About this Journal Submit a Manuscript Table of Contents
Stem Cells International
Volume 2012 (2012), Article ID 387513, 16 pages
http://dx.doi.org/10.1155/2012/387513
Review Article

Endogenous Proliferation after Spinal Cord Injury in Animal Models

1Department of Pathology and Laboratory Medicine, UC Davis, School of Medicine, 4400 V Street, Sacramento, CA 95817, USA
2Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, 2425 Stockton Boulevard, Sacramento, CA 95817, USA
3Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, UC Davis, One Shields Avenue, Davis, CA 95616, USA

Received 3 August 2012; Revised 6 October 2012; Accepted 29 October 2012

Academic Editor: Branden R. Nelson

Copyright © 2012 Ashley McDonough and Verónica Martínez-Cerdeño. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Beattie, J. C. Bresnahan, J. Komon et al., “Endogenous repair after spinal cord contusion injuries in the rat,” Experimental Neurology, vol. 148, no. 2, pp. 453–463, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Weiss, C. Dunne, J. Hewson et al., “Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis,” The Journal of Neuroscience, vol. 16, no. 23, pp. 7599–7609, 1996. View at Scopus
  3. F. Barnabé-Heider, C. Göritz, H. Sabelström et al., “Origin of new glial cells in intact and injured adult spinal cord,” Cell Stem Cell, vol. 7, no. 4, pp. 470–482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Horner, A. E. Power, G. Kempermann et al., “Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord,” The Journal of Neuroscience, vol. 20, no. 6, pp. 2218–2228, 2000. View at Scopus
  5. F. M. Bareyre, “Neuronal repair and replacement in spinal cord injury,” Journal of the Neurological Sciences, vol. 265, no. 1-2, pp. 63–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. C. G. Gross, “Neurogenesis in the adult brain: death of a dogma,” Nature Reviews, vol. 1, no. 1, pp. 67–73, 2000. View at Scopus
  7. L. J. Kehl, C. A. Fairbanks, T. M. Laughlin, and G. L. Wilcox, “Neurogenesis in postnatal rat spinal cord: a study in primary culture,” Science, vol. 276, no. 5312, pp. 586–589, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. C. B. Johansson, S. Momma, D. L. Clarke, M. Risling, U. Lendahl, and J. Frisén, “Identification of a neural stem cell in the adult mammalian central nervous system,” Cell, vol. 96, no. 1, pp. 25–34, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Vaquero, M. J. Ramiro, S. Oya, and J. M. Cabezudo, “Ependymal reaction after experimental spinal cord injury,” Acta Neurochirurgica, vol. 55, no. 3-4, pp. 295–302, 1981. View at Scopus
  10. J. Vaquero, M. J. Ramiro, S. Oya, and J. Manuel Cabezudo, “Ependymal cell proliferation after spinal cord injury,” Surgical Neurology, vol. 28, no. 5, article 401, 1987. View at Scopus
  11. F. Bretzner, J. Liu, E. Currie, A. J. Roskams, and W. Tetzlaff, “Undesired effects of a combinatorial treatment for spinal cord injury—transplantation of olfactory ensheathing cells and BDNF infusion to the red nucleus,” European Journal of Neuroscience, vol. 28, no. 9, pp. 1795–1807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. W. A. Gomes, M. F. Mehler, and J. A. Kessler, “Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment,” Developmental Biology, vol. 255, no. 1, pp. 164–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. M. McTigue, P. J. Horner, B. T. Stokes, and F. H. Gage, “Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord,” The Journal of Neuroscience, vol. 18, no. 14, pp. 5354–5365, 1998. View at Scopus
  14. V. L. Arvanian, P. J. Horner, F. H. Gage, and L. M. Mendell, “Chronic neurotrophin-3 strengthens synaptic connections to motoneurons in the neonatal rat,” The Journal of Neuroscience, vol. 23, no. 25, pp. 8706–8712, 2003. View at Scopus
