About this Journal Submit a Manuscript Table of Contents
Sarcoma
Volume 2014 (2014), Article ID 208786, 7 pages
http://dx.doi.org/10.1155/2014/208786
Research Article

Cell Senescence in Myxoid/Round Cell Liposarcoma

1Sahlgrenska Cancer Center, Department of Pathology, Institute of Biomedicine, University of Gothenburg, Box 425, 40530 Gothenburg, Sweden
2Department of Oncology, Institute of Medical Sciences, University of Gothenburg, Blå stråket 2, 41345 Gothenburg, Sweden
3Department of Oncology, Institute of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden

Received 21 January 2014; Revised 22 May 2014; Accepted 23 May 2014; Published 24 June 2014

Academic Editor: Charles Catton

Copyright © 2014 Christina Kåbjörn Gustafsson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. Fletcher, K. K. Unni, and F. Mertens, Tumors of Soft Tissue and Bone. WHO Classification Pathology and Genetics, IARCPress, Lyon, France, 2000.
  2. A. Crozat, P. Aman, N. Mandahl, and D. Ron, “Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma,” Nature, vol. 363, no. 6430, pp. 640–644, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. T. H. Rabbitts, A. Forster, R. Larson, and P. Nathan, “Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma,” Nature Genetics, vol. 4, no. 2, pp. 175–180, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Åman, D. Ron, N. Mandahl et al., “Rearrangement of the transcription factor gene CHOP in myxoid liposarcomas with t(12;16)(q13;p11),” Genes Chromosomes and Cancer, vol. 5, no. 4, pp. 278–285, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Panagopoulos, M. Höglund, F. Mertens, N. Mandahl, F. Mitelman, and P. Åman, “Fusion of the EWS and CHOP genes in myxoid liposarcoma,” Oncogene, vol. 12, no. 3, pp. 489–494, 1996. View at Scopus
  6. N. Riggi, L. Cironi, P. Provero et al., “Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma,” Cancer Research, vol. 66, no. 14, pp. 7016–7023, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Zinszner, R. Albalat, and D. Ron, “A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP,” Genes and Development, vol. 8, no. 21, pp. 2513–2526, 1994. View at Scopus
  8. H. Zinszner, D. Immanuel, Y. Yin, F.-X. Liang, and D. Ron, “A topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited,” Oncogene, vol. 14, no. 4, pp. 451–461, 1997. View at Scopus
  9. M. Göransson, M. K. Andersson, C. Forni et al., “The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-κB target genes by interaction with NFKBIZ,” Oncogene, vol. 28, no. 2, pp. 270–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Göransson, E. Elias, A. Ståhlberg, A. Olofsson, C. Andersson, and P. Åman, “Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP β-mediated interleukin 6 expression,” International Journal of Cancer, vol. 115, no. 4, pp. 556–560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. P. J. Killela, Z. J. Reitmana, Y. Jiao, et al., “TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 15, pp. 6021–6026, 2013.
  12. J. Barretina, B. S. Taylor, S. Banerji, et al., “Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy,” Nature Genetics, vol. 42, no. 8, pp. 715–721, 2010.
  13. A. Olofsson, H. Willén, M. Göransson et al., “Abnormal expression of cell cycle regulators in FUS-CHOP carrying liposarcomas,” International Journal of Oncology, vol. 25, no. 5, pp. 1349–1355, 2004. View at Scopus
  14. M. Braig, S. Lee, C. Loddenkemper et al., “Oncogene-induced senescence as an initial barrier in lymphoma development,” Nature, vol. 436, no. 7051, pp. 660–665, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Bartkova, N. Rezaei, M. Liontos et al., “Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints,” Nature, vol. 444, no. 7119, pp. 633–637, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Braig and C. A. Schmitt, “Oncogene-induced senescence: putting the brakes on tumor development,” Cancer Research, vol. 66, no. 6, pp. 2881–2884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Yaswen and J. Campisi, “Oncogene-induced senescence pathways weave an intricate tapestry,” Cell, vol. 128, no. 2, pp. 233–234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Engström, H. Willén, C. Kåbjörn-Gustafsson et al., “The myxoid/round cell liposarcoma fusion oncogene FUS-DDIT3 and the normal DDIT3 induce a liposarcoma phenotype in transfected human fibrosarcoma cells,” American Journal of Pathology, vol. 168, no. 5, pp. 1642–1653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Thelin-Jarnum, C. Lassen, I. Panagopoulos, N. Mandahl, and P. Aman, “Identification of genes differentially expressed in TLS-CHOP carrying myxoid liposarcomas,” International Journal of Cancer, vol. 83, no. 1, pp. 30–33, 1999.
  20. T. Yokoi, T. Miyawaki, A. Yachie, K. Kato, Y. Kasahara, and N. Taniguchi, “Epstein-Barr virus-immortalized B cells produce IL-6 as an autocrine growth factor,” Immunology, vol. 70, no. 1, pp. 100–105, 1990. View at Scopus
  21. I. Köpf, C. Hanson, U. Delle, I. Verbiené, and A. Weimarck, “A rapid and simplified technique for analysis of archival formalin-fixed, paraffin-embedded tissue by fluorescence in situ hybridization (FISH),” Anticancer Research, vol. 16, no. 5, pp. 2533–2536, 1996. View at Scopus
  22. H. Yoshida, K. Nagao, H. Ito, K. Yamamoto, and S. Ushigome, “Chromosomal translocations in human soft tissue sarcomas by interphase fluorescence in situ hybridization,” Pathology International, vol. 47, no. 4, pp. 222–229, 1997. View at Scopus
  23. H. Helmbold, W. Deppert, and W. Bohn, “Regulation of cellular senescence by Rb2/p130,” Oncogene, vol. 25, no. 38, pp. 5257–5262, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. F. P. Fiorentino, C. E. Symonds, M. MacAluso, and A. Giordano, “Senescence and p130/Rbl2: a new beginning to the end,” Cell Research, vol. 19, no. 9, pp. 1044–1051, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Haferkamp, S. L. Tran, T. M. Becker, L. L. Scurr, R. F. Kefford, and H. Rizos, “The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence,” Aging, vol. 1, no. 6, pp. 542–556, 2009. View at Scopus
  26. H. Helmbold, N. Kömm, W. Deppert, and W. Bohn, “Rb2/p130 is the dominating pocket protein in the p53-p21 DNA damage response pathway leading to senescence,” Oncogene, vol. 28, no. 39, pp. 3456–3467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Helmbold, U. Galderisi, and W. Bohn, “The switch from pRb/p105 to Rb2/p130 in DNA damage and cellular senescence,” Journal of Cellular Physiology, vol. 227, no. 2, pp. 508–513, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. P. D. Adams, “Remodeling chromatin for senescence,” Aging Cell, vol. 6, no. 4, pp. 425–427, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Zhang, W. Chen, and P. D. Adams, “Molecular dissection of formation of senescence-associated heterochromatin foci,” Molecular and Cellular Biology, vol. 27, no. 6, pp. 2343–2358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. D. Giri and M. Ittmann, “Interleukin-8 is a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia,” American Journal of Pathology, vol. 159, no. 1, pp. 139–147, 2001. View at Scopus
  31. D. Giri, M. Ozen, and M. Ittmann, “Interleukin-6 is an autocrine growth factor in human prostate cancer,” American Journal of Pathology, vol. 159, no. 6, pp. 2159–2165, 2001. View at Scopus
  32. M. M. Kawano, H. Ishikawa, N. Tsuyama, et al., “Growth mechanism of human myeloma cells by interleukin-6,” International Journal of Hematology, vol. 76, supplement 1, pp. 329–333, 2002.
  33. H. Nakanishi, K. Yoshioka, S. Joyama et al., “Interleukin-6/soluble interleukin-6 receptor signaling attenuates proliferation and invasion, and induces morphological changes of a newly established pleomorphic malignant fibrous histiocytoma cell line,” American Journal of Pathology, vol. 165, no. 2, pp. 471–480, 2004. View at Scopus
  34. J. C. Acosta, A. O'Loghlen, A. Banito et al., “Chemokine signaling via the CXCR2 receptor reinforces senescence,” Cell, vol. 133, no. 6, pp. 1006–1018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. J. C. Acosta, A. O'Loghlen, A. Banito, S. Raguz, and J. Gil, “Control of senescence by CXCR2 and its ligands,” Cell Cycle, vol. 7, no. 19, pp. 2956–2959, 2008. View at Scopus
  36. T. Kuilman and D. S. Peeper, “Senescence-messaging secretome: SMS-ing cellular stress,” Nature Reviews Cancer, vol. 9, no. 2, pp. 81–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Engström, P. Bergh, C.-G. Cederlund et al., “Irradiation of myxoid/round cell liposarcoma induces volume reduction and lipoma-like morphology,” Acta Oncologica, vol. 46, no. 6, pp. 838–845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. K.-H. von Wangenheim, H.-P. Peterson, and K. Schwenke, “A major component of radiation action: interference with intracellular control of differentiation,” International Journal of Radiation Biology, vol. 68, no. 4, pp. 369–388, 1995. View at Scopus