl

Copyright © 2013 Boris Michael Holzapfel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. Einhorn, “The cell and molecular biology of fracture healing,” Clinical Orthopaedics and Related Research, no. 355, pp. S7–S21, 1998. View at Scopus
  2. G. F. Muschler, C. Nakamoto, and L. G. Griffith, “Engineering principles of clinical cell-based tissue engineering,” Journal of Bone and Joint Surgery—Series A, vol. 86, no. 7, pp. 1541–1558, 2004. View at Scopus
  3. F. A. Probst, D. W. Hutmacher, D. F. Müller, H. G. MacHens, and J. T. Schantz, “Calvarial reconstruction by customized bioactive implant,” Handchirurgie Mikrochirurgie Plastische Chirurgie, vol. 42, no. 6, pp. 369–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Ferguson, E. Alpern, T. Miclau, and J. A. Helms, “Does adult fracture repair recapitulate embryonic skeletal formation?” Mechanisms of Development, vol. 87, no. 1-2, pp. 57–66, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. C. R. Perry, “Bone repair techniques, bone graft, and bone graft substitutes,” Clinical Orthopaedics and Related Research, no. 360, pp. 71–86, 1999. View at Scopus
  6. P. J. Messerschmitt, R. M. Garcia, F. W. Abdul-Karim, E. M. Greenfield, and P. J. Getty, “Osteosarcoma,” Journal of the American Academy of Orthopaedic Surgeons, vol. 17, no. 8, pp. 515–527, 2009. View at Scopus
  7. B. M. Holzapfel, H. Pilge, A. Toepfer, R. G. Jakubietz, H. Gollwitzer, H. Rechl, et al., “Proximal tibial replacement and alloplastic reconstruction of the extensor mechanism after bone tumor resection,” Operative Orthopadie und Traumatologie, vol. 24, no. 3, pp. 247–262, 2012. View at Publisher · View at Google Scholar
  8. R. Grimer, N. Athanasou, C. Gerrand et al., “UK guidelines for the management of bone sarcomas,” Sarcoma, vol. 2010, Article ID 317462, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Grimer, I. Judson, D. Peake, and B. Seddon, “Guidelines for the management of soft tissue sarcomas,” Sarcoma, vol. 2010, Article ID 506182, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. B. M. Holzapfel, M. Ludemann, D. E. Holzapfel, H. Rechl, and M. Rudert, “Open biopsy of bone and soft tissue tumors: guidelines for precise surgical procedures,” Operative Orthopadie und Traumatologie, vol. 24, no. 4-5, pp. 403–417, 2012. View at Publisher · View at Google Scholar
  11. G. Bacci, S. Ferrari, S. Lari et al., “Osteosarcoma of the limb,” Journal of Bone and Joint Surgery—Series B, vol. 84, no. 1, pp. 88–92, 2002. View at Scopus
  12. L. Mirabello, R. J. Troisi, and S. A. Savage, “Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program,” Cancer, vol. 115, no. 7, pp. 1531–1543, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. L. Ferrone and C. P. Raut, “Modern surgical therapy: limb salvage and the role of amputation for extremity soft-tissue sarcomas,” Surgical Oncology Clinics of North America, vol. 21, no. 2, pp. 201–213, 2012. View at Publisher · View at Google Scholar
  14. M. Rudert, C. Winkler, B. M. Holzapfel et al., “A new modification of combining vacuum therapy and brachytherapy in large subfascial soft-tissue sarcomas of the extremities,” Strahlentherapie und Onkologie, vol. 186, no. 4, pp. 224–228, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. G. M. Calori, E. Mazza, M. Colombo, and C. Ripamonti, “The use of bone-graft substitutes in large bone defects: any specific needs?” Injury, vol. 42, supplement 2, pp. S56–S63, 2011. View at Publisher · View at Google Scholar
  16. M. Navarro, A. Michiardi, O. Castaño, and J. A. Planell, “Biomaterials in orthopaedics,” Journal of the Royal Society Interface, vol. 5, no. 27, pp. 1137–1158, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Berner, J. C. Reichert, M. B. Muller, J. Zellner, C. Pfeifer, T. Dienstknecht, et al., “Treatment of long bone defects and non-unions: from research to clinical practice,” Cell and Tissue Research, vol. 347, no. 3, pp. 501–519, 2012. View at Publisher · View at Google Scholar
  18. R. Dimitriou, E. Jones, D. McGonagle, and P. V. Giannoudis, “Bone regeneration: current concepts and future directions,” BMC Medicine, vol. 9, article 66, 2011. View at Publisher · View at Google Scholar