  15. W. Rong, J. Wang, X. Liu et al., “Naringin treatment improves functional recovery by increasing BDNF and VEGF expression, inhibiting neuronal apoptosis after spinal cord injury,” Neurochemical Research, vol. 37, no. 8, pp. 1615–1623, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Ohori, S. I. Yamamoto, M. Nagao et al., “Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord,” The Journal of Neuroscience, vol. 26, no. 46, pp. 11948–11960, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. M. Lytle, R. Chittajallu, J. R. Wrathall, and V. Gallo, “NG2 cell response in the CNP-EGFP mouse after contusive spinal cord injury,” Glia, vol. 57, no. 3, pp. 270–285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Sellers, D. O. Maris, and P. J. Horner, “Postinjury niches induce temporal shifts in progenitor fates to direct lesion repair after spinal cord injury,” The Journal of Neuroscience, vol. 29, no. 20, pp. 6722–6733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. A. W. Barritt, M. Davies, F. Marchand et al., “Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury,” The Journal of Neuroscience, vol. 26, no. 42, pp. 10856–10867, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. E. J. Bradbury, L. D. F. Moon, R. J. Popat et al., “Chondroitinase ABC promotes functional recovery after spinal cord injury,” Nature, vol. 416, no. 6881, pp. 636–640, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. J. W. Rowland, G. W. Hawryluk, B. Kwon, and M. G. Fehlings, “Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon,” Neurosurgical Focus, vol. 25, no. 5, article E2, 2008. View at Scopus
  22. R. L. Ruff, L. McKerracher, and M. E. Selzer, “Repair and neurorehabilitation strategies for spinal cord injury,” Annals of the New York Academy of Sciences, vol. 1142, pp. 1–20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Tu, J. Liao, M. A. Stoodley, and A. M. Cunningham, “Differentiation of endogenous progenitors in an animal model of post-traumatic syringomyelia,” Spine, vol. 35, no. 11, pp. 1116–1121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Freund, E. Schmidlin, T. Wannier et al., “Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates,” Nature Medicine, vol. 12, no. 7, pp. 790–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Freund, E. Schmidlin, T. Wannier et al., “Anti-Nogo-A antibody treatment promotes recovery of manual dexterity after unilateral cervical lesion in adult primates—re-examination and extension of behavioral data,” European Journal of Neuroscience, vol. 29, no. 5, pp. 983–996, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Spinal Cord Injury Facts and Figures at a Glance, National Spinal Cord Injury Statistical Center, Birgminham, Ala, USA, 2011.
  27. G. W. Hawryluk, J. Rowland, B. K. Kwon, and M. G. Fehlings, “Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury,” Neurosurgical Focus, vol. 25, no. 5, article E14, 2008. View at Scopus
  28. S. I. Yamamoto, N. Yamamoto, T. Kitamura, K. Nakamura, and M. Nakafuku, “Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord,” Experimental Neurology, vol. 172, no. 1, pp. 115–127, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. A. J. Mothe and C. H. Tator, “Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat,” Neuroscience, vol. 131, no. 1, pp. 177–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. L. L. Horky, F. Galimi, F. H. Gage, and P. J. Horner, “Fate of endogenous stem/progenitor cells following spinal cord injury,” Journal of Comparative Neurology, vol. 498, no. 4, pp. 525–538, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Yang, P. Lu, H. M. McKay et al., “Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury,” The Journal of Neuroscience, vol. 26, no. 8, pp. 2157–2166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Meletis, F. Barnabé-Heider, M. Carlén et al., “Spinal cord injury reveals multilineage differentiation of ependymal cells,” PLoS Biology, vol. 6, no. 7, article e182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. D. M. McTigue, P. Wei, and B. T. Stokes, “Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord,” The Journal of Neuroscience, vol. 21, no. 10, pp. 3392–3400, 2001. View at Scopus
  34. M. Takahashi, Y. Arai, H. Kurosawa, N. Sueyoshi, and S. Shirai, “Ependymal cell reactions in spinal cord segments after compression injury in adult rat,” Journal of Neuropathology and Experimental Neurology, vol. 62, no. 2, pp. 185–194, 2003. View at Scopus
  35. L. J. Zai, S. Yoo, and J. R. Wrathall, “Increased growth factor expression and cell proliferation after contusive spinal cord injury,” Brain Research, vol. 1052, no. 2, pp. 147–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. J. M. Lytle and J. R. Wrathall, “Glial cell loss, proliferation and replacement in the contused murine spinal cord,” European Journal of Neuroscience, vol. 25, no. 6, pp. 1711–1724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Namiki and C. H. Tator, “Cell proliferation and nestin expression in the ependyma of the adult rat spinal cord after injury,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 5, pp. 489–498, 1999. View at Scopus
