About this Journal Submit a Manuscript Table of Contents
Stem Cells International
Volume 2011 (2011), Article ID 943216, 10 pages
http://dx.doi.org/10.4061/2011/943216
Review Article

Could Metabolic Syndrome, Lipodystrophy, and Aging Be Mesenchymal Stem Cell Exhaustion Syndromes?

1Tissue Engineering, Regenerative Medicine and Cell Therapies Laboratory, CUCAIBA, Ministry of Health, Province of Buenos Aires, 1900 La Plata, Argentina
2Lipid Clinic, Division of Endocrinology, Hospital Clinic, 08036 Barcelona, Spain
3Division of Endometrial Regenerative Stem Cells, Medistem Inc., San Diego, CA 92122, USA
4Division of Cardiothoracic Surgery, University of Utah, Salt Lake City, UT 84132, USA
5Division Skin Bank, Burns Hospital, Buenos Aires City, C1424BSD, Argentina
6LNK Chemsolutions, Division of Nanotechnology, Lincoln, NE 68521, USA
7Bio-Target, Division of Nanotechnology, NE 68339, USA
8The University of Chicago, Division of Nanotechnology, Chicago, IL 60637, USA
9Nanovogue Inc., Division of Intelligent Matrices, Chicago, IL 60126-2731, USA
10INCUCAI, Presidency, Ministry of Health, 2250-C1428BAJ Buenos Aires, Argentina
11Vrije Universiteit, Burns Division, 1081 HV Amsterdam, The Netherlands

Received 15 August 2010; Accepted 22 March 2011

Academic Editor: Jozef Bartunek

Copyright © 2011 Eduardo Mansilla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Saito, H. Iso, Y. Kokubo, M. Inoue, and S. Tsugane, “Metabolic syndrome and all-cause and cardiovascular disease mortality: Japan Public Health Center-based Prospective (JPHC) Study,” Circulation Journal, vol. 73, no. 5, pp. 878–884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Zimmet and G. Alberti, “The metabolic syndrome: progress towards one definition for an epidemic of our time,” Nature Clinical Practice Endocrinology and Metabolism, vol. 4, no. 5, p. 239, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. G. M. Reaven, “The metabolic syndrome: requiescat in Pace,” Clinical Chemistry, vol. 51, no. 6, pp. 931–938, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. M. A. Pappolla, T. K. Bryant-Thomas, D. Herbert et al., “Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology,” Neurology, vol. 61, no. 2, pp. 199–205, 2003. View at Scopus
  5. M. Junyent, R. Gilabert, E. Jarauta et al., “Impact of low-density lipoprotein receptor mutational class on carotid atherosclerosis in patients with familial hypercholesterolemia,” Atherosclerosis, vol. 208, no. 2, pp. 437–441, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. R. Ceska, “Clinical implications of the metabolic syndrome,” Diabetes and Vascular Disease Research, vol. 4, no. 3, pp. S2–S4, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. P. Zimmet, D. Magliano, Y. Matsuzawa, G. Alberti, and J. Shaw, “The metabolic syndrome: a global public health problem and a new definition,” Journal of Atherosclerosis and Thrombosis, vol. 12, no. 6, pp. 295–300, 2005. View at Scopus
  8. J. Capeau, “From lipodystrophy and insulin resistance to metabolic syndrome: HIV infection, treatment and aging,” Current Opinion in HIV and AIDS, vol. 2, no. 4, pp. 247–252, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. P. W. Stacpoole, J. Alig, L. L. Kilgore et al., “Lipodystrophic diabetes mellitus. Investigations of lipoprotein metabolism and the effects of omega-3 fatty acid administration in two patients,” Metabolism: Clinical and Experimental, vol. 37, no. 10, pp. 944–951, 1988. View at Scopus
  10. J. Capeau, J. Magré, O. Lascols et al., “Diseases of adipose tissue: genetic and acquired lipodystrophies,” Biochemical Society Transactions, vol. 33, no. 5, pp. 1073–1077, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. K. A. Lichtenstein, “Redefining lipodystrophy syndrome: risks and impact on clinical decision making,” Journal of Acquired Immune Deficiency Syndromes, vol. 39, no. 4, pp. 395–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. V. Simha and A. Garg, “Inherited lipodystrophies and hypertriglyceridemia,” Current Opinion in Lipidology, vol. 20, no. 4, pp. 300–308, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. Capeau, C. Vigouroux, J. Magré, O. Lascols, M. Caron, and J. P. Bastard, “Lipodystrophic syndromes: congenital or acquired diseases of adipose tissue,” Comptes Rendus - Biologies, vol. 329, no. 8, pp. 639–652, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. E. Urich, “Insulin resistance: the adipose tissue in the focus,” Orvosi Hetilap, vol. 146, no. 43, pp. 2199–2207, 2005. View at Scopus