  19. J. Aronson, “Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method,” Journal of Bone and Joint Surgery—Series A, vol. 79, no. 8, pp. 1243–1258, 1997. View at Scopus
  20. P. V. Giannoudis, O. Faour, T. Goff, N. Kanakaris, and R. Dimitriou, “Masquelet technique for the treatment of bone defects: tips-tricks and future directions,” Injury, vol. 42, no. 6, pp. 591–598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. J. D. Bobyn, A. H. Glassman, H. Goto, J. J. Krygier, J. E. Miller, and C. E. Brooks, “The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty,” Clinical Orthopaedics and Related Research, no. 261, pp. 196–213, 1990. View at Scopus
  22. E. R. Henderson, J. S. Groundland, E. Pala et al., “Failure mode classification for tumor endoprostheses: retrospective review of five institutions and a literature review,” Journal of Bone and Joint Surgery—Series A, vol. 93, no. 5, pp. 418–429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. M. Holzapfel, J. C. Reichert, J. T. Schantz, U. Gbureck, L. Rackwitz, U. Noth, et al., “How smart do biomaterials need to be? A translational science and clinical point of view,” Advanced Drug Delivery Reviews. In press. View at Publisher · View at Google Scholar
  24. J. T. Schantz, H. G. Machens, A. F. Schilling, and S. H. Teoh, “Regenerative medicine: implications for craniofacial surgery,” Journal of Craniofacial Surgery, vol. 23, no. 2, pp. 530–536, 2012. View at Publisher · View at Google Scholar
  25. R. Langer and J. P. Vacanti, “Tissue engineering,” Science, vol. 260, no. 5110, pp. 920–926, 1993. View at Scopus
  26. D. Grafahrend, K. H. Heffels, M. V. Beer, P. Gasteier, M. Moller, G. Boehm, et al., “Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation,” Nature Materials, vol. 10, pp. 67–73, 2011. View at Publisher · View at Google Scholar
  27. L. G. Griffith and G. Naughton, “Tissue engineering—current challenges and expanding opportunities,” Science, vol. 295, no. 5557, pp. 1009–1014, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. R. F. Service, “Tissue engineering. Technique uses body as “bioreactor” to grow new bone,” Science, vol. 309, no. 5735, article 683, 2005. View at Scopus
  29. D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, vol. 21, no. 24, pp. 2529–2543, 2000. View at Scopus
  30. P. H. Warnke, J. Wiltfang, I. Springer et al., “Man as living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible,” Biomaterials, vol. 27, no. 17, pp. 3163–3167, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Park, C. Cannizzaro, G. Vunjak-Novakovic, R. Langer, C. A. Vacanti, and O. C. Farokhzad, “Nanofabrication and microfabrication of functional materials for tissue engineering,” Tissue Engineering, vol. 13, no. 8, pp. 1867–1877, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. F. P. W. Melchels, M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher, “Additive manufacturing of tissues and organs,” Progress in Polymer Science, vol. 37, no. 8, pp. 1079–1104, 2012. View at Publisher · View at Google Scholar
  33. J. T. Schantz, A. Brandwood, D. W. Hutmacher, H. L. Khor, and K. Bittner, “Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling,” Journal of Materials Science: Materials in Medicine, vol. 16, no. 9, pp. 807–819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, “Fused deposition modeling of novel scaffold architectures for tissue engineering applications,” Biomaterials, vol. 23, no. 4, pp. 1169–1185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. Woodruff and D. W. Hutmacher, “The return of a forgotten polymer—polycaprolactone in the 21st century,” Progress in Polymer Science, vol. 35, no. 10, pp. 1217–1256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Khademhosseini, J. P. Vacanti, and R. Langer, “Progress in tissue,” Scientific American, vol. 300, no. 5, pp. 64–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. F. T. Moutos, L. E. Freed, and F. Guilak, “A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage,” Nature Materials, vol. 6, no. 2, pp. 162–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. X. Lam, D. W. Hutmacher, J. T. Schantz, M. A. Woodruff, and S. H. Teoh, “Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo,” Journal of Biomedical Materials Research A, vol. 90, no. 3, pp. 906–919, 2009. View at Scopus