  38. D. Wu, S. Shibuya, O. Miyamoto, T. Itano, and T. Yamamoto, “Increase of NG2-positive cells associated with radial glia following traumatic spinal cord injury in adult rats,” Journal of Neurocytology, vol. 34, no. 6, pp. 459–469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Eftekharpour, S. Karimi-Abdolrezaee, and M. G. Fehlings, “Current status of experimental cell replacement approaches to spinal cord injury,” Neurosurgical Focus, vol. 24, no. 3-4, article E18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. K. Kwon, A. M. T. Stammers, L. M. Belanger et al., “Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury,” Journal of Neurotrauma, vol. 27, no. 4, pp. 669–682, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. A. T. Stammers, J. Liu, and B. K. Kwon, “Expression of inflammatory cytokines following acute spinal cord injury in a rodent model,” Journal of Neuroscience Research, vol. 90, no. 4, pp. 782–790, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. S. D. Grossman, L. J. Rosenberg, and J. R. Wrathall, “Temporal-spatial pattern of acute neuronal and glial loss after spinal cord contusion,” Experimental Neurology, vol. 168, no. 2, pp. 273–282, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. S. J. A. Davies, C. H. Shih, M. Noble, M. Mayer-Proschel, J. E. Davies, and C. Proschel, “Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury,” PLoS ONE, vol. 6, no. 3, Article ID e17328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. J. C. Gensel, C. A. Tovar, F. P. T. Hamers, R. J. Deibert, M. S. Beattie, and J. C. Bresnahan, “Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats,” Journal of Neurotrauma, vol. 23, no. 1, pp. 36–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. S. M. Onifer, A. G. Rabchevsky, and S. W. Scheff, “Rat models of traumatic spinal cord injury to assess motor recovery,” ILAR Journal, vol. 48, no. 4, pp. 385–395, 2007. View at Scopus
  46. D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection,” Experimental Neurology, vol. 139, no. 2, pp. 244–256, 1996. View at Publisher · View at Google Scholar · View at Scopus
  47. J. R. Plemel, G. Duncan, K. W. K. Chen et al., “A graded forceps crush spinal cord injury model in mice,” Journal of Neurotrauma, vol. 25, no. 4, pp. 350–370, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Alvarez-Buylla, M. Kohwi, T. M. Nguyen, and F. T. Merkle, “The heterogeneity of adult neural stem cells and the emerging complexity of their niche,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 73, pp. 357–365, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Goritz and J. Frisen, “Neural stem cells and neurogenesis in the adult,” Cell Stem Cell, vol. 10, no. 6, pp. 657–659, 2012.
  50. F. T. Merkle and A. Alvarez-Buylla, “Neural stem cells in mammalian development,” Current Opinion in Cell Biology, vol. 18, no. 6, pp. 704–709, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. F. T. Merkle, A. D. Tramontin, J. M. García-Verdugo, and A. Alvarez-Buylla, “Radial glia give rise to adult neural stem cells in the subventricular zone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 50, pp. 17528–17532, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Petit, A. D. Sanders, T. E. Kennedy et al., “Adult spinal cord radial glia display a unique progenitor phenotype,” PLoS ONE, vol. 6, no. 9, Article ID e24538, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. T. E. Anthony, C. Klein, G. Fishell, and N. Heintz, “Radial glia serve as neuronal progenitors in all regions of the central nervous system,” Neuron, vol. 41, no. 6, pp. 881–890, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Doetsch, I. Caille, D. A. Lim, J. M. Garcia-Verdugo, and A. Alvarez-Buylla, “Subventricular zone astrocytes are neural stem cells in the adult mammalian brain,” Cell, vol. 97, no. 6, pp. 703–716, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. A. D. R. Garcia, N. B. Doan, T. Imura, T. G. Bush, and M. V. Sofroniew, “GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain,” Nature Neuroscience, vol. 7, no. 11, pp. 1233–1241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. R. A. Ihrie and A. Alvarez-Buylla, “Cells in the astroglial lineage are neural stem cells,” Cell and Tissue Research, vol. 331, no. 1, pp. 179–191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Imura, H. I. Kornblum, and M. V. Sofroniew, “The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP,” The Journal of Neuroscience, vol. 23, no. 7, pp. 2824–2832, 2003. View at Scopus
