About this Journal Submit a Manuscript Table of Contents
Stem Cells International
Volume 2012 (2012), Article ID 428403, 7 pages
http://dx.doi.org/10.1155/2012/428403
Review Article

Early Growth Response Genes Signaling Supports Strong Paracrine Capability of Mesenchymal Stem Cells

Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA

Received 16 October 2012; Accepted 21 November 2012

Academic Editor: Yoshitaka Iso

Copyright © 2012 Kenichi Tamama and Dominique J. Barbeau. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Friedenstein, U. F. Gorskaja, and N. N. Kulagina, “Fibroblast precursors in normal and irradiated mouse hematopoietic organs,” Experimental Hematology, vol. 4, no. 5, pp. 267–274, 1976. View at Scopus
  2. J. Oswald, S. Boxberger, B. Jørgensen et al., “Mesenchymal stem cells can be differentiated into endothelial cells in vitro,” Stem Cells, vol. 22, no. 3, pp. 377–384, 2004. View at Scopus
  3. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Prockop, “Marrow stromal cells as stem cells for nonhematopoietic tissues,” Science, vol. 276, no. 5309, pp. 71–74, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. D. J. Prockop, C. A. Gregory, and J. L. Spees, “One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 11917–11923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Tamama, V. H. Fan, L. G. Griffith, H. C. Blair, and A. Wells, “Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells,” Stem Cells, vol. 24, no. 3, pp. 686–695, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Tamama, C. K. Sen, and A. Wells, “Differentiation of bone marrow mesenchymal stem cells into the smooth muscle lineage by blocking ERK/MAPK signaling pathway,” Stem Cells and Development, vol. 17, no. 5, pp. 897–908, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Kinnaird, E. Stabile, M. S. Burnett, and S. E. Epstein, “Bone marrow-derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences,” Circulation Research, vol. 95, no. 4, pp. 354–363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Davani, A. Marandin, N. Mersin et al., “Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model,” Circulation, vol. 108, supplement 1, pp. II253–II258, 2003. View at Scopus
  10. L. C. Amado, A. P. Saliaris, K. H. Schuleri et al., “Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 32, pp. 11474–11479, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Dai, S. L. Hale, B. J. Martin et al., “Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects,” Circulation, vol. 112, no. 2, pp. 214–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. F. Pittenger and B. J. Martin, “Mesenchymal stem cells and their potential as cardiac therapeutics,” Circulation Research, vol. 95, no. 1, pp. 9–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Wu, L. Chen, P. G. Scott, and E. E. Tredget, “Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis,” Stem Cells, vol. 25, no. 10, pp. 2648–2659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Sasaki, R. Abe, Y. Fujita, S. Ando, D. Inokuma, and H. Shimizu, “Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type,” Journal of Immunology, vol. 180, no. 4, pp. 2581–2587, 2008. View at Scopus
  15. A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Mangi, N. Noiseux, D. Kong et al., “Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts,” Nature Medicine, vol. 9, no. 9, pp. 1195–1201, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Giordano, U. Galderisi, and I. R. Marino, “From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells,” Journal of Cellular Physiology, vol. 211, no. 1, pp. 27–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. H. Schuleri, A. J. Boyle, and J. M. Hare, “Mesenchymal stem cells for cardiac regenerative therapy,” Handbook of experimental pharmacology, no. 180, pp. 195–218, 2007. View at Scopus
  19. V. Falanga, S. Iwamoto, M. Chartier et al., “Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds,” Tissue Engineering, vol. 13, no. 6, pp. 1299–1312, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Tongers, D. W. Losordo, and U. Landmesser, “Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges,” European Heart Journal, vol. 32, no. 10, pp. 1197–1206, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Chen, E. E. Tredget, P. Y. G. Wu, Y. Wu, and Y. Wu, “Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing,” PLoS ONE, vol. 3, no. 4, Article ID e1886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Schinköthe, W. Bloch, and A. Schmidt, “In vitro secreting profile of human mesenchymal stem cells,” Stem Cells and Development, vol. 17, no. 1, pp. 199–206, 2008.
