About this Journal Submit a Manuscript Table of Contents
Stem Cells International
Volume 2013 (2013), Article ID 319489, 13 pages
http://dx.doi.org/10.1155/2013/319489
Review Article

Cancer Stem Cell Markers in Head and Neck Squamous Cell Carcinoma

1School of Dentistry, The University of Queensland, 200 Turbot Street, Brisbane, QLD 4000, Australia
2The University of Queensland Centre for Clinical Research, Herston, QLD 4029, Australia

Received 28 November 2012; Accepted 23 January 2013

Academic Editor: Rihab Nasr

Copyright © 2013 Aidan G. Major et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Warnakulasuriya, “Global epidemiology of oral and oropharyngeal cancer,” Oral Oncology, vol. 45, no. 4-5, pp. 309–316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Scully and J. Bagan, “Oral squamous cell carcinoma overview,” Oral Oncology, vol. 45, no. 4-5, pp. 301–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Zhang, Y. Zhang, L. Mao, Z. Zhang, and W. Chen, “Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes,” Cancer Letters, vol. 277, no. 2, pp. 227–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. D. J. Liebertz, M. G. Lechner, R. Masood et al., “Establishment and characterization of a novel head and neck squamous cell carcinoma cell line USC-HN1,” Head and Neck Oncology, vol. 2, no. 1, article 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. M. Sterz, C. Kulle, B. Dakic et al., “A basal-cell-like compartment in head and neck squamous cell carcinomas represents the invasive front of the tumor and is expressing MMP-9,” Oral Oncology, vol. 46, no. 2, pp. 116–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. McCullough, G. Prasad, and C. S. Farah, “Oral mucosal malignancy and potentially malignant lesions: an update on the epidemiology, risk factors, diagnosis and management,” Australian Dental Journal, vol. 55, pp. 61–65, 2010. View at Scopus
  7. M. E. P. Prince and L. E. Ailles, “Cancer stem cells in head and neck squamous cell cancer,” Journal of Clinical Oncology, vol. 26, no. 17, pp. 2871–2875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. H. Chiou, C. C. Yu, C. Y. Huang et al., “Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma,” Clinical Cancer Research, vol. 14, no. 13, pp. 4085–4095, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Kelly, V. Paleri, C. Downs, and R. Shah, “Deterioration in quality of life and depressive symptoms during radiation therapy for head and neck cancer,” Otolaryngology, vol. 136, no. 1, pp. 108–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. S. N. Rogers, S. A. Ahad, and A. P. Murphy, “A structured review and theme analysis of papers published on 'quality of life' in head and neck cancer: 2000–2005,” Oral Oncology, vol. 43, no. 9, pp. 843–868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. F. Oton-Leite, A. C. Corrêa de Castro, M. O. Morais, J. C. D. Pinezi, C. R. Leles, and E. F. Mendonça, “Effect of intraoral low-level laser therapy on quality of life of patients with head and neck cancer undergoing radiotherapy,” Head and Neck, vol. 34, no. 3, pp. 398–404, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. L. J. Harper, D. E. Costea, L. Gammon, B. Fazil, A. Biddle, and I. C. Mackenzie, “Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance,” BMC Cancer, vol. 10, article 166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. H. Wong, M. M. Monroe, E. C. Anderson, and D. R. Clayburgh, “Cancer stem cells in head and neck squamous cell carcinoma,” Journal of Oncology, vol. 2011, Article ID 762780, 8 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Umezawa and J. D. Gorham, “Dueling models in head and neck tumor formation,” Laboratory Investigation, vol. 90, no. 11, pp. 1546–1548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. R. J. Ward and P. B. Dirks, “Cancer stem cells: at the headwaters of tumor development,” Annual Review of Pathology, vol. 2, pp. 175–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. E. Prince, R. Sivanandan, A. Kaczorowski et al., “Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 3, pp. 973–978, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Chen, “The cancer stem cell concept in progression of head and neck cancer,” Journal of Oncology, vol. 2009, Article ID 894064, 8 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. T. Jordan, M. L. Guzman, and M. Noble, “Cancer stem cells,” New England Journal of Medicine, vol. 355, no. 12, pp. 1253–1261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. F. Clarke, J. E. Dick, P. B. Dirks et al., “Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells,” Cancer Research, vol. 66, no. 19, pp. 9339–9344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. C. T. Jordan, “Cancer