  58. L. S. Shihabuddin, J. Ray, and F. H. Gage, “FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord,” Experimental Neurology, vol. 148, no. 2, pp. 577–586, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. S. I. Yamamoto, M. Nagao, M. Sugimori et al., “Transcription factor expression and notch-dependent regulation of neural progenitors in the adult rat spinal cord,” The Journal of Neuroscience, vol. 21, no. 24, pp. 9814–9823, 2001. View at Scopus
  60. L. S. Shihabuddin, P. J. Horner, J. Ray, and F. H. Gage, “Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus,” The Journal of Neuroscience, vol. 20, no. 23, pp. 8727–8735, 2000. View at Scopus
  61. J. Altman and S. A. Bayer, “Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods,” Journal of Comparative Neurology, vol. 301, no. 3, pp. 365–381, 1990. View at Scopus
  62. S. A. Bayer, J. W. Yackel, and P. S. Puri, “Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life,” Science, vol. 216, no. 4548, pp. 890–892, 1982. View at Scopus
  63. P. S. Eriksson, E. Perfilieva, T. Björk-Eriksson et al., “Neurogenesis in the adult human hippocampus,” Nature Medicine, vol. 4, no. 11, pp. 1313–1317, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. J. E. Bruni, “Ependymal development, proliferation, and functions: a review,” Microscopy Research and Technique, vol. 41, no. 1, pp. 2–13, 1998. View at Scopus
  65. J. E. Bruni and K. Reddy, “Ependyma of the central canal of the rat spinal cord: a light and transmission electron microscopic study,” Journal of Anatomy, vol. 152, pp. 55–70, 1987. View at Scopus
  66. M. R. del Bigio, “Ependymal cells: biology and pathology,” Acta Neuropathologica, vol. 119, no. 1, pp. 55–73, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. I. H. Smart, “Proliferative characteristics of the ependymal layer during the early development of the spinal cord in the mouse,” Journal of Anatomy, vol. 111, pp. 365–380, 1972. View at Scopus
  68. M. I. Rehermann, N. Marichal, R. E. Russo, and O. Trujillo-Cenóz, “Neural reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi,” Journal of Comparative Neurology, vol. 515, no. 2, pp. 197–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. A. G. Dervan and B. L. Roberts, “Reaction of spinal cord central canal cells to cord transection and their contribution to cord regeneration,” Journal of Comparative Neurology, vol. 458, no. 3, pp. 293–306, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. J. E. Bruni, M. R. del Bigio, and R. E. Clattenburg, “Ependyma: normal and pathological: a review of the literature,” Brain Research, vol. 356, no. 1, pp. 1–19, 1985. View at Scopus
  71. N. Marichal, G. García, M. Radmilovich, O. Trujillo-Cenóz, and R. E. Russo, “Enigmatic central canal contacting cells: immature neurons in “standby mode”?” The Journal of Neuroscience, vol. 29, no. 32, pp. 10010–10024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. R. E. Russo, A. Fernández, C. Reali, M. Radmilovich, and O. Trujillo-Cenóz, “Functional and molecular clues reveal precursor-like cells and immature neurones in the turtle spinal cord,” Journal of Physiology, vol. 560, pp. 831–838, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. R. E. Russo, C. Reali, M. Radmilovich, A. Fernández, and O. Trujillo-Cenóz, “Connexin 43 delimits functional domains of neurogenic precursors in the spinal cord,” The Journal of Neuroscience, vol. 28, no. 13, pp. 3298–3309, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. S. C. Noctor, A. C. Flint, T. A. Weissman, W. S. Wong, B. K. Clinton, and A. R. Kriegstein, “Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia,” The Journal of Neuroscience, vol. 22, no. 8, pp. 3161–3173, 2002. View at Scopus