  15. S. Virtue and A. Vidal-Puig, “Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome—an allostatic perspective,” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 338–349, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. E. Arner, P. O. Westermark, K. L. Spalding et al., “Adipocyte turnover: relevance to human adipose tissue morphology,” Diabetes, vol. 59, no. 1, pp. 105–109, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. T. T. Tran and C. R. Kahn, “Transplantation of adipose tissue and stem cells: role in metabolism and disease,” Nature Reviews Endocrinology, vol. 6, no. 4, pp. 195–213, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. S. Perrini, A. Cignarelli, R. Ficarella, L. Laviola, and F. Giorgino, “Human adipose tissue precursor cells: a new factor linking regulation of fat mass to obesity and type 2 diabetes?” Archives of Physiology and Biochemistry, vol. 115, no. 4, pp. 218–226, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. K. W. Park, D. S. Halperin, and P. Tontonoz, “Before they were fat: adipocyte progenitors,” Cell Metabolism, vol. 8, no. 6, pp. 454–457, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. K. M. Hong, M. D. Burdick, R. J. Philips, D. Heber, and R. M. Strieter, “Characterization of human fibrocytes as circulating adipocyte progenitors and the formation of human adipose tissue in SCID mice,” FASEB Journal, vol. 19, no. 14, pp. 2029–2031, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. Cinti, “Adipocyte differentiation and transdifferentiation: plasticity of the adipose organ,” Journal of Endocrinological Investigation, vol. 25, no. 10, pp. 823–835, 2002. View at Scopus
  22. S. S. Tholpady, A. J. Katz, and R. C. Ogle, “Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro,” Anatomical Record, Part A, vol. 272, no. 1, pp. 398–402, 2003. View at Scopus
  23. M. Laudes, “Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes,” Journal of Molecular Endocrinology, vol. 46, no. 2, pp. R65–R72, 2011. View at Publisher · View at Google Scholar · View at PubMed
  24. S. S. Hei, “Minireview: Pref-1: role in adipogenesis and mesenchymal cell fate,” Molecular Endocrinology, vol. 23, no. 11, pp. 1717–1725, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. H. Mizuno, Y. Itoi, S. Kawahara, R. Ogawa, S. Akaishi, and H. Hyakusoku, “In vivo adipose tissue regeneration by adipose-derived stromal cells isolated from GFP transgenic mice,” Cells Tissues Organs, vol. 187, no. 3, pp. 177–185, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. C. Elabd, C. Chiellini, M. Carmona et al., “Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes,” Stem Cells, vol. 27, no. 11, pp. 2753–2760, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. W. Tang, D. Zeve, J. M. Suh et al., “White fat progenitor cells reside in the adipose vasculature,” Science, vol. 322, no. 5901, pp. 583–586, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. S. M. Majka, K. E. Fox, J. C. Psilas et al., “De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 33, pp. 14781–14786, 2010. View at Publisher · View at Google Scholar · View at PubMed
  30. T. J. Schulz, T. L. Huang, T. T. Tran et al., “Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 1, pp. 143–148, 2011. View at Publisher · View at Google Scholar · View at PubMed
  31. D. Langin, “Recruitment of brown fat and conversion of white into brown adipocytes: strategies to fight the metabolic complications of obesity?” Biochimica et Biophysica Acta, vol. 1801, no. 3, pp. 372–376, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. J. A. Timmons and B. K. Pedersen, “The importance of brown adipose tissue,” New England Journal of Medicine, vol. 361, no. 4, pp. 415–416, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. H. A. Jacene and R. L. Wahl, “The importance of brown adipose tissue,” New England Journal of Medicine, vol. 361, no. 4, pp. 417–418, 2009. View at Scopus