  23. I. S. Shimada and J. L. Spees, “Stem and progenitor cells for neurological repair: minor issues, major hurdles, and exciting opportunities for paracrine-based therapeutics,” Journal of Cellular Biochemistry, vol. 112, no. 2, pp. 374–380, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. S. Kerpedjieva, D. S. Kim, D. J. Barbeau, and K. Tamama, “EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1,” Stem Cells and Development, vol. 21, no. 13, pp. 2541–2551, 2012.
  26. K. Tamama, H. Kawasaki, and A. Wells, “Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC,” Journal of biomedicine & biotechnology, vol. 2010, p. 795385, 2010. View at Scopus
  27. H. Agata, N. Watanabe, Y. Ishii et al., “Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions,” Biochemical and Biophysical Research Communications, vol. 382, no. 2, pp. 353–358, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Ng, S. Boucher, S. Koh et al., “PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages,” Blood, vol. 112, no. 2, pp. 295–307, 2008.
  29. L. Sensebé, M. Krampera, H. Schrezenmeier, P. Bourin, and R. Giordano, “Mesenchymal stem cells for clinical application,” Vox Sanguinis, vol. 98, no. 2, pp. 93–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. V. H. Fan, K. Tamama, A. Au et al., “Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells,” Stem Cells, vol. 25, no. 5, pp. 1241–1251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Wells, “EGF receptor,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 6, pp. 637–643, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. A. I. Caplan, “Why are MSCs therapeutic? New data: new insight,” Journal of Pathology, vol. 217, no. 2, pp. 318–324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. E. S. Silverman and T. Collins, “Pathways of Egr-1-mediated gene transcription in vascular biology,” American Journal of Pathology, vol. 154, no. 3, pp. 665–670, 1999. View at Scopus
  34. G. Thiel and G. Cibelli, “Regulation of life and death by the zinc finger transcription factor Egr-1,” Journal of Cellular Physiology, vol. 193, no. 3, pp. 287–292, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Christy and D. Nathans, “DNA binding site of the growth factor-inducible protein Zif268,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 22, pp. 8737–8741, 1989. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Fang, K. Ooka, S. Bhattachyya et al., “The early growth response gene Egr2 (alias Krox20) is a novel transcriptional target of transforming growth factor-β that is up-regulated in systemic sclerosis and mediates profibrotic responses,” American Journal of Pathology, vol. 178, no. 5, pp. 2077–2090, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Le, R. Nagarajan, J. Y. T. Wang, T. Araki, R. E. Schmidt, and J. Milbrandt, “Analysis of congenital hypomyelinating Egr2Lo/Lo nerves identifies Sox2 as an inhibitor of Schwann cell differentiation and myelination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2596–2601, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. L. Lee, Y. Sadovsky, A. H. Swirnoff et al., “Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1),” Science, vol. 273, no. 5279, pp. 1219–1221, 1996. View at Scopus
  39. J. I. Suehiro, T. Hamakubo, T. Kodama, W. C. Aird, and T. Minami, “Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3,” Blood, vol. 115, no. 12, pp. 2520–2532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. L. M. Khachigian, “Early growth response-1 in cardiovascular pathobiology,” Circulation Research, vol. 98, no. 2, pp. 186–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. E. D. Adamson and D. Mercola, “Egr1 transcription factor: multiple roles in prostate tumor cell growth and survival,” Tumor Biology, vol. 23, no. 2, pp. 93–102, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. V. A. Street, C. L. Bennett, J. D. Goldy et al., “Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C,” Neurology, vol. 60, no. 1, pp. 22–26, 2003. View at Scopus
  43. L. E. Warner, P. Mancias, I. J. Butler et al., “Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies,” Nature Genetics, vol. 18, no. 4, pp. 382–384, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Safford, S. Collins, M. A. Lutz et al., “Egr-2 and Egr-3 are negative regulators of T cell activation,” Nature Immunology, vol. 6, no. 5, pp. 472–480, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. W. G. Tourtellotte and J. Milbrandt, “Sensory ataxia and muscle spindle agenesis in mice lacking the transcription factor Egr3,” Nature Genetics, vol. 20, no. 1, pp. 87–91, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. J. C. Bonner, “Regulation of PDGF and its receptors in fibrotic diseases,” Cytokine and Growth Factor Reviews, vol. 15, no. 4, pp. 255–273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Leask, “Potential therapeutic targets for cardiac fibrosis: TGFβ, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation,” Circulation Research, vol. 106, no. 11, pp. 1675–1680, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Barrientos, O. Stojadinovic, M. S. Golinko, H. Brem, and M. Tomic-Canic, “Growth factors and cytokines in wound healing,” Wound Repair and Regeneration, vol. 16, no. 5, pp. 585–601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Beyer, J. H. Distler, and O. Distler, “Are tyrosine kinase inhibitors promising for the treatment of systemic sclerosis and other fibrotic diseases?” Swiss Medical Weekly, vol. 140, p. w13050, 2010. View at Scopus
  50. J. Chen, J. K. Chen, K. Nagai et al., “EGFR signaling promotes TGFbeta-dependent renal fibrosis,” Journal of the American Society of Nephrology, vol. 23, no. 2, pp. 215–224, 2012.
  51. J. L. Ingram and J. C. Bonner, “EGF and PDGF receptor tyrosine kinases as therapeutic targets for chronic lung diseases,” Current Molecular Medicine, vol. 6, no. 4, pp. 409–421, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Bhattacharyya, J. L. Sargent, P. Du et al., “Egr-1 induces a profibrotic injury/repair gene program associated with systemic sclerosis,” PLoS ONE, vol. 6, no. 9, Article ID e23082, 2011.
  53. J. Kumbrink, K. H. Kirsch, and J. P. Johnson, “EGR1, EGR2, and EGR3 activate the expression of their coregulator NAB2 establishing a negative feedback loop in cells of neuroectodermal and epithelial origin,” Journal of Cellular Biochemistry, vol. 111, no. 1, pp. 207–217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. E. A. Feingold, P. J. Good, M. S. Guyer et al., “The ENCODE (ENCyclopedia of DNA Elements) Project,” Science, vol. 306, no. 5696, pp. 636–640, 2004. View at Publisher · View at Google Scholar
  55. E. A. Feingold, P. J. Good, M. S. Guyer, et al., “A user's guide to the encyclopedia of DNA elements (encode),” PLoS Biology, vol. 9, no. 4, Article ID e1001046, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. K. R. Rosenbloom, T. R. Dreszer, J. C. Long, et al., “ENCODE whole-genome data in the UCSC Genome Browser: update 2012,” Nucleic Acids Research, vol. 40, pp. D912–D917, 2012.
  57. L. R. Meyer, A. S. Zweig, A. S. Hinrichs, et al., “The UCSC Genome Browser database: extensions and updates 2013,” Nucleic Acids Research. In press.
  58. G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, “Wound repair and regeneration,” Nature, vol. 453, no. 7193, pp. 314–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Martin, “Wound healing—aiming for perfect skin regeneration,” Science, vol. 276, no. 5309, pp. 75–81, 1997. View at Publisher · View at Google Scholar · View at Scopus
  60. C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair and Regeneration, vol. 17, no. 1, pp. 1–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. H. F. Dvorak, “Angiogenesis: update 2005,” Journal of Thrombosis and Haemostasis, vol. 3, no. 8, pp. 1835–1842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Tamama and S. S. Kerpedjieva, “Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells/mesenchymal stem cells (MSCs),” Advances in Wound Care, vol. 1, no. 4, pp. 177–182, 2012.
  63. M. C. Simon and B. Keith, “The role of oxygen availability in embryonic development and stem cell function,” Nature Reviews Molecular Cell Biology, vol. 9, no. 4, pp. 285–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Tian, S. L. McKnight, and D. W. Russell, “Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells,” Genes and Development, vol. 11, no. 1, pp. 72–82, 1997. View at Scopus
  65. M. S. Wiesener, J. S. Jürgensen, C. Rosenberger et al., “Widespread hypoxia-inducible expression of HIF-2alpha in distinct cell populations of different organs,” The FASEB Journal, vol. 17, no. 2, pp. 271–273, 2003. View at Scopus
  66. K. Tamama, H. Kawasaki, S. S. Kerpedjieva, J. Guan, R. K. Ganju, and C. K. Sen, “Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition,” Journal of Cellular Biochemistry, vol. 112, no. 3, pp. 804–817, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Tamama, D. Kim, and S. S. Kerpedjieva, “Molecular mechanisms of hypoxia-mediated enhanced in vitro expansion, augmented self-renewal, and increased therapeutic potential of mesenchymal stem cells,” in Hypoxia: Causes, Types and Management, D. Vordermark, Ed., Nova Science, Hauppauge, NY, USA.