  39. D. W. Hutmacher, J. T. Schantz, C. X. Lam, K. C. Tan, and T. C. Lim, “State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 4, pp. 245–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. C. X. F. Lam, M. M. Savalani, S. H. Teoh, and D. W. Hutmacher, “Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions,” Biomedical Materials, vol. 3, no. 3, Article ID 034108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. C. X. F. Lam, S. H. Teoh, and D. W. Hutmacher, “Comparison of the degradation of polycaprolactone and polycaprolactone-(β-tricalcium phosphate) scaffolds in alkaline medium,” Polymer International, vol. 56, no. 6, pp. 718–728, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Rai, S. H. Teoh, K. H. Ho et al., “The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds,” Biomaterials, vol. 25, no. 24, pp. 5499–5506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Rai, S. H. Teoh, D. W. Hutmacher, T. Cao, and K. H. Ho, “Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2,” Biomaterials, vol. 26, no. 17, pp. 3739–3748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. A. Sawyer, S. J. Song, E. Susanto et al., “The stimulation of healing within a rat calvarial defect by mPCL-TCP/collagen scaffolds loaded with rhBMP-2,” Biomaterials, vol. 30, no. 13, pp. 2479–2488, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Zhou, F. Chen, S. T. Ho, M. A. Woodruff, T. M. Lim, and D. W. Hutmacher, “Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts,” Biomaterials, vol. 28, no. 5, pp. 814–824, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. J. C. Reichert, A. Cipitria, D. R. Epari, S. Saifzadeh, P. Krishnakanth, A. Berner, et al., “A tissue engineering solution for segmental defect regeneration in load-bearing long bones,” Science Translational Medicine, vol. 4, no. 141, Article ID 141ra93, 2012. View at Publisher · View at Google Scholar
  47. J. C. Reichert, D. R. Epari, M. E. Wullschleger et al., “Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies,” Tissue Engineering B, vol. 16, no. 1, pp. 93–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Gradinger and E. A. Hipp, “custom-made adaptable pelvic prosthesis,” in New Developments for Limb Salvage in Musculoskeletal Tumors Kyocera Orthopaedic Symposium, T. Yamamuro, Ed., Springer, Tokyo, Japan, 1989.
  49. R. Gradinger, H. Rechl, and E. Hipp, “Pelvic osteosarcoma: resection, reconstruction, local control, and survival statistics,” Clinical Orthopaedics and Related Research, no. 270, pp. 149–158, 1991. View at Scopus
  50. M. Rudert, B. M. Holzapfel, H. Pilge, H. Rechl, and R. Gradinger, “Partial pelvic resection (internal hemipelvectomy) and endoprosthetic replacement in periacetabular tumors,” Operative Orthopadie Und Traumatologie, vol. 24, no. 3, pp. 196–214, 2012. View at Publisher · View at Google Scholar
  51. S. A. Abbah, C. X. L. Lam, D. W. Hutmacher, J. C. H. Goh, and H. K. Wong, “Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery,” Biomaterials, vol. 30, no. 28, pp. 5086–5093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. H. L. Acosta, E. J. Stelnicki, L. Rodriguez, and L. A. Slingbaum, “Use of absorbable poly (D,L) lactic acid plates in cranial-vault remodeling: presentation of the first case and lessons learned about its use,” Cleft Palate-Craniofacial Journal, vol. 42, no. 4, pp. 333–339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. G. M. Raghoebar, R. S. Liem, R. R. Bos, J. E. van der Wal, and A. Vissink, “Resorbable screws for fixation of autologous bone grafts,” Clinical Oral Implants Research, vol. 17, no. 3, pp. 288–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography,” Biomaterials, vol. 30, no. 23-24, pp. 3801–3809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. J. A. Taylor, “Bilateral orbitozygomatic reconstruction with tissue-engineered bone,” The Journal of craniofacial surgery, vol. 21, no. 5, pp. 1612–1614, 2010. View at Scopus