About this Journal Submit a Manuscript Table of Contents
Stem Cells International
Volume 2013 (2013), Article ID 205878, 14 pages
http://dx.doi.org/10.1155/2013/205878
Research Article

Hippocampal Neurogenesis and the Brain Repair Response to Brief Stereotaxic Insertion of a Microneedle

1Department of Neurology, University of South Florida, 13220 Laurel Drive, Tampa, FL 33612, USA
2Research Service, James A. Haley VA Medical Center, Tampa, FL 33612, USA
3Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
4Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL 33612, USA

Received 28 June 2012; Revised 23 November 2012; Accepted 14 January 2013

Academic Editor: Joshua J. Breunig

Copyright © 2013 Shijie Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Bronstein, M. Tagliati, R. L. Alterman et al., “Deep brain stimulation for Parkinson disease an expert consensus and review of key issues,” Archives of Neurology, vol. 68, no. 2, pp. 165–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. E. D. Flora, C. L. Perera, A. L. Cameron, and G. J. Maddern, “Deep brain stimulation for essential tremor: a systematic review,” Movement Disorders, vol. 25, no. 11, pp. 1550–1559, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Krack and L. Vercueil, “Review of the functional surgical treatment of dystonia,” European Journal of Neurology, vol. 8, no. 5, pp. 389–399, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. L. B. Marangell, M. Martinez, R. A. Jurdi, and H. Zboyan, “Neurostimulation therapies in depression: a review of new modalities,” Acta Psychiatrica Scandinavica, vol. 116, no. 3, pp. 174–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Conca, J. Di Pauli, H. Hinterhuber, and H. P. Kapfhammer, “Deep brain stimulation: a review on current research,” Neuropsychiatrie, vol. 25, no. 1, pp. 1–8, 2011. View at Scopus
  6. P. P. de Koning, M. Figee, P. van den Munckhof, P. R. Schuurman, and D. Denys, “Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets,” Current Psychiatry Reports, vol. 13, no. 4, pp. 274–282, 2011.
  7. J. Luigjes, W. van den Brink, M. Feenstra, et al., “Deep brain stimulation in addiction: a review of potential brain targets,” Molecular Psychiatry, vol. 17, no. 6, pp. 572–583, 2012.
  8. A. N. Sen, P. G. Campbell, S. Yadla, J. Jallo, and A. D. Sharan, “Deep brain stimulation in the management of disorders of consciousness: a review of physiology, previous reports, and ethical considerations,” Neurosurgical Focus, vol. 29, no. 2, p. E14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. A. Shah and N. D. Schiff, “Central thalamic deep brain stimulation for cognitive neuromodulation—a review of proposed mechanisms and investigational studies,” European Journal of Neuroscience, vol. 32, no. 7, pp. 1135–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Burbaud, A. Vital, A. Rougier et al., “Minimal tissue damage after stimulation of the motor thalamus in a case of chorea-acanthocytosis,” Neurology, vol. 59, no. 12, pp. 1982–1984, 2002. View at Scopus
  11. K. L. Chou, M. S. Forman, J. Q. Trojanowski, H. I. Hurtig, and G. H. Baltuch, “Subthalamic nucleus deep brain stimulation in a patient with levodopa-responsive multiple system atrophy: case report,” Journal of Neurosurgery, vol. 100, no. 3, pp. 553–556, 2004. View at Scopus
  12. J. M. Henderson, D. J. O'Sullivan, M. Pell et al., “Lesion of thalamic centromedian-parafascicular complex after chronic deep brain stimulation,” Neurology, vol. 56, no. 11, pp. 1576–1579, 2001. View at Scopus
  13. M. S. Nielsen, C. R. Bjarkam, J. C. Sørensen, M. Bojsen-Møller, N. A. Sunde, and K. Østergaard, “Chronic subthalamic high-frequency deep brain stimulation in Parkinson's disease—a histopathological study,” European Journal of Neurology, vol. 14, no. 2, pp. 132–138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. G. Pilitsis, Y. Chu, J. Kordower, D. C. Bergen, E. J. Cochran, and R. A. E. Bakay, “Postmortem study of deep brain stimulation of the anterior thalamus: case report,” Neurosurgery, vol. 62, no. 2, pp. E530–E532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Vedam-Mai, A. Yachnis, M. Ullman, S. P. Javedan, and M. S. Okun, “Postmortem observation of collagenous lead tip region fibrosis as a rare complication of DBS,” Movement Disorders, vol. 27, no. 4, pp. 565–569, 2012.
  16. P. S. Hughes, J. P. Krcek, D. E. Hobson, and M. R. Del Bigio, “An unusual inflammatory response to implanted deep brain electrodes,” Canadian Journal of Neurological Sciences, vol. 38, no. 1, pp. 168–170, 2011.
  17. C. L. Stephan, J. J. Kepes, K. Santacruz, S. B. Wilkinson, B. Fegley, and I. Osorio, “Spectrum of clinical and histopathologic responses to intracranial electrodes: from multifocal aseptic meningitis to multifocal hypersensitivity-type meningovasculitis,” Epilepsia, vol. 42, no. 7, pp. 895–901, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Sanchez-Ramos, S. Song, V. Sava et al., “Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer's mice,” Neuroscience, vol. 163, no. 1, pp. 55–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Song and J. Sanchez-Ramos, “Preparation of neural progenitors from bone marrow and umbilical cord blood,” Methods in Molecular Biology, vol. 438, pp. 123–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Furuya, R. Tanaka, T. Urabe et al., “Establishment of modified chimeric mice using GFP bone marrow as a model for neurological disorders,” NeuroReport, vol. 14, no. 4, pp. 629–631, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. T. J. Shors, G. Miesegaes, A. Beylin, M. Zhao, T. Rydel, and E. Gould, “Neurogenesis in the adult is involved in the formation of trace memories,” Nature, vol. 410, no. 6826, pp. 372–376, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. T. J. Shors, D. A. Townsend, M. Zhao, Y. Kozorovitskiy, and E. Gould, “Neurogenesis may relate to some but not all types of hippocampal-dependent learning,” Hippocampus, vol. 12, no. 5, pp. 578–584, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Encinas and G. Enikolopov, “Identifying and quantitating neural stem and progenitor cells in the adult brain,” Methods in Cell Biology, vol. 85, pp. 243–272, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. R. Simard, D. Soulet, G. Gowing, J. P. Julien, and S. Rivest, “Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease,” Neuron, vol. 49, no. 4, pp. 489–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. T. M. Malm, M. Koistinaho, M. Pärepalo et al., “Bone-marrow-derived cells contribute to the recruitment of microglial cells in response to β-amyloid deposition in APP/PS1 double transgenic Alzheimer mice,” Neurobiology of Disease, vol. 18, no. 1, pp. 134–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Djukic, A. Mildner, H. Schmidt et al., “Circulating monocytes engraft in the brain, differentiate into microglia and contribute to the pathology following meningitis in mice,” Brain, vol. 129, no. 9, pp. 2394–2403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Kokovay and L. A. Cunningham, “Bone marrow-derived microglia contribute to the neuroinflammatory response and express iNOS in the MPTP mouse model of Parkinson's disease,” Neurobiology of Disease, vol. 19, no. 3, pp. 471–478, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Mildner, H. Schmidt, M. Nitsche et al., “Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions,” Nature Neuroscience, vol. 10, no. 12, pp. 1544–1553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Tanaka, M. Komine-Kobayashi, H. Mochizuki et al., “Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia,” Neuroscience, vol. 117, no. 3, pp. 531–539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. S. Magavi, B. R. Leavitt, and J. D. Macklis, “Induction of neurogenesis in the neocertex of adult mice,” Nature, vol. 405, no. 6789, pp. 951–955, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Bao, J. U. Lindgren, P. Van Der Meide, S. W. Zhu, H. G. Ljunggren, and J. Zhu, “The critical role of IL-12p40 in initiating, enhancing, and perpetuating pathogenic events in murine experimental autoimmune neuritis,” Brain Pathology, vol. 12, no. 4, pp. 420–429, 2002. View at Scopus
  32. A. D. Ho, D. Young, M. Maruyama et al., “Pluripotent and lineage-committed CD34+ subsets in leukapheresis products mobilized by G-CSF, GM-CSF vs. a combination of both,” Experimental Hematology, vol. 24, no. 13, pp. 1460–1468, 1996. View at Scopus
  33. A. Schneider, C. Krüger, T. Steigleder et al., “The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis,” The Journal of Clinical Investigation, vol. 115, no. 8, pp. 2083–2098, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. G. C. McConnell, T. M. Schneider, D. J. Owens, and R. V. Bellamkonda, “Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 6, pp. 1097–1107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. B. K. Leung, R. Biran, C. J. Underwood, and P. A. Tresco, “Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry,” Biomaterials, vol. 29, no. 23, pp. 3289–3297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Stice, A. Gilletti, A. Panitch, and J. Muthuswamy, “Thin microelectrodes reduce GFAP expression in the implant site in rodent somatosensory cortex,” Journal of Neural Engineering, vol. 4, no. 2, pp. 42–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Lenarz, H. H. Lim, T. Lenarz et al., “Auditory midbrain implant: histomorphologic effects of long-term implantation and electric stimulation of a new deep brain stimulation array,” Otology and Neurotology, vol. 28, no. 8, pp. 1045–1052, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Biran, D. C. Martin, and P. A. Tresco, “The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull,” Journal of Biomedical Materials Research A, vol. 82, no. 1, pp. 169–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. K. Hirshler, U. Polat, and A. Biegon, “Intracranial electrode implantation produces regional neuroinflammation and memory deficits in rats,” Experimental Neurology, vol. 222, no. 1, pp. 42–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. B. J. Catlow, A. R. Rowe, C. R. Clearwater, M. Mamcarz, G. W. Arendash, and J. Sanchez-Ramos, “Effects of environmental enrichment and physical activity on neurogenesis in transgenic PS1/APP mice,” Brain Research, vol. 1256, pp. 173–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Sanchez-Ramos, S. Song, V. Sava et al., “Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer's mice,” Neuroscience, vol. 163, no. 1, pp. 55–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. W. R. Schäbitz and A. Schneider, “New targets for established proteins: exploring G-CSF for the treatment of stroke,” Trends in Pharmacological Sciences, vol. 28, no. 4, pp. 157–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Tonges, J. C. Schlachetzki, J. H. Weishaupt, and M. Bahr, “Hematopoietic cytokines—on the verge of conquering neurology,” Current Molecular Medicine, vol. 7, no. 2, pp. 157–170, 2007.
  44. Y. Nishio, M. Koda, T. Kamada et al., “Granulocyte colony-stimulating factor attenuates neuronal death and promotes functional recovery after spinal cord injury in mice,” Journal of Neuropathology and Experimental Neurology, vol. 66, no. 8, pp. 724–731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Duning, H. Schiffbauer, T. Warnecke et al., “G-CSF prevents the progression of structural disintegration of white matter tracts in amyotrophic lateral sclerosis: a pilot trial,” PLoS ONE, vol. 6, no. 3, Article ID e17770, 2011. View at Publisher · View at Google Scholar · View at Scopus