About this Journal Submit a Manuscript Table of Contents
Sarcoma
Volume 2014 (2014), Article ID 391967, 13 pages
http://dx.doi.org/10.1155/2014/391967
Review Article

Sarcoma Immunotherapy: Past Approaches and Future Directions

1Department of Medicine/Melanoma-Sarcoma Oncology Service, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY 10065, USA
2Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA

Received 23 October 2013; Revised 17 December 2013; Accepted 16 January 2014; Published 20 March 2014

Academic Editor: Eugenie Kleinerman

Copyright © 2014 S. P. D'Angelo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Brennan, C. R. Antonescu, and R. G. Maki, Management of Soft Tissue Sarcoma, Springer, New York, NY, USA, 2012.
  2. M. F. Brennan, S. Singer, E. Maki, and B. O'Sullivan, Eds., Cancer: Principles and Practice of Oncology, Lippincott, Williams & Wilkins, Philadelphia, Pa, USA, 2008.
  3. R. D. Lindberg, R. G. Martin, M. M. Romsdahl, and H. T. Barkley Jr., “Conservative surgery and postoperative radiotherapy in 300 adults with soft-tissue sarcomas,” Cancer, vol. 47, no. 10, pp. 2391–2397, 1981. View at Scopus
  4. J. Weitz, C. R. Antonescu, and M. F. Brennan, “Localized extremity soft tissue sarcoma: improved knowledge with unchanged survival over time,” Journal of Clinical Oncology, vol. 21, no. 14, pp. 2719–2725, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. K. G. Billingsley, M. E. Burt, E. Jara et al., “Pulmonary metastases from soft tissue sarcoma: analysis of patterns of disease and postmetastasis survival,” Annals of Surgery, vol. 229, no. 5, pp. 602–610, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Van Glabbeke, A. T. Van Oosterom, J. W. Oosterhuis et al., “Prognostic factors for the outcome of chemotherapy in advanced soft tissue sarcoma: an analysis of 2,185 patients treated with anthracycline- containing first-line regimens—a European organization for research and treatment of cancer soft tissue and bone sarcoma group study,” Journal of Clinical Oncology, vol. 17, no. 1, pp. 150–157, 1999. View at Scopus
  7. T. J. Curiel, “Historical perspectives and current trends in cancer immunotherapy,” in Cancer Immunotherapy: Paradigms, Practice and Promise, T. J. Curiel, Ed., Springer, New York, NY, USA, 2012. View at Publisher · View at Google Scholar
  8. W. B. Coley, “II. contribution to the knowledge of sarcoma,” Annals of Surgery, vol. 14, pp. 199–220, 1891.
  9. B. Wiemann and C. O. Starnes, “Coley's toxins, tumor necrosis factor and cancer research: a historical perspective,” Pharmacology and Therapeutics, vol. 64, no. 3, pp. 529–564, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. American Cancer Society's Guide to Complementary and Alternative Cancer Methods, American Cancer Society, 2000.
  11. R. A. Gatti and R. A. Good, “Occurrence of malignancy in immunodeficiency diseases. A literature review,” Cancer, vol. 28, no. 1, pp. 89–98, 1971. View at Scopus
  12. I. Penn, “Sarcomas in organ allograft recipients,” Transplantation, vol. 60, no. 12, pp. 1485–1491, 1995. View at Scopus
  13. K. E. De Visser, A. Eichten, and L. M. Coussens, “Paradoxical roles of the immune system during cancer development,” Nature Reviews Cancer, vol. 6, no. 1, pp. 24–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Mellman, G. Coukos, and G. Dranoff, “Cancer immunotherapy comes of age,” Nature, vol. 480, no. 7378, pp. 480–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. K. S. Peggs, S. A. Quezada, A. J. Korman, and J. P. Allison, “Principles and use of anti-CTLA4 antibody in human cancer immunotherapy,” Current Opinion in Immunology, vol. 18, no. 2, pp. 206–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Robert and F. Ghiringhelli, “What is the role of cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma?” Oncologist, vol. 14, no. 8, pp. 848–861, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Kim, M. Emi, and K. Tanabe, “Cancer immunoediting from immune surveillance to immune escape,” Immunology, vol. 121, no. 1, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. W. L. Teng, J. B. Swann, C. M. Koebel, R. D. Schreiber, and M. J. Smyth, “Immune-mediated dormancy: an equilibrium with cancer,” Journal of Leukocyte Biology, vol. 84, no. 4, pp. 988–993, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. C. M. Vajdic and M. T. Van Leeuwen, “Cancer incidence and risk factors after solid organ transplantation,” International Journal of Cancer, vol. 125, no. 8, pp. 1747–1754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. J. Freeman, A. J. Long, Y. Iwai et al., “Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation,” Journal of Experimental Medicine, vol. 192, no. 7, pp. 1027–1034, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Nishimura and T. Honjo, “PD-1: an inhibitory immunoreceptor involved in peripheral tolerance,” Trends in Immunology, vol. 22, no. 5, pp. 265–268, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Carter, L. A. Fouser, J. Jussif et al., “PD-1:PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2,” European Journal of Immunology, vol. 32, no. 3, pp. 634–643, 2002.
  24. Y. Latchman, C. R. Wood, T. Chernova et al., “PD-L2 is a second ligand for PD-1 and inhibits T cell activation,” Nature Immunology, vol. 2, no. 3, pp. 261–268, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. M. J. Smyth, D. I. Godfrey, and J. A. Trapani, “A fresh look at tumor immunosurveillance and immunotherapy,” Nature Immunology, vol. 2, no. 4, pp. 293–299, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. J. B. Swann, M. D. Vesely, A. Silva et al., “Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 652–656, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Burnet, “Cancer, a biological approach. I. The processes of control,” British Medical Journal, vol. 1, pp. 779–786, 1957.
  28. F. M. Burnet, “The concept of immunological surveillance,” Progress in Experimental Tumor Research, vol. 13, pp. 1–27, 1970. View at Scopus
  29. M. Burnet, “Immunological factors in the process of carcinogenesis,” British Medical Bulletin, vol. 20, no. 2, pp. 154–158, 1964. View at Scopus
  30. K. Tsung and J. A. Norton, “Lessons from Coley's Toxin,” Surgical Oncology, vol. 15, no. 1, pp. 25–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Bhardwaj, “Harnessing the immune system to treat cancer,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1130–1136, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber, “Cancer immunoediting: from immunosurveillance to tumor escape,” Nature Immunology, vol. 3, no. 11, pp. 991–998, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Berghuis, S. J. Santos, H. J. Baelde et al., “Pro-inflammatory chemokine-chemokine receptor interactions within the Ewing sarcoma microenvironment determine CD8+ T-lymphocyte infiltration and affect tumour progression,” Journal of Pathology, vol. 223, no. 3, pp. 347–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Brinkrolf, S. Landmeier, B. Altvater et al., “A high proportion of bone marrow T cells with regulatory phenotype (CD4+CD25hiFoxP3+) in Ewing sarcoma patients is associated with metastatic disease,” International Journal of Cancer, vol. 125, no. 4, pp. 879–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Rusakiewicz, M. Semeraro, M. Sarabi et al., “Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors,” Cancer Research, vol. 73, no. 12, pp. 3499–3510, 2013. View at Publisher · View at Google Scholar
  36. N. H. Jenkins, L. S. Freedman, and B. McKibbin, “Spontaneous regression of a desmoid tumour,” Journal of Bone and Joint Surgery B, vol. 68, no. 5, pp. 780–781, 1986. View at Scopus
  37. T. Matsuo, S. Shimose, T. Kubo et al., “Extraskeletal osteosarcoma with partial spontaneous regression,” Anticancer Research, vol. 29, no. 12, pp. 5197–5201, 2009. View at Scopus
  38. S. W. Sorbye, T. K. Kilvaer, A. Valkov et al., “Prognostic impact of peritumoral lymphocyte infiltration in soft tissue sarcomas,” BMC Clinical Pathology, vol. 12, article 5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. S. W. Sorbye, T. Kilvaer, A. Valkov et al., “Prognostic impact of lymphocytes in soft tissue sarcomas,” PLoS One, vol. 6, no. 1, Article ID e14611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Y. Crowe, M. J. Smyth, and D. I. Godfrey, “A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas,” Journal of Experimental Medicine, vol. 196, no. 1, pp. 119–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Shankaran, H. Ikeda, A. T. Bruce et al., “IFNγ, and lymphocytes prevent primary tumour development and shape tumour immunogenicity,” Nature, vol. 410, no. 6832, pp. 1107–1111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Tsukahara, S. Kawaguchi, T. Torigoe et al., “Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5,” Cancer Science, vol. 97, no. 12, pp. 1374–1380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Margolin, M. Lazarus, and H. L. Kaufman, “Cytokines in the treatment of cancer,” in Cancer Immunotherapy: Paradigms, Practice and Promise, T. J. Curiel, Ed., Springer, New York, NY, USA, 2012.
  44. B. E. Lippitz, “Cytokine patterns in patients with cancer: a systematic review,” The Lancet Oncology, vol. 14, pp. e218–e228, 2013.
  45. B. H. Nelson, “IL-2, regulatory T cells, and tolerance,” Journal of Immunology, vol. 172, no. 7, pp. 3983–3988, 2004. View at Scopus
  46. C. A. Thornton, J. W. Upham, M. E. Wikström et al., “Functional maturation of CD4+CD25+CTLA4+CD45RA+ T regulatory cells in human neonatal T cell responses to environmental antigens/allergens,” Journal of Immunology, vol. 173, no. 5, pp. 3084–3092, 2004. View at Scopus
  47. E. A. Fagan and A. L. W. Feddleston, “Immunotherapy for cancer: the use of lymphokine activated killer (LAK) cells,” Gut, vol. 28, no. 2, pp. 113–116, 1987. View at Scopus
  48. E. A. Grimm, A. Mazumder, H. Z. Zhang, and S. A. Rosenberg, “Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes,” Journal of Experimental Medicine, vol. 155, no. 6, pp. 1823–1841, 1982. View at Scopus
  49. S. C. Yang, E. A. Grimm, D. R. Parkinson et al., “Clinical and immunomodulatory effects of combination immunotherapy with low-dose interleukin 2 and tumor necrosis factor α in patients with advanced non-small cell lung cancer: a phase I trial,” Cancer Research, vol. 51, no. 14, pp. 3669–3676, 1991. View at Scopus
  50. S. C. Yang, L. Owen-Schaub, E. A. Grimm, and J. A. Roth, “Induction of lymphokine-activated killer cytotoxicity with interleukin-2 and tumor necrosis factor-α against primary lung cancer targets,” Cancer Immunology Immunotherapy, vol. 29, no. 3, pp. 193–198, 1989. View at Scopus
  51. W. Schwinger, V. Klass, M. Benesch et al., “Feasibility of high-dose interleukin-2 in heavily pretreated pediatric cancer patients,” Annals of Oncology, vol. 16, no. 7, pp. 1199–1206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. M. B. Atkins, M. T. Lotze, J. P. Dutcher et al., “High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993,” Journal of Clinical Oncology, vol. 17, no. 7, pp. 2105–2116, 1999. View at Scopus
  53. M. B. Atkins, M. Regan, D. McDermott et al., “Update on the role of interleukin 2 and other cytokines in the treatment of patients with stage IV renal carcinoma,” Clinical Cancer Research, vol. 10, no. 18, pp. 6342S–6346S, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. A. Rosenberg, M. T. Lotze, J. C. Yang et al., “Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients,” Annals of Surgery, vol. 210, no. 4, pp. 474–485, 1989. View at Scopus
  55. S. Pestka, “The interferons: 50 years after their discovery, there is much more to learn,” Journal of Biological Chemistry, vol. 282, no. 28, pp. 20047–20051, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Kirkwood, J. G. Ibrahim, J. A. Sosman et al., “High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial E1694/S9512/C509801,” Journal of Clinical Oncology, vol. 19, no. 9, pp. 2370–2380, 2001. View at Scopus
  57. C. Kyi and M. A. Postow, “Checkpoint blocking antibodies in cancer immunotherapy,” FEBS Letters, vol. 588, pp. 368–376, 2014. View at Publisher · View at Google Scholar
  58. H. Ito, K. Murakami, and T. Yanagawa, “Effect of human leukocyte interferon on the metastatic lung tumor of osteosarcoma: case reports,” Cancer, vol. 46, no. 7, pp. 1562–1565, 1980. View at Scopus
  59. J. H. Edmonson, H. J. Long, S. Frytak, W. A. Smithson, and L. M. Itri, “Phase II study of recombinant alfa-2a interferon in patients with advanced bone sarcomas,” Cancer Treatment Reports, vol. 71, no. 7-8, pp. 747–748, 1987. View at Scopus
  60. L. Kager, U. Potschger, and S. Bielack, “Review of mifamurtide in the treatment of patients with osteosarcoma,” Therapeutics and Clinical Risk Management, vol. 6, pp. 279–286, 2010.
  61. P. A. Meyers, C. L. Schwartz, M. D. Krailo et al., “Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the children's oncology group,” Journal of Clinical Oncology, vol. 26, no. 4, pp. 633–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. A. J. Chou, E. S. Kleinerman, M. D. Krailo et al., “Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children's Oncology Group,” Cancer, vol. 115, no. 22, pp. 5339–5348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. P. M. Anderson, P. Meyers, E. Kleinerman et al., “Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments,” Pediatric Blood & Cancer, vol. 61, no. 2, pp. 238–244, 2014. View at Publisher · View at Google Scholar
  64. S. M. Pollack, E. T. Loggers, E. T. Rodler, C. Yee, and R. L. Jones, “Immune-based therapies for sarcoma,” Sarcoma, vol. 2011, Article ID 438940, 7 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. C. R. Müller, S. Smeland, H. C. F. Bauer, G. Sæter, and H. Strander, “Interferon-α as the only adjuvant treatment in high-grade osteosarcoma: long term results of the Karolinska Hospital series,” Acta Oncologica, vol. 44, no. 5, pp. 475–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Strander, H. C. Bauer, O. Brosjo et al., “Long-term adjuvant interferon treatment of human osteosarcoma. A pilot study,” Acta Oncologica, vol. 34, no. 6, pp. 877–880, 1995. View at Scopus
  67. K. Winkler, G. Beron, and R. Kotz, “Neoadjuvant chemotherapy for osteogenic sarcoma: results of a cooperative German/Austrian study,” Journal of Clinical Oncology, vol. 2, no. 6, pp. 617–624, 1984. View at Scopus
  68. S. S. Bielack, J. Whelan, N. Marina et al., “MAP plus maintenance pegylated interferon α-2b (MAPIfn) versus MAP alone in patients with resectable high-grade osteosarcoma and good histologic response to preoperative MAP: first results of the EURAMOS-1 “good response” randomization,” Journal of Clinical Oncology, vol. 31, supplement, abstract LBA10504, 2013.
  69. R. Dillman, N. Barth, S. Selvan et al., “Phase I/II trial of autologous tumor cell line-derived vaccines for recurrent or metastatic sarcomas,” Cancer Biotherapy and Radiopharmaceuticals, vol. 19, no. 5, pp. 581–588, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. J. D. Geiger, R. J. Hutchinson, L. F. Hohenkirk et al., “Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression,” Cancer Research, vol. 61, no. 23, pp. 8513–8519, 2001. View at Scopus
  71. C. L. Mackall, E. H. Rhee, E. J. Read et al., “A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas,” Clinical Cancer Research, vol. 14, no. 15, pp. 4850–4858, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Pritchard-Jones, I. Spendlove, C. Wilton et al., “Immune responses to the 105AD7 human anti-idiotypic vaccine after intensive chemotherapy, for osteosarcoma,” British Journal of Cancer, vol. 92, no. 8, pp. 1358–1365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. A. Suminoe, A. Matsuzaki, H. Hattori, Y. Koga, and T. Hara, “Immunotherapy with autologous dendritic cells and tumor antigens for children with refractory malignant solid tumors,” Pediatric Transplantation, vol. 13, no. 6, pp. 746–753, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Kawaguchi, T. Wada, K. Ida et al., “Phase I vaccination trial of SYT-SSX junction peptide in patients with disseminated synovial sarcoma,” Journal of Translational Medicine, vol. 3, article 1, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Kawaguchi, T. Tsukahara, K. Ida et al., “SYT-SSX breakpoint peptide vaccines in patients with synovial sarcoma: a study from the Japanese Musculoskeletal Oncology Group,” Cancer Science, vol. 103, no. 9, pp. 1625–1630, 2012. View at Publisher · View at Google Scholar
  76. J. D. Wolchok, B. Neyns, G. Linette et al., “Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study,” The Lancet Oncology, vol. 11, no. 2, pp. 155–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. R. G. Maki, A. A. Jungbluth, S. Gnjatic et al., “A pilot study of anti-CTLA4 antibody ipilimumab in patients with synovial sarcoma,” Sarcoma, vol. 2013, Article ID 168145, 8 pages, 2013. View at Publisher · View at Google Scholar
  78. C. Robert, L. Thomas, I. Bondarenko et al., “Ipilimumab plus dacarbazine for previously untreated metastatic melanoma,” The New England Journal of Medicine, vol. 364, no. 26, pp. 2517–2526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. E. A. Eisenhauer, P. Therasse, J. Bogaerts et al., “New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1),” European Journal of Cancer, vol. 45, no. 2, pp. 228–247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. J. D. Wolchok, A. Hoos, S. O'Day et al., “Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria,” Clinical Cancer Research, vol. 15, no. 23, pp. 7412–7420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. S. S. Agarwala, “Novel immunotherapies as potential therapeutic partners for traditional or targeted agents: cytotoxic T-lymphocyte antigen-4 blockade in advanced melanoma,” Melanoma Research, vol. 20, no. 1, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. A. V. Maker, G. Q. Phan, P. Attia et al., “Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study,” Annals of Surgical Oncology, vol. 12, no. 12, pp. 1005–1016, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. K. C. Lee, I. Ouwehand, A. L. Giannini, N. S. Thomas, N. J. Dibb, and M. J. Bijlmakers, “Lck is a key target of imatinib and dasatinib in T-cell activation,” Leukemia, vol. 24, no. 4, pp. 896–900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Ozao-Choy, M. Ge, J. Kao et al., “The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies,” Cancer Research, vol. 69, no. 6, pp. 2514–2522, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Kreutzman, V. Juvonen, V. Kairisto et al., “Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy,” Blood, vol. 116, no. 5, pp. 772–782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. P. Ray, N. Krishnamoorthy, T. B. Oriss, and A. Ray, “Signaling of c-kit in dendritic cells influences adaptive immunity,” Annals of the New York Academy of Sciences, vol. 1183, pp. 104–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Mustjoki, M. Ekblom, T. P. Arstila et al., “Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy,” Leukemia, vol. 23, no. 8, pp. 1398–1405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. V. P. Balachandran, M. J. Cavnar, S. Zeng et al., “Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido,” Nature Medicine, vol. 17, no. 9, pp. 1094–1100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Casares, L. Arribillaga, P. Sarobe et al., “CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-γ-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination,” Journal of Immunology, vol. 171, no. 11, pp. 5931–5939, 2003. View at Scopus
  90. H. Nishikawa, E. Jäger, G. Ritter, L. J. Old, and S. Gnjatic, “CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients,” Blood, vol. 106, no. 3, pp. 1008–1011, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. S. J. Prasad, K. J. Farrand, S. A. Matthews, J. H. Chang, R. S. McHugh, and F. Ronchese, “Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells,” Journal of Immunology, vol. 174, no. 1, pp. 90–98, 2005. View at Scopus
  92. J. Steitz, J. Brück, J. Lenz, J. Knop, and T. Tüting, “Depletion of CD25+ CD4+ T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon α-induced, CD8+ T-cell-dependent immune defense of B16 melanoma,” Cancer Research, vol. 61, no. 24, pp. 8643–8646, 2001. View at Scopus
  93. G. A. Rabinovich, D. Gabrilovich, and E. M. Sotomayor, “Immunosuppressive strategies that are mediated by tumor cells,” Annual Review of Immunology, vol. 25, pp. 267–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. S. L. Topalian, F. S. Hodi, J. R. Brahmer et al., “Safety, activity, and immune correlates of anti-PD-1 antibody in cancer,” The New England Journal of Medicine, vol. 366, no. 26, pp. 2443–2454, 2012. View at Publisher · View at Google Scholar
  95. J. D. Wolchok, H. Kluger, M. K. Callahan et al., “Nivolumab plus Ipilimumab in Advanced Melanoma,” The New England Journal of Medicine, vol. 369, no. 2, pp. 122–133, 2013. View at Publisher · View at Google Scholar
  96. R. G. Maki, “Soft tissue sarcoma as a model disease to examine cancer immunotherapy,” Current Opinion in Oncology, vol. 13, no. 4, pp. 270–274, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. C. S. Pukel, K. O. Lloyd, and L. R. Travassos, “GD3, A prominent ganglioside of human melanoma. Detection and characterization by mouse monoclonal antibody,” Journal of Experimental Medicine, vol. 155, no. 4, pp. 1133–1147, 1982. View at Scopus
  98. F. X. Real, A. N. Houghton, and A. P. Albino, “Surface antigens of melanomas and melanocytes defined by mouse monoclonal antibodies: specificity analysis and comparison of antigen expression in cultured cells and tissues,” Cancer Research, vol. 45, no. 9, pp. 4401–4411, 1985. View at Scopus
  99. W. B. Hamilton, F. Helling, K. O. Lloyd, and P. O. Livingston, “Ganglioside expression on human malignant melanoma assessed by quantitative immune thin-layer chromatography,” International Journal of Cancer, vol. 53, no. 4, pp. 566–573, 1993. View at Scopus
  100. S. Zhang, C. Cordon-Cardo, H. S. Zhang et al., “Selection of tumor antigens as targets for immune attack using immunohistochemistry: I. Focus on gangliosides,” International Journal of Cancer, vol. 73, pp. 42–49, 1997.
  101. N.-K. V. Cheung, U. M. Saarinen, and J. E. Neely, “Monoclonal antibodies to a glycolipid antigen on human neuroblastoma cells,” Cancer Research, vol. 45, no. 6, pp. 2642–2649, 1985. View at Scopus
  102. Z.-L. Wu, E. Schwartz, R. Seeger, and S. Ladisch, “Expression of GD2 ganglioside by untreated primary human neuroblastomas,” Cancer Research, vol. 46, no. 1, pp. 440–443, 1986. View at Scopus
  103. G. Schulz, D. A. Cheresh, N. M. Varki, A. Yu, L. K. Staffileno, and R. A. Reisfeld, “Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients,” Cancer Research, vol. 44, no. 12, part 1, pp. 5914–5920, 1984. View at Scopus
  104. S. Zhang, H. S. Zhang, C. Cordon-Cardo et al., “Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens,” International Journal of Cancer, vol. 73, pp. 50–56, 1997.
  105. S. Zhang, H. S. Zhang, C. Cordon-Cardo, G. Ragupathi, and P. O. Livingston, “Selection of tumor antigens as targets for immune attack using immunohistochemistry: protein antigens,” Clinical Cancer Research, vol. 4, no. 11, pp. 2669–2676, 1998. View at Scopus
  106. H. R. Chang, C. Cordon-Cardo, A. N. Houghton, N. K. Cheung, and M. F. Brennan, “Expression of disialogangliosides GD2 and GD3 on human soft tissue sarcomas,” Cancer, vol. 70, pp. 633–638, 1992.
  107. M. J. Scanlan, A. O. Gure, A. A. Jungbluth, L. J. Old, and Y.-T. Chen, “Cancer/testis antigens: an expanding family of targets for cancer immunotherapy,” Immunological Reviews, vol. 188, pp. 22–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  108. A. J. G. Simpson, O. L. Caballero, A. Jungbluth, Y.-T. Chen, and L. J. Old, “Cancer/testis antigens, gametogenesis and cancer,” Nature Reviews Cancer, vol. 5, no. 8, pp. 615–625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Ayyoub, R. N. Taub, M.-L. Keohan et al., “The frequent expression of cancer/testis antigens provides opportunities for immunotherapeutic targeting of sarcoma,” Cancer Immunity, vol. 4, article 7, 2004. View at Scopus
  110. A. A. Jungbluth, C. R. Antonescu, K. J. Busam et al., “Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7,” International Journal of Cancer, vol. 94, no. 2, pp. 252–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  111. A. A. Jungbluth, Y. T. Chen, E. Stockert et al., “Immunohistochemical analysis of NY-ESO-1 antigen expression in normal and malignant human tissues,” International Journal of Cancer, vol. 92, no. 6, pp. 856–860, 2001.