  68. P. R. Crisostomo, Y. Wang, T. A. Markel, M. Wang, T. Lahm, and D. R. Meldrum, “Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB- but not JNK-dependent mechanism,” American Journal of Physiology, vol. 294, no. 3, pp. C675–C682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. R. Das, H. Jahr, G. J. van Osch, and E. Farrell, “The role of hypoxia in bone marrow-derived mesenchymal stem cells: considerations for regenerative medicine approaches,” Tissue engineering B, vol. 16, no. 2, pp. 159–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. L. A. Mylotte, A. M. Duffy, M. Murphy et al., “Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment,” Stem Cells, vol. 26, no. 5, pp. 1325–1336, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Okuyama, B. Krishnamachary, Y. F. Zhou, H. Nagasawa, M. Bosch-Marce, and G. L. Semenza, “Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1,” The Journal of Biological Chemistry, vol. 281, no. 22, pp. 15554–15563, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. I. Rosová, M. Dao, B. Capoccia, D. Link, and J. A. Nolta, “Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells,” Stem Cells, vol. 26, no. 8, pp. 2173–2182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. S. W. Song, W. Chang, B. W. Song et al., “Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium,” Stem Cells, vol. 27, no. 6, pp. 1358–1365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. R. Xu, J. Chen, X. Cong, S. Hu, and X. Chen, “Lovastatin protects mesenchymal stem cells against hypoxia- and serum deprivation-induced apoptosis by activation of PI3K/Akt and ERK1/2,” Journal of Cellular Biochemistry, vol. 103, no. 1, pp. 256–269, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Zhu, J. Chen, X. Cong, S. Hu, and X. Chen, “Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 416–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Rong, F. Hu, R. Huang et al., “Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1-independent mechanisms,” Cancer Research, vol. 66, no. 14, pp. 7067–7074, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. S. F. Yan, J. Lu, Y. S. Zou et al., “Hypoxia-associated induction of early growth response-1 gene expression,” The Journal of Biological Chemistry, vol. 274, no. 21, pp. 15030–15040, 1999. View at Publisher · View at Google Scholar · View at Scopus
  78. G. F. Pierce, “Inflammation in nonhealing diabetic wounds: the space-time continuum does matter,” American Journal of Pathology, vol. 159, no. 2, pp. 399–403, 2001. View at Scopus
  79. M. Schaffer, M. Witte, and H. D. Becker, “Models to study ischemia in chronic wounds,” The International Journal of Lower Extremity Wounds, vol. 1, no. 2, pp. 104–111, 2002.
  80. S. Willenborg, J. Knipper, R. Ranjan, T. Krieg, and S. A. Eming, “Chronic Wounds and Inflammation,” in Wound Healing Society Year Book (WHSYB)—Advances in Wound Care, C. K. Sen, Ed., Mary Ann Liebert, New Rochelle, NY, USA, 2010.
  81. M. Wu, D. S. Melichian, M. De La Garza et al., “Essential roles for early growth response transcription factor Egr-1 in tissue fibrosis and wound healing,” American Journal of Pathology, vol. 175, no. 3, pp. 1041–1055, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. B. Février and G. Raposo, “Exosomes: Endosomal-derived vesicles shipping extracellular messages,” Current Opinion in Cell Biology, vol. 16, no. 4, pp. 415–421, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. R. W. Yeo, R. C. Lai, B. Zhang et al., “Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery,” Advanced Drug Delivery Reviews. In press.
  85. R. C. Lai, T. S. Chen, and S. K. Lim, “Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease,” Regenerative Medicine, vol. 6, no. 4, pp. 481–492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Bruno, C. Grange, M. C. Deregibus et al., “Mesenchymal stem cell-derived microvesicles protect against acute tubular injury,” Journal of the American Society of Nephrology, vol. 20, no. 5, pp. 1053–1067, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Collino, M. C. Deregibus, S. Bruno et al., “Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs,” PLoS ONE, vol. 5, no. 7, Article ID e11803, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. R. C. Lai, F. Arslan, M. M. Lee et al., “Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury,” Stem Cell Research, vol. 4, no. 3, pp. 214–222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Tomasoni, L. Longaretti, C. Rota, et al., “Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells,” Stem Cells and Development. In press.