  75. O. Trujillo-Cenóz, A. Fernández, M. Radmilovich, C. Reali, and R. E. Russo, “Cytological organization of the central gelatinosa in the turtle spinal corel,” Journal of Comparative Neurology, vol. 502, no. 2, pp. 291–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. M. I. Rehermann, F. F. Santiñaque, B. López-Carro, R. E. Russo, and O. Trujillo-Cenóz, “Cell proliferation and cytoarchitectural remodeling during spinal cord reconnection in the fresh-water turtle Trachemys dorbignyi,” Cell and Tissue Research, vol. 344, no. 3, pp. 415–433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. L. McHedlishvili, H. H. Epperlein, A. Telzerow, and E. M. Tanaka, “A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors,” Development, vol. 134, no. 11, pp. 2083–2093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. D. K. Ma, M. A. Bonaguidi, G. L. Ming, and H. Song, “Adult neural stem cells in the mammalian central nervous system,” Cell Research, vol. 19, no. 6, pp. 672–682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. V. Martínez-Cerdeño, C. L. Cunningham, J. Camacho et al., “Comparative analysis of the subventricular zone in rat, ferret and macaque: evidence for an outer subventricular zone in rodents,” PLoS ONE, vol. 7, no. 1, Article ID e30178, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. S. C. Noctor, V. Martínez-Cerdeño, and A. R. Kriegstein, “Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis,” Journal of Comparative Neurology, vol. 508, no. 1, pp. 28–44, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. C. Noctor, V. Martinez-Cerdeño, L. Ivic, and A. R. Kriegstein, “Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases,” Nature Neuroscience, vol. 7, no. 2, pp. 136–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. S. C. Noctor, A. C. Flint, T. A. Weissman, R. S. Dammerman, and A. R. Kriegstein, “Neurons derived from radial glial cells establish radial units in neocortex,” Nature, vol. 409, no. 6821, pp. 714–720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Yoo and J. R. Wrathall, “Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors,” Developmental Neurobiology, vol. 67, no. 7, pp. 860–874, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. L. J. Zai and J. R. Wrathall, “Cell proliferation and replacement following contusive spinal cord injury,” Glia, vol. 50, no. 3, pp. 247–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. J. M. Lytle, S. Vicini, and J. R. Wrathall, “Phenotypic changes in NG2+ cells after spinal cord injury,” Journal of Neurotrauma, vol. 23, no. 12, pp. 1726–1738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. P. J. Horner, M. Thallmair, and F. H. Gage, “Defining the NG2-expressing cell of the adult CNS,” Journal of Neurocytology, vol. 31, no. 6-7, pp. 469–480, 2002. View at Scopus
  87. M. Diers-Fenger, F. Kirchhoff, H. Kettenmann, J. M. Levine, and J. Trotter, “AN2/NG2 protein-expressing glial progenitor cells in the murine CNS: isolation, differentiation, and association with radial glia,” Glia, vol. 34, no. 3, pp. 213–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. D. L. Sellers and P. J. Horner, “Instructive niches: environmental instructions that confound NG2 proteoglycan expression and the fate-restriction of CNS progenitors,” Journal of Anatomy, vol. 207, no. 6, pp. 727–734, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Berry, P. Hubbard, and A. M. Butt, “Cytology and lineage of NG2-positive glia,” Journal of Neurocytology, vol. 31, no. 6-7, pp. 457–467, 2002. View at Scopus
  90. E. Schnapp, M. Kragl, L. Rubin, and E. M. Tanaka, “Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration,” Development, vol. 132, no. 14, pp. 3243–3253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. M. M. Reimer, V. Kuscha, C. Wyatt et al., “Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish,” The Journal of Neuroscience, vol. 29, no. 48, pp. 15073–15082, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Egar, S. B. Simpson, and M. Singer, “The growth and differentiation of the regenerating spinal cord of the lizard, Anolis carolinensis,” Journal of Morphology, vol. 131, no. 2, pp. 131–151, 1970. View at Scopus
  93. J. Ericson, P. Rashbass, A. Schedl et al., “Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling,” Cell, vol. 90, no. 1, pp. 169–180, 1997. View at Publisher · View at Google Scholar · View at Scopus
  94. N. Genethliou, E. Panayiotou, H. Panayi et al., “Spatially distinct functions of PAX6 and NKX2.2 during gliogenesis in the ventral spinal cord,” Biochemical and Biophysical Research Communications, vol. 382, no. 1, pp. 69–73, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. T. Sun, N. P. Pringle, A. P. Hardy, W. D. Richardson, and H. K. Smith, “Pax6 influences the time and site of origin of glial precursors in the ventral neural tube,” Molecular and Cellular Neurosciences, vol. 12, no. 4-5, pp. 228–239, 1998. View at Publisher · View at Google Scholar · View at Scopus