stem cells: controversial or just misunderstood?” Cell Stem Cell, vol. 4, no. 3, pp. 203–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. S. I. Sayed, R. C. Dwivedi, R. Katna et al., “Implications of understanding cancer stem cell (CSC) biology in head and neck squamous cell cancer,” Oral Oncology, vol. 47, no. 4, pp. 237–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Bonnet and J. E. Dick, “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” Nature Medicine, vol. 3, no. 7, pp. 730–737, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Charafe-Jauffret, F. Monville, C. Ginestier, G. Dontu, D. Birnbaum, and M. S. Wicha, “Cancer stem cells in breast: current opinion and future challenges,” Pathobiology, vol. 75, no. 2, pp. 75–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. K. Singh, C. Hawkins, I. D. Clarke et al., “Identification of human brain tumour initiating cells,” Nature, vol. 432, no. 7015, pp. 396–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower, and N. J. Maitland, “Prospective identification of tumorigenic prostate cancer stem cells,” Cancer Research, vol. 65, no. 23, pp. 10946–10951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Xin, D. A. Lawson, and O. N. Witte, “The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 19, pp. 6942–6947, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Eramo, F. Lotti, G. Sette et al., “Identification and expansion of the tumorigenic lung cancer stem cell population,” Cell Death and Differentiation, vol. 15, no. 3, pp. 504–514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Ricci-Vitiani, A. Pagliuca, E. Palio, A. Zeuner, and R. De Maria, “Colon cancer stem cells,” Gut, vol. 57, no. 4, pp. 538–548, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. J. Lee, C. Li, and D. M. Simeone, “Human pancreatic cancer stem cells: implications for how we treat pancreatic cancer,” Translational Oncology, vol. 1, pp. 14–18, 2008.
  31. Z. F. Yang, D. W. Ho, M. N. Ng et al., “Significance of CD90+ cancer stem cells in human liver cancer,” Cancer Cell, vol. 13, no. 2, pp. 153–166, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Fang, T. K. Nguyen, K. Leishear et al., “A tumorigenic subpopulation with stem cell properties in melanomas,” Cancer Research, vol. 65, no. 20, pp. 9328–9337, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. A. E. Albers, C. Chen, B. Köberle et al., “Stem cells in squamous head and neck cancer,” Critical Reviews in Oncology/Hematology, vol. 81, no. 3, pp. 224–240, 2012. View at Publisher · View at Google Scholar
  34. J. E. Visvader and G. J. Lindeman, “Cancer stem cells in solid tumours: accumulating evidence and unresolved questions,” Nature Reviews Cancer, vol. 8, no. 10, pp. 755–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Al-Assar, R. J. Muschel, T. S. Mantoni, W. G. McKenna, and T. B. Brunner, “Radiation response of cancer stem-like cells from established human cell lines after sorting for surface markers,” International Journal of Radiation Oncology Biology Physics, vol. 75, no. 4, pp. 1216–1225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Bao, Q. Wu, R. E. McLendon et al., “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response,” Nature, vol. 444, no. 7120, pp. 756–760, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. G. Bertolini, L. Roz, P. Perego et al., “Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 38, pp. 16281–16286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. J. Chang, C. C. Hsu, M. C. Yung et al., “Enhanced radiosensitivity and radiation-induced apoptosis in glioma CD133-positive cells by knockdown of SirT1 expression,” Biochemical and Biophysical Research Communications, vol. 380, no. 2, pp. 236–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Diehn and M. F. Clarke, “Cancer stem cells and radiotherapy: new insights into tumor radioresistance,” Journal of the National Cancer Institute, vol. 98, no. 24, pp. 1755–1757, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. P. Hong, J. Wen, S. Bang, S. Park, and Y. S. Si, “CD44-positive cells are responsible for gemcitabine resistance in pancreatic cancer cells,” International Journal of Cancer, vol. 125, no. 10, pp. 2323–2331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. M. McCord, M. Jamal, E. S. Williams, K. Camphausen, and P. J. Tofilon, “CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines,” Clinical Cancer Research, vol. 15, no. 16, pp. 5145–5153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. H. Chiou, C. C. Yu, W. L. Lo et al., “Bmi-1 regulates snail expression and promotes metastasis ability in head and neck squamous cancer-derived ALDH1 positive cells,” Journal of Oncology, vol. 2011, