About this Journal Submit a Manuscript Table of Contents
Stem Cells International
Volume 2011 (2011), Article ID 547247, 6 pages
http://dx.doi.org/10.4061/2011/547247
Research Article

Vascular Guidance: Microstructural Scaffold Patterning for Inductive Neovascularization

1Department of Plastic, Reconstructive and Handsurgery, Klinikum rechts der Isar, Technische Universität München, 80333 München, Germany
2Department of Plastic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA
3Division of Plastic Surgery and Bioengineering, National University of Singapore, Singapore 119077
4Zentrum für Stammzellbiologie und Biotechnologie, Universität Leipzig, Germany
5Peninsula Medical School, University of Exeter, Exeter EX4 4QJ, UK

Received 4 August 2010; Accepted 18 August 2010

Academic Editor: Zongjin Li

Copyright © 2011 Daniel Muller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Ishaug-Riley, G. M. Crane-Kruger, M. J. Yaszemski, and A. G. Mikos, “Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers,” Biomaterials, vol. 19, no. 15, pp. 1405–1412, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Scheufler, D. J. Schaefer, C. Jaquiery et al., “Spatial and temporal patterns of bone formation in ectopically pre-fabricated, autologous cell-based engineered bone flaps in rabbits,” Journal of Cellular and Molecular Medicine, vol. 12, no. 4, pp. 1238–1249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Akay, M. A. Birch, and M. A. Bokhari, “Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro,” Biomaterials, vol. 25, no. 18, pp. 3991–4000, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. C. E. Holy, J. A. Fialkov, J. E. Davies, and M. S. Shoichet, “Use of a biomimetic strategy to engineer bone,” Journal of Biomedical Materials Research Part A, vol. 65, no. 4, pp. 447–453, 2003. View at Scopus
  5. D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh, and K. C. Tan, “Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling,” Journal of Biomedical Materials Research, vol. 55, no. 2, pp. 203–216, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-T. Schantz, S. H. Teoh, T. C. Lim, M. Endres, C. X. F. Lam, and D. W. Hutmacher, “Repair of calvarial defects with customized tissue-engineered bone grafts. I. Evaluation of osteogenesis in a three-dimensional culture system,” Tissue Engineering, vol. 9, no. 1, pp. S113–S126, 2003. View at Scopus
  7. H. Chim, D. W. Hutmacher, A. M. Chou et al., “A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering,” International Journal of Oral and Maxillofacial Surgery, vol. 35, no. 10, pp. 928–934, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Zein, D. W. Hutmacher, K. C. Tan, and S. H. Teoh, “Fused deposition modeling of novel scaffold architectures for tissue engineering applications,” Biomaterials, vol. 23, no. 4, pp. 1169–1185, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. T. Schantz and K. W. Ng, A Manual for Primary Human Cell Culture, World Scientific Publishing, River Edge, NJ, USA, 2004.
  10. D. J. Mooney and A. G. Mikos, “Growing new organs,” Scientific American, vol. 280, no. 4, pp. 60–65, 1999. View at Scopus
  11. J. H. Folkman and M. Hochberg, “Self regulation of growth in three dimensions,” Journal of Experimental Medicine, vol. 138, no. 4, pp. 745–753, 1973. View at Scopus
  12. W. A. Morrison, E. Dvir, K. Doi, J. V. Hurley, M. J. Hickey, and B. M. O'Brien, “Prefabrication of thin transferable axial-pattern skin flaps: an experimental study in rabbits,” British Journal of Plastic Surgery, vol. 43, no. 6, pp. 645–654, 1990. View at Scopus
  13. R. K. Khouri, J. Upton, and W. W. Shaw, “Prefabrication of composite free flaps through staged microvascular transfer: an experimental and clinical study,” Plastic and Reconstructive Surgery, vol. 87, no. 1, pp. 108–115, 1991. View at Scopus
  14. W. A. Morrison, “Clinical applications and technical limitations of prefabricated flaps,” Plastic and Reconstructive Surgery, vol. 99, no. 2, pp. 378–385, 1997. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Tanaka, K.-C. Sung, A. Tsutsumi, S. Ohba, K. Ueda, and W. A. Morrison, “Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation?” Plastic and Reconstructive Surgery, vol. 112, no. 6, pp. 1636–1644, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Tanaka, K.-C. Sung, M. Fumimoto et al., “Prefabricated engineered skin flap using an arteriovenous vascular bundle as a vascular carrier in rabbits,” Plastic and Reconstructive Surgery, vol. 117, no. 6, pp. 1860–1875, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Lokmic, F. Stillaert, W. A. Morrison, E. W. Thompson, and G. M. Mitchell, “An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct,” The FASEB Journal, vol. 21, no. 2, pp. 511–522, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. O. P. Hofer, K. M. Knight, J. J. Cooper-White et al., “Increasing the volume of vascularized tissue formation in engineered constructs: an experimental study in rats,” Plastic and Reconstructive Surgery, vol. 111, no. 3, pp. 1186–1192, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. Dolderer, K. M. Abberton, E. W. Thompson et al., “Spontaneous large volume adipose tissue generation from a vascularized pedicled fat flap inside a chamber space,” Tissue Engineering, vol. 13, no. 4, pp. 673–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Carraro, W.-M. Hsu, K. M. Kulig et al., “In vitro analysis of a hepatic device with intrinsic microvascular-based channels,” Biomedical Microdevices, vol. 10, no. 6, pp. 795–805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Warnke, I. Springer, P. J. Wiltfang et al., “Growth and transplantation of a custom vascularised bone graft in a man,” The Lancet, vol. 364, no. 9436, pp. 766–770, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J.-T. Schantz, H. Chim, and M. Whiteman, “Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds,” Tissue Engineering, vol. 13, no. 11, pp. 2615–2624, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Chim, J.-T. Schantz, and A. K. Gosain, “Beyond the vernacular: ew sources of cells for bone tissue engineering,” Plastic and Reconstructive Surgery, vol. 122, no. 3, pp. 755–764, 2008. View at Publisher · View at Google Scholar · View at Scopus