  34. D. L. Morganstein, P. Wu, M. R. Mane, N. M. Fisk, R. White, and M. G. Parker, “Human fetal mesenchymal stem cells differentiate into brown and white adipocytes: a role for ERRα in human UCP1 expression,” Cell Research, vol. 20, no. 4, pp. 434–444, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Shah, J. Ulm, Z. C. Sifri, A. M. Mohr, and D. H. Livingston, “Mobilization of bone marrow cells to the site of injury is necessary for wound healing,” Journal of Trauma, vol. 67, no. 2, pp. 315–321, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. T. Glaros, M. Larsen, and L. Li, “Macrophages and fibroblasts during inflammation, tissue damage and organ injury,” Frontiers in Bioscience, vol. 14, pp. 3988–3993, 2009. View at Scopus
  37. I. Jialal, G. P. Fadini, K. Pollock, and S. Devaraj, “Circulating levels of endothelial progenitor cell mobilizing factors in the metabolic syndrome,” American Journal of Cardiology, vol. 106, no. 11, pp. 1606–1608, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. G. L. Hoetzer, G. P. Van Guilder, H. M. Irmiger, R. S. Keith, B. L. Stauffer, and C. A. DeSouza, “Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men,” Journal of Applied Physiology, vol. 102, no. 3, pp. 847–852, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. G. P. Fadini, S. V. De Kreutzenberg, A. Coracina et al., “Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk,” European Heart Journal, vol. 27, no. 18, pp. 2247–2255, 2006. View at Publisher · View at Google Scholar · View at PubMed
  40. C. M. Kolf, E. Cho, and R. S. Tuan, “Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation,” Arthritis Research and Therapy, vol. 9, no. 1, article no. 204, 2007. View at Publisher · View at Google Scholar · View at PubMed
  41. Y. Shi, G. Hu, J. Su et al., “Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair,” Cell Research, vol. 20, no. 5, pp. 510–518, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. W. Qian, XI. Li, Y. Y. Zhang et al., “Characterization of adipocyte differentiation from human mesenchymal stem cells in bone marrow,” BMC Developmental Biology, vol. 10, article no. 47, 2010. View at Publisher · View at Google Scholar · View at PubMed
  43. C. De Bari, F. Dell'Accio, J. Vanlauwe et al., “Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis,” Arthritis and Rheumatism, vol. 54, no. 4, pp. 1209–1221, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. E. Mansilla, H. Drago, G. H. Marin, F. Sturla, R. Ibar, and C. Soratti, “Mesenchymal stem cells, could they be the link between tolerance and regeneration?” Burns, vol. 33, no. 2, pp. 137–138, 2007. View at Publisher · View at Google Scholar · View at PubMed
  45. J. A. Kode, S. Mukherjee, M. V. Joglekar, and A. A. Hardikar, “Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration,” Cytotherapy, vol. 11, no. 4, pp. 377–391, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. C. A. Gregory, J. Ylostalo, and D. J. Prockop, “Adult bone marrow stem/progenitor cells (MSCs) are preconditioned by microenvironmental “niches” in culture: a two-stage hypothesis for regulation of MSC fate,” Science's STKE, vol. 2005, no. 294, p. pe37, 2005. View at Scopus
  47. N. Carlesso and A. A. Cardoso, “Stem cell regulatory niches and their role in normal and malignant hematopoiesis,” Current Opinion in Hematology, vol. 17, no. 4, pp. 281–286, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. Z. Zhong, A. N. Patel, T. E. Ichim et al., “Feasibility investigation of allogeneic endometrial regenerative cells,” Journal of Translational Medicine, vol. 7, article no. 15, 2009. View at Publisher · View at Google Scholar · View at PubMed
  49. G. Q. Jia, M. M. Zhang, P. Yang, J. Q. Cheng, Y. R. Lu, and X. T. Wu, “Effects of the different culture and isolation methods on the growt, Proliferation and biology characteristics of rat bone marrow mesenchymal stem cells,” Sichuan Da Xue Xue Bao Yi Xue Ban, vol. 40, no. 4, pp. 719–723, 2009. View at Scopus
  50. L. da Silva Meirelles, P. C. Chagastelles, and N. B. Nardi, “Mesenchymal stem cells reside in virtually all post-natal organs and tissues,” Journal of Cell Science, vol. 119, no. 11, pp. 2204–2213, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. A. Chapel, J. M. Bertho, M. Bensidhoum et al., “Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome,” Journal of Gene Medicine, vol. 5, no. 12, pp. 1028–1038, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. E. Mansilla, G. H. Marín, H. Drago et al., “Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine,” Transplantation Proceedings, vol. 38, no. 3, pp. 967–969, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. H. Hemeda, M. Jakob, A. K. Ludwig, B. Giebel, S. Lang, and S. Brandau, “Interferon-γ and tumor necrosis factor-α differentially affect cytokine expression and migration properties of mesenchymal stem cells,” Stem Cells and Development, vol. 19, no. 5, pp. 693–706, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. N. Barbarroja, R. López-Pedrera, M. D. Mayas et al., “The obese healthy paradox: is inflammation the answer?” Biochemical Journal, vol. 430, no. 1, pp. 141–149, 2010. View at Publisher · View at Google Scholar · View at PubMed
  55. A. A. Rizvi, “Hypertension, obesity, and inflammation: the complex designs of a deadly trio,” Metabolic Syndrome and Related Disorders, vol. 8, no. 4, pp. 287–294, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. B. G. Gálvez, N. San Martín, and C. Rodríguez, “TNF-alpha is required for the attraction of mesenchymal precursors to white adipose tissue in Ob/ob mice,” PLoS One, vol. 4, no. 2, article e4444, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. M. J. Peterson, M. C. Morey, C. Giuliani et al., “Walking in old age and development of metabolic syndrome: the health, aging, and body composition study,” Metabolic Syndrome and Related Disorders, vol. 8, no. 4, pp. 317–322, 2010. View at Publisher · View at Google Scholar · View at PubMed
  58. E. V. Tereshina, “Metabolic abnormalities as a basis for age-dependent diseases and aging? State of the art,” Advances in Gerontology, vol. 22, no. 1, pp. 129–138, 2009. View at Scopus
  59. J. Halaschek-Wiener and A. Brooks-Wilson, “Progeria of stem cells: stem cell exhaustion in Hutchinson-Gilford progeria syndrome,” Journals of Gerontology. Series A, vol. 62, no. 1, pp. 3–8, 2007. View at Scopus
  60. J. Mazereeuw-Hautier, L. C. Wilson, S. Mohammed et al., “Hutchinson-Gilford progeria syndrome: clinical findings in three patients carrying the G608G mutation in LMNA and review of the literature,” British Journal of Dermatology, vol. 156, no. 6, pp. 1308–1314, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. H. D. M. Coutinho, V. S. Falcão-Silva, and G. F. Gonçalves, “Hutchinson-gilford progeria syndrome: clinical and genetical traits,” Panminerva Medica, vol. 51, no. 2, pp. 134–135, 2009. View at Scopus
  62. I. Russo-Menna and C. Arancibias, “The Hutchinson-Gilford Progeria Syndrome: a case report,” Minerva Anestesiologica, vol. 76, no. 2, pp. 151–154, 2010. View at Scopus
  63. H. D. M. Coutinho, V. S. Falcão-Silva, G. Gonçalves, and R. da Nóbrega, “Molecular ageing in progeroid syndromes: Hutchinson-Gilford progeria syndrome as a model,” Immunity and Ageing, vol. 6, article no. 4, 2009. View at Publisher · View at Google Scholar · View at PubMed
  64. M. A. Merideth, L. B. Gordon, S. Clauss et al., “Phenotype and course of Hutchinson-Gilford progeria syndrome,” New England Journal of Medicine, vol. 358, no. 6, pp. 592–604, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. K. N. Dahl, P. Scaffidi, M. F. Islam, A. G. Yodh, K. L. Wilson, and T. Misteli, “Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 27, pp. 10271–10276, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. J. Candelario, S. Sudhakar, S. Navarro, S. Reddy, and L. Comai, “Perturbation of wild-type lamin A metabolism results in a progeroid phenotype,” Aging Cell, vol. 7, no. 3, pp. 355–367, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. P. Scaffidi and T. Misteli, “Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing,” Nature