  96. B. M. Henley and K. W. McDermott, “The expression of neuroepithelial cell fate determinants in rat spinal cord development,” Journal of Molecular Neuroscience, vol. 42, no. 1, pp. 28–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Bel-Vialar, F. Medevielle, and F. Pituello, “The on/off of Pax6 controls the tempo of neuronal differentiation in the developing spinal cord,” Developmental Biology, vol. 305, no. 2, pp. 659–673, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. W. A. Alaynick, T. M. Jessell, and S. L. Pfaff, “Snapshot: spinal cord development,” Cell, vol. 146, no. 1, pp. 178.e1–178.e1, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Tanabe and T. M. Jessell, “Diversity and pattern in the developing spinal cord,” Science, vol. 274, no. 5290, pp. 1115–1123, 1996. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Tochitani and Y. Hayashizaki, “Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation,” Biochemical and Biophysical Research Communications, vol. 372, no. 4, pp. 691–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. Y.-F. Cui, J. C. Xu, G. Hargus, I. Jakovcevski, M. Schachner, and C. Bernreuther, “Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery after spinal cord injury in mice,” PLoS ONE, vol. 6, no. 3, Article ID e17126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Krencik, J. P. Weick, Y. Liu, Z. J. Zhang, and S. C. Zhang, “Specification of transplantable astroglial subtypes from human pluripotent stem cells,” Nature Biotechnology, vol. 29, no. 6, pp. 528–534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Menei, C. Montero-Menei, S. R. Whittemore, R. P. Bunge, and M. Bartlett Bunge, “Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord,” European Journal of Neuroscience, vol. 10, no. 2, pp. 607–621, 1998. View at Publisher · View at Google Scholar · View at Scopus
  104. F. J. Obermair, A. Schröter, and M. Thallmair, “Endogenous neural progenitor cells as therapeutic target after spinal cord injury,” Physiology, vol. 23, no. 5, pp. 296–304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Nakamura, O. Tsuji, B. S. Bregman, Y. Toyama, and H. Okano, “Mimicking the neurotrophic factor profile of embryonic spinal cord controls the differentiation potential of spinal progenitors into neuronal cells,” PLoS ONE, vol. 6, no. 6, Article ID e20717, 2011. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Giménez Y Ribotta, D. Orsal, D. Feraboli-Lohnherr, and A. Privat, “Recovery of locomotion following transplantation of monoaminergic neurons in the spinal cord of paraplegic rats,” Annals of the New York Academy of Sciences, vol. 860, pp. 393–411, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. A. C. Lepore and I. Fischer, “Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord,” Experimental Neurology, vol. 194, no. 1, pp. 230–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. J. F. Bonner, T. M. Connors, W. F. Silverman, D. P. Kowalski, M. A. Lemay, and I. Fischer, “Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord,” The Journal of Neuroscience, vol. 31, no. 12, pp. 4675–4686, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. B. J. Cummings, N. Uchida, S. J. Tamaki et al., “Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 14069–14074, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Feraboli-Lohnherr, D. Orsal, A. Yakovleff, M. Giménez Y Ribotta, and A. Privat, “Recovery of locomotor activity in the adult chronic spinal rat after sublesional transplantation of embryonic nervous cells: specific role of serotonergic neurons,” Experimental Brain Research, vol. 113, no. 3, pp. 443–454, 1997. View at Publisher · View at Google Scholar · View at Scopus
  111. H. Lee, G. Al Shamy, Y. Elkabetz et al., “Directed differentiation and transplantation of human embryonic stem cell-derived motoneurons,” Stem Cells, vol. 25, no. 8, pp. 1931–1939, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. J. E. Davies, C. Huang, C. Proschel, M. Noble, M. Mayer-Proschel, and S. J. A. Davies, “Astrocytes derived from glial-restricted precursors promote spinal cord repair,” Journal of Biology, vol. 5, no. 3, article 7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. J. Faulkner and H. S. Keirstead, “Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury,” Transplant Immunology, vol. 15, no. 2, pp. 131–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. J. D. Glass, N. M. Boulis, K. Johe et al., “Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients,” Stem Cells, vol. 30, no. 6, pp. 