  112. K. M. Skubitz, S. Pambuccian, J. C. Carlos, and A. P. N. Skubitz, “Identification of heterogeneity among soft tissue sarcomas by gene expression profiles from different tumors,” Journal of Translational Medicine, vol. 6, article 23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. S. M. Pollack, A. A. Jungbluth, B. L. Hoch et al., “NY-ESO-1 is a ubiquitous immunotherapeutic target antigen for patients with myxoid/round cell liposarcoma,” Cancer, vol. 118, pp. 4564–4570, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. S. A. Rosenberg, “Cell transfer immunotherapy for metastatic solid cancer-what clinicians need to know,” Nature Reviews Clinical Oncology, vol. 8, no. 10, pp. 577–585, 2011. View at Publisher · View at Google Scholar · View at Scopus
  115. P. F. Robbins, R. A. Morgan, S. A. Feldman et al., “Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1,” Journal of Clinical Oncology, vol. 29, no. 7, pp. 917–924, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. P. G. Natali, M. R. Nicotra, A. Bigotti et al., “Selective changes in expression of HLA class I polymorphic determinants in human solid tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 17, pp. 6719–6723, 1989. View at Scopus
  117. M. L. Davila, R. Brentjens, X. Wang, I. Rivière, and M. Sadelain, “How do CARs work? Early insights from recent clinical studies targeting CD19,” Oncoimmunology, vol. 1, pp. 1577–1583, 2012.
  118. M. A. Pule, B. Savoldo, G. D. Myers et al., “Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma,” Nature Medicine, vol. 14, no. 11, pp. 1264–1270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. J. N. Kochenderfer, Z. Yu, D. Frasheri, N. P. Restifo, and S. A. Rosenberg, “Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells,” Blood, vol. 116, no. 19, pp. 3875–3886, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. M. H. Kershaw, J. A. Westwood, L. L. Parker et al., “A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer,” Clinical Cancer Research, vol. 12, no. 20, pp. 6106–6115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. C. H. J. Lamers, S. Sleijfer, A. G. Vulto et al., “Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience,” Journal of Clinical Oncology, vol. 24, no. 13, pp. e20–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. B. G. Till, M. C. Jensen, J. Wang et al., “Adoptive immunotherapy for indolent non-hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells,” Blood, vol. 112, no. 6, pp. 2261–2271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. J. R. Park, D. L. DiGiusto, M. Slovak et al., “Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma,” Molecular Therapy, vol. 15, no. 4, pp. 825–833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. D. R. Shaffer, C. R. Y. Cruz, and C. M. Rooney, “Adoptive T cell transfer,” in Cancer Immunotherapy, T. J. Curiel, Ed., pp. 47–70, Springer, New York, NY, USA, 2012. View at Publisher · View at Google Scholar
  125. Z. Eshhar, T. Waks, G. Gross, and D. G. Schindler, “Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 2, pp. 720–724, 1993. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Kobata, K. Agematsu, J. Kameoka, S. F. Schlossman, and C. Morimoto, “CD27 is a signal-transducing molecule involved in CD45RA+ naive T cell costimulation,” Journal of Immunology, vol. 153, no. 12, pp. 5422–5432, 1994. View at Scopus
  127. R. H. Schwartz, “Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy,” Cell, vol. 71, no. 7, pp. 1065–1068, 1992. View at Publisher · View at Google Scholar · View at Scopus
  128. T. H. Watts, “TNF/TNFR family members in costimulation of T cell responses,” Annual Review of Immunology, vol. 23, pp. 23–68, 2005. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Carpenito, M. C. Milone, R. Hassan et al., “Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3360–3365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. X.-S. Zhong, M. Matsushita, J. Plotkin, I. Riviere, and M. Sadelain, “Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3 kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication,” Molecular Therapy, vol. 18, no. 2, pp. 413–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. R. J. Brentjens, M. L. Davila, I. Riviere et al., “CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia,” Science Translational Medicine, vol. 5, no. 177, Article ID 177ra138, 2013. View at Publisher · View at Google Scholar