Cell Biology, vol. 10, no. 4, pp. 452–459, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. J. L. V. Broers, F. C. S. Ramaekers, G. Bonne, R. Ben Yaou, and C. J. Hutchison, “Nuclear lamins: laminopathies and their role in premature ageing,” Physiological Reviews, vol. 86, no. 3, pp. 967–1008, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. E. Fuchs, “The tortoise and the hair: slow-cycling cells in the stem cell race,” Cell, vol. 137, no. 5, pp. 811–819, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. J. M. Bridger and I. R. Kill, “Aging of Hutchinson-Gilford progeria syndrome fibroblasts is characterised by hyperproliferation and increased apoptosis,” Experimental Gerontology, vol. 39, no. 5, pp. 717–724, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. J. W. Hou, “Natural course of neonatal progeroid syndrome,” Pediatrics and Neonatology, vol. 50, no. 3, pp. 102–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. S. L. Ding and C. Y. Shen, “Model of human aging: recent findings on Werner's and Hutchinson-Gilford progeria syndromes,” Clinical Interventions in Aging, vol. 3, no. 3, pp. 431–444, 2008. View at Scopus
  73. W. B. Ershler, L. Ferrucci, and D. L. Longo, “Hutchinson-Gilford progeria syndrome,” New England Journal of Medicine, vol. 358, no. 22, pp. 2409–2410, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. B. Korf, “Focus on research: Hutchinson-Gilford progeria syndrome, aging, and the nuclear lamina,” New England Journal of Medicine, vol. 358, no. 6, pp. 552–554, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. R. S. C. Friedman and D. S. Krause, “Regeneration and repair: new findings in stem cell research and aging,” Annals of the New York Academy of Sciences, vol. 1172, pp. 88–94, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. K. E. Wellen and G. S. Hotamisligil, “Inflammation, stress, and diabetes,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1111–1119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Gustafson, A. Hammarstedt, C. X. Andersson, and U. Smith, “Inflamed adipose tissue: a culprit underlying the metabolic syndrome and atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 11, pp. 2276–2283, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. I. Bellantuono, A. Aldahmash, and M. Kassem, “Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss,” Biochimica et Biophysica Acta, vol. 1792, no. 4, pp. 364–370, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. O. Naveiras, V. Nardi, P. L. Wenzel, P. V. Hauschka, F. Fahey, and G. Q. Daley, “Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment,” Nature, vol. 460, no. 7252, pp. 259–263, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. A. Dunac, C. Frelin, M. Popolo-Blondeau, M. Chatel, M. H. Mahagne, and P. J. M. Philip, “Neurological and functional recovery in human stroke are associated with peripheral blood CD34+ cell mobilization,” Journal of Neurology, vol. 254, no. 3, pp. 327–332, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. V. L. T. Ballard and J. M. Edelberg, “Stem cells and the regeneration of the aging cardiovascular system,” Circulation Research, vol. 100, no. 8, pp. 1116–1127, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. N. A. Mikirova, J. A. Jackson, R. Hunninghake et al., “Nutraceutical augmentation of circulating endothelial progenitor cells and hematopoietic stem cells in human subjects,” Journal of Translational Medicine, vol. 8, article no. 34, 2010. View at Publisher · View at Google Scholar · View at PubMed
  83. G. S. Jensen, A. N. Hart, L. A. M. Zaske et al., “Mobilization of human CD34+CD133+ and CD34+CD133- stem cells in vivo by consumption of an extract from Aphanizomenon flos-aquae-related to modulation of CXCR4 expression by an L-selectin ligand?” Cardiovascular Revascularization Medicine, vol. 8, no. 3, pp. 189–202, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. T. E. Ichim, Z. Zhong, N. A. Mikirova et al., “Circulating endothelial progenitor cells and erectile dysfunction: possibility of nutritional intervention?” Panminerva medica, vol. 52, no. 2, supplement 1, pp. 75–80, 2010.
  85. S. Erbs, R. Höllriegel, A. Linke et al., “Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function,” Circulation: Heart Failure, vol. 3, no. 4, pp. 486–494, 2010. View at Publisher · View at Google Scholar · View at PubMed
  86. T. Kondo, M. Hayashi, K. Takeshita et al., “Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 8, pp. 1442–1447, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. C. Fiorito, M. Rienzo, E. Crimi et al., “Antioxidants increase number of progenitor endothelial cells through multiple gene expression pathways,” Free Radical Research, vol. 42, no. 8, pp. 754–762, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. L. Xia, X. X. Wang, X. S. Hu et al., “Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms,” British Journal of Pharmacology, vol. 155, no. 3, pp. 387–394, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. P. Menasché, O. Alfieri, S. Janssens et al., “The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation,” Circulation, vol. 117, no. 9, pp. 1189–1200, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. M. Yousef, C. M. Schannwell, M. Köstering, T. Zeus, M. Brehm, and B. E. Strauer, “The BALANCE Study: clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction,” Journal of the American College of Cardiology, vol. 53, no. 24, pp. 2262–2269, 2009. View at Scopus
  91. J. M. Gimble, A. J. Katz, and B. A. Bunnell, “Adipose-derived stem cells for regenerative medicine,” Circulation Research, vol. 100, no. 9, pp. 1249–1260, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. J. O. Beitnes, E. Hopp, K. Lunde et al., “Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study,” Heart, vol. 95, no. 24, pp. 1983–1989, 2009. View at Publisher · View at Google Scholar · View at PubMed
  93. G. P. Meyer, K. C. Wollert, J. Lotz et al., “Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial,” Circulation, vol. 113, no. 10, pp. 1287–1294, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. T. T. Tran, Y. Yamamoto, S. Gesta, and C. R. Kahn, “Beneficial effects of subcutaneous fat transplantation on metabolism,” Cell Metabolism, vol. 7, no. 5, pp. 410–420, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. S. Klebanov, C. M. Astle, O. DeSimone, V. Ablamunits, and D. E. Harrison, “Adipose tissue transplantation protects ob/ob mice from obesity, normalizes insulin sensitivity and restores fertility,” Journal of Endocrinology, vol. 186, no. 1, pp. 203–211, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. S. R. Coleman, “Long-term survival of fat transplants: controlled demonstrations,” Aesthetic Plastic Surgery, vol. 19, no. 5, pp. 421–425, 1995. View at Publisher · View at Google Scholar · View at Scopus
  97. P. Bauer-Kreisel, A. Goepferich, and T. Blunk, “Cell-delivery therapeutics for adipose tissue regeneration,” Advanced Drug Delivery Reviews, vol. 62, no. 7-8, pp. 798–813, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. S. Caspar-Bauguil, B. Cousin, A. Galinier et al., “Adipose tissues as an ancestral immune organ: site-specific change in obesity,” FEBS Letters, vol. 579, no. 17, pp. 3487–3492, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. B. Puissant, C. Barreau, P. Bourin et al., “Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells,” British Journal of Haematology, vol. 129, no. 1, pp. 118–129, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. R. Yañez, M. L. Lamana, J. García-Castro, I. Colmenero, M. Ramírez, and J. A. Bueren, “Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease,” Stem Cells, vol. 24, no. 11, pp. 2582–2591, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. K. Le Blanc and O. Ringdén, “Immunomodulation by mesenchymal stem cells and clinical experience,” Journal of Internal Medicine, vol. 262, no. 5, pp. 509–525, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. K. Yoshimura, K. Sato, N. Aoi, M. Kurita, T. Hirohi, and K. Harii, “Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells,” Aesthetic Plastic Surgery, vol. 32, no. 1, pp. 48–55, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. E. L. Lacy and T. J. Bartness, “Effects of white adipose tissue grafts on total body fat and cellularity are dependent on graft type and location,” American Journal of Physiology, vol. 289, no. 2, pp. R380–R388, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. G. Dellagiacoma, A. Sbarbati, M. Rossi et al., “Brown adipose tissue: magnetic resonance imaging and ultrastructural studies after transplantation in syngeneic rats,” Transplantation Proceedings, vol. 24, no. 6, p. 2986, 1992.
  105. L. Ferren, “Morphological differentiation of implanted brown and white fats,” Transactions of the Kansas Academy of Science, vol. 69, no. 1, pp. 350–353, 1966. View at Scopus
  106. A. Garg and A. K. Agarwal, “Lipodystrophies: disorders of adipose tissue biology,” Biochimica et Biophysica Acta, vol. 1791, no. 6, pp. 507–513, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. O. Gavrilova, B. Marcus-Samuels, D. Graham et al., “Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice,” Journal of Clinical Investigation, vol. 105, no. 3, pp. 271–278, 2000. View at Scopus
  108. D. M. Huffman and N. Barzilai, “Role of visceral adipose tissue in aging,” Biochimica et Biophysica Acta, vol. 1790, no. 10, pp. 1117–1123, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. R. Muzumdar, D. B. Allison, D. M. Huffman et al., “Visceral adipose tissue modulates mammalian longevity,” Aging Cell, vol. 7, no. 3, pp. 438–440, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. D. M. Huffman and N. Barzilai, “Contribution of adipose tissue to health span and longevity,” Interdisciplinary Topics in Gerontology, vol. 37, pp. 1–19, 2010. View at Publisher · View at Google Scholar · View at PubMed