About this Journal Submit a Manuscript Table of Contents
Stem Cells International
Volume 2011 (2011), Article ID 907961, 7 pages
http://dx.doi.org/10.4061/2011/907961
Review Article

Technical Challenges in the Derivation of Human Pluripotent Cells

Embryo Technology and Stem Cell Research Center, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand

Received 15 March 2011; Accepted 25 April 2011

Academic Editor: Perng-chih Shen

Copyright © 2011 Parinya Noisa and Rangsun Parnpai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, et al., “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998.
  2. D. Solter and B. B. Knowles, “Immunosurgery of mouse blastocyst,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 12, pp. 5099–5102, 1975. View at Scopus
  3. B. E. Reubinoff, M. F. Pera, C. Y. Fong, A. Trounson, and A. Bongso, “Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro,” Nature Biotechnology, vol. 18, no. 4, pp. 399–404, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. Itskovitz-Eldor, M. Schuldiner, D. Karsenti et al., “Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers,” Molecular Medicine, vol. 6, no. 2, pp. 88–95, 2000. View at Scopus
  5. M. W. Lensch, T. M. Schlaeger, L. I. Zon, and G. Q. Daley, “Teratoma formation assays with human embryonic stem cells: a rationale for one type of human-animal chimera,” Cell Stem Cell, vol. 1, no. 3, pp. 253–258, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. Tzukerman, T. Rosenberg, Y. Ravel, I. Reiter, R. Coleman, and K. Skorecki, “An experimental platform for studying growth and invasiveness of tumor cells within teratomas derived from human embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13507–13512, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. Nichols, B. Zevnik, K. Anastassiadis et al., “Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4,” Cell, vol. 95, no. 3, pp. 379–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. D. C. Hay, L. Sutherland, J. Clark, and T. Burdon, “Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells,” Stem Cells, vol. 22, no. 2, pp. 225–235, 2004. View at Scopus
  9. H. Yuan, N. Corbi, C. Basilico, and L. Dailey, “Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3,” Genes and Development, vol. 9, no. 21, pp. 2635–2645, 1995. View at Scopus
  10. E. Ben-Shushan, J. R. Thompson, L. J. Gudas, and Y. Bergman, “Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site,” Molecular and Cellular Biology, vol. 18, no. 4, pp. 1866–1878, 1998. View at Scopus
  11. H. Niwa, J. I. Miyazaki, and A. G. Smith, “Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells,” Nature Genetics, vol. 24, no. 4, pp. 372–376, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. L. Liu and R. M. Roberts, “Silencing of the gene for the β subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4,” The Journal of Biological Chemistry, vol. 271, no. 28, pp. 16683–16689, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Fong, K. A. Hohenstein, and P. J. Donovan, “Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells,” Stem Cells, vol. 26, no. 8, pp. 1931–1938, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. I. Chambers, D. Colby, M. Robertson et al., “Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells,” Cell, vol. 113, no. 5, pp. 643–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Darr, Y. Mayshar, and N. Benvenisty, “Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features,” Development, vol. 133, no. 6, pp. 1193–1201, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. N. Sato, L. Meijer, L. Skaltsounis, P. Greengard, and A. H. Brivanlou, “Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor,” Nature Medicine, vol. 10, no. 1, pp. 55–63, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. D. Sekkaï, G. Gruel, M. Herry et al., “Microarray analysis of LIF/Stat3 transcriptional targets in embryonic stem cells,” Stem Cells, vol. 23, no. 10, pp. 1634–1642, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. R. Brandenberger, H. Wei, S. Zhang et al., “Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation,” Nature Biotechnology, vol. 22, no. 6, pp. 707–716, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. P. Dvorak and A. Hampl, “Basic fibroblast growth factor and its receptors in human embryonic stem cells,” Folia Histochemica et Cytobiologica, vol. 43, no. 4, pp. 203–208, 2005. View at Scopus