1144–1151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Mazzini, K. Mareschi, I. Ferrero et al., “Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study,” Cytotherapy, vol. 14, no. 1, pp. 56–60, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. L. Chen, D. Chen, H. Xi et al., “Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations,” Cell Transplantation, vol. 21, supplement 1, pp. S65–S77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. J. McCall, N. Weidner, and A. Blesch, “Neurotrophic factors in combinatorial approaches for spinal cord regeneration,” Cell and Tissue Research, vol. 349, no. 1, pp. 27–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  118. H. A. Arnett, J. Mason, M. Marino, K. Suzuki, G. K. Matsushima, and J. P. Y. Ting, “TNFα promotes proliferation of oligodendrocyte progenitors and remyelination,” Nature Neuroscience, vol. 4, no. 11, pp. 1116–1122, 2001. View at Publisher · View at Google Scholar · View at Scopus
  119. A. M. Bond, O. G. Bhalala, and J. A. Kessler, “The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation,” Developmental Neurobiology, vol. 72, no. 7, pp. 1068–1084, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. C. P. Hofstetter, N. A. V. Holmström, J. A. Lilja et al., “Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome,” Nature Neuroscience, vol. 8, no. 3, pp. 346–353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Uchida, S. I. Nakano, F. Gomi, and H. Takahashi, “Differential regulation of basic helix-loop-helix factors Mash1 and Olig2 by β-amyloid accelerates both differentiation and death of cultured neural stem/progenitor cells,” Journal of Biological Chemistry, vol. 282, no. 27, pp. 19700–19709, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Kallur, R. Gisler, O. Lindvall, and Z. Kokaia, “Pax6 promotes neurogenesis in human neural stem cells,” Molecular and Cellular Neuroscience, vol. 38, no. 4, pp. 616–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Sebastián-Serrano, A. Sandonis, M. Cardozo, F. M. Rodríguez-Tornos, P. Bovolenta, and M. Nieto, “Palphax6 expression in postmitotic neurons mediates the growth of axons in response to SFRP1,” PLoS ONE, vol. 7, no. 2, Article ID e31590, 2012. View at Publisher · View at Google Scholar · View at Scopus
  124. E. Chmielnicki, A. Benraiss, A. N. Economides, and S. A. Goldman, “Adenovirally expressed noggin and brian-derived neurotrophic factor cooperate to induce new medium spiny neurons from resident progenitor cells in the adult striatal ventricular zone,” The Journal of Neuroscience, vol. 24, no. 9, pp. 2133–2142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. J. M. Bergen, I. K. Park, P. J. Horner, and S. H. Pun, “Nonviral approaches for neuronal delivery of nucleic acids,” Pharmaceutical Research, vol. 25, no. 5, pp. 983–998, 2008. View at Publisher · View at Google Scholar · View at Scopus
  126. E. J. Kwon, J. Lasiene, B. E. Jacobson, I. K. Park, P. J. Horner, and S. H. Pun, “Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone,” Biomaterials, vol. 31, no. 8, pp. 2417–2424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. M. M. Harper, S. D. Grozdanic, B. Blits et al., “Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes,” Investigative Ophthalmology and Visual Science, vol. 52, no. 7, pp. 4506–4515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Sasaki, C. Radtke, A. M. Tan et al., “BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury,” The Journal of Neuroscience, vol. 29, no. 47, pp. 14932–14941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. J. E. Davies, C. Pröschel, N. Zhang, M. Noble, M. Mayer-Pröschel, and S. J. A. Davies, “Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury,” Journal of Biology, vol. 7, no. 7, article 24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  130. Y. Ke, L. Chi, R. Xu, C. Luo, D. Gozal, and R. Liu, “Early response of endogenous adult neural progenitor cells to acute spinal cord injury in mice,” Stem Cells, vol. 24, no. 4, pp. 1011–1019, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. K. C. Murray, A. Nakae, M. J. Stephens et al., “Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors,” Nature Medicine, vol. 16, no. 6, pp. 694–700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. H. S. Keirstead, J. M. Levine, and W. F. Blakemore, “Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord,” Glia, vol. 22, no. 2, pp. 161–170, 1998. View at Scopus