  21. L. Vallier, M. Alexander, and R. A. Pedersen, “Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells,” Journal of Cell Science, vol. 118, no. 19, pp. 4495–4509, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. M. Richards, C. Y. Fong, W. K. Chan, P. C. Wong, and A. Bongso, “Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells,” Nature Biotechnology, vol. 20, no. 9, pp. 933–936, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. C. Xu, E. Rosler, J. Jiang et al., “Basic fibroblast growth factor supports undifferentiated human embryonic stem cell growth without conditioned medium,” Stem Cells, vol. 23, no. 3, pp. 315–323, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. R. H. Xu, R. M. Peck, D. S. Li, X. Feng, T. Ludwig, and J. A. Thomson, “Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells,” Nature Methods, vol. 2, no. 3, pp. 185–190, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. G. M. Beattie, A. D. Lopez, N. Bucay et al., “Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers,” Stem Cells, vol. 23, no. 4, pp. 489–495, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. L. Vallier, S. Mendjan, S. Brown et al., “Activin/Nodal signalling maintains pluripotency by controlling Nanog expression,” Development, vol. 136, no. 8, pp. 1339–1349, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. Z. A. Hewitt, K. J. Amps, and H. D. Moore, “Derivation of GMP raw materials for use in regenerative medicine: HESC-based therapies, progress toward clinical application,” Clinical Pharmacology and Therapeutics, vol. 82, no. 4, pp. 448–452, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. L. Li, M. L. Baroja, A. Majumdar et al., “Human embryonic stem cells possess immune-privileged properties,” Stem Cells, vol. 22, no. 4, pp. 448–456, 2004. View at Scopus
  29. P. Menendez, C. Bueno, L. Wang, and M. Bhatia, “Human embryonic stem cells: potential tool for achieving immunotolerance?” Stem Cell Reviews, vol. 1, no. 2, pp. 151–158, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. E. Stephenson, C. M. Ogilvie, H. Patel et al., “Safety paradigm: genetic evaluation of therapeutic grade human embryonic stem cells,” Journal of the Royal Society Interface, vol. 7, supplement 6, pp. S677–S688, 2010. View at Publisher · View at Google Scholar · View at PubMed
  31. Z. Beyhan, A. E. Iager, and J. B. Cibelli, “Interspecies nuclear transfer: implications for embryonic stem cell biology,” Cell Stem Cell, vol. 1, no. 5, pp. 502–512, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. K. H. S. Campbell, P. Fisher, W. C. Chen et al., “Somatic cell nuclear transfer: past, present and future perspectives,” Theriogenology, vol. 68, no. 1, pp. S214–S231, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. G. S. Lee, H. S. Kim, S. H. Hyun et al., “Improved developmental competence of cloned porcine embryos with different energy supplements and chemical activation,” Molecular Reproduction and Development, vol. 66, no. 1, pp. 17–23, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. T. Hiiragi and D. Solter, “Reprogramming is essential in nuclear transfer,” Molecular Reproduction and Development, vol. 70, no. 4, pp. 417–421, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. D. N. Wells, P. M. Misica, A. M. Day, and H. R. Tervit, “Production of cloned lambs from an established embryonic cell line: a comparison between in vivo- and in vitro-matured cytoplasts,” Biology of Reproduction, vol. 57, no. 2, pp. 385–393, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Roh, H. Shim, W. S. Hwang, and J. T. Yoon, “In vitro development of green fluorescent protein (GFP) transgenic bovine embryos after nuclear transfer using different cell cycles and passages of fetal fibroblasts,” Reproduction, Fertility and Development, vol. 12, no. 1-2, pp. 1–6, 2000.
  37. G. Almouzni and A. P. Wolffe, “Replication-coupled chromatin assembly is required for the repression of basal transcription in vivo,” Genes and Development, vol. 7, no. 10, pp. 2033–2047, 1993. View at Scopus
  38. D. J. Keating, “Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases,” Journal of Neurochemistry, vol. 104, no. 2, pp. 298–305, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. Brandon, P. Baldi, and D. C. Wallace, “Mitochondrial mutations in cancer,” Oncogene, vol. 25, no. 34, pp. 4647–4662, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. A. M. Schaefer, R. McFarland, E. L. Blakely et al., “Prevalence of mitochondrial DNA disease in adults,” Annals of Neurology, vol. 63, no. 1, pp. 35–39, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. M. Tachibana, M. Sparman, H. Sritanaudomchai et al., “Mitochondrial gene replacement in primate offspring and embryonic stem cells,” Nature, vol. 461, no. 7262, pp. 367–372, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. E. Einsiedel, S. Premji, R. Geransar, N. C. Orton, T. Thavaratnam, and L. K. Bennett, “Diversity in public views toward stem cell sources and policies,” Stem Cell Reviews and Reports, vol. 5, no. 2, pp. 102–107, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. J. A. Byrne, D. A. Pedersen, L. L. Clepper et al., “Producing primate embryonic stem cells by somatic cell nuclear transfer,” Nature, vol. 450, no. 7169, pp. 497–502, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. D. Solter, “Mammalian cloning: advances and limitations,” Nature Reviews Genetics, vol. 1, no. 3, pp. 199–207, 2000. View at Scopus
  45. D. Egli, J. Rosains, G. Birkhoff, and K. Eggan, “Developmental reprogramming after chromosome transfer into mitotic mouse zygotes,” Nature, vol. 447, no. 7145, pp. 679–685, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. J. A. Laing, “Inter-species embryos and human clones: issues of free movement and gestation,” European Journal of Health Law, vol. 16, no. 1, pp. 69–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. C. A. Cowan, J. Atienza, D. A. Melton, and K. Eggan, “Developmental Biology: nuclear reprogramming of somatic cells after fusion with human embryonic stem cells,” Science, vol. 309, no. 5739, pp. 1369–1373, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. J. T. Do and H. R. Schöler, “Nuclei of embryonic stem cells reprogram somatic cells,” Stem Cells, vol. 22, no. 6, pp. 941–949, 2004. View at Scopus
  49. S. Tada, T. Tada, L. Lefebvre, S. C. Barton, and M. A. Surani, “Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells,” EMBO Journal, vol. 16, no. 21, pp. 6510–6520, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. Flasza, A. F. Shering, K. Smith, P. W. Andrews, P. Talley, and P. A. Johnson, “Reprogramming in inter-species embryonal carcinoma-somatic cell hybrids induces expression of pluripotency and differentiation markers,” Cloning and Stem Cells, vol. 5, no. 4, pp. 339–354, 2003. View at Scopus
  51. J. Yu, M. A. Vodyanik, P. He, I. I. Slukvin, and J. A. Thomson, “Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion,” Stem Cells, vol. 24, no. 1, pp. 168–176, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. Q. L. Ying, J. Nichols, E. P. Evans, and A. G. Smith, “Changing potency by spontaneous fusion,” Nature, vol. 416, no. 6880, pp. 545–548, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. N. Kosaka, M. Kodama, H. Sasaki et al., “FGF-4 regulates neural progenitor cell proliferation and neuronal differentiation,” The FASEB Journal, vol. 20, no. 9, pp. 1484–1485, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. N. Strelchenko, V. Kukharenko, A. Shkumatov, O. Verlinsky, A. Kuliev, and Y. Verlinsky, “Reprogramming of human somatic cells by embryonic stem cell cytoplast,” Reproductive BioMedicine Online, vol. 12, no. 1, article 2071, pp. 107–111, 2006. View at Scopus
  55. I. Wilmut, A. E. Schnieke, J. McWhir, A. J. Kind, and K. H. S. Campbell, “Viable offspring derived from fetal and adult mammalian cells,” Nature, vol. 385, no. 6619, pp. 810–813, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. H. Kimura, M. Tada, N. Nakatsuji, and T. Tada, “Histone code modifications on pluripotential nuclei of reprogrammed somatic cells,” Molecular and Cellular Biology, vol. 24, no. 13, pp. 5710–5720, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. M. Wernig, A. Meissner, R. Foreman et al., “In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,” Nature, vol. 448, no. 7151, pp. 318–324, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. K. Kim, A. Doi, B. Wen et al., “Epigenetic memory in induced pluripotent stem cells,” Nature, vol. 467, no. 7313, pp. 285–290, 2010. View at Publisher · View at Google Scholar · View at PubMed
  60. K. Woltjen, I. P. Michael, P. Mohseni et al., “PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells,” Nature, vol. 458, no. 7239, pp. 766–770, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. K. Kaji, K. Norrby, A. Paca, M. Mileikovsky, P. Mohseni, and K. Woltjen, “Virus-free induction of pluripotency and subsequent excision of reprogramming factors,” Nature, vol. 458, no. 7239, pp. 771–775, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. K. Saha and R. Jaenisch, “Technical challenges in using human induced pluripotent stem cells to model disease,” Cell Stem Cell, vol. 5, no. 6, pp. 584–595, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. N. Maherali and K. Hochedlinger, “Guidelines and techniques for the generation of induced pluripotent stem cells,” Cell Stem Cell, vol. 3, no. 6, pp. 595–605, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. H. Zhou, S. Wu, J. Y. Joo et al., “Generation of induced pluripotent stem cells using recombinant proteins,” Cell Stem Cell, vol. 4, no. 5, pp. 381–384, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. L. Warren, P. D. Manos, T. Ahfeldt et al., “Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA,” Cell Stem Cell, vol. 7, no. 5, pp. 618–630, 2010. View at Publisher · View at Google Scholar · View at PubMed
  66. S. Simonsson and J. Gurdon, “DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei,” Nature Cell Biology, vol. 6, no. 10, pp. 984–990, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. N. Bhutani, J. J. Brady, M. Damian, A. Sacco, S. Y. Corbel, and H. M. Blau, “Reprogramming towards pluripotency requires AID-dependent DNA demethylation,” Nature, vol. 463, no. 7284, pp. 1042–1047, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. I. H. Park, N. Arora, H. Huo et al., “Disease-specific induced pluripotent stem cells,” Cell, vol. 134, no. 5, pp. 877–886, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. G. Q. Daley, “Stem cells: roadmap to the clinic,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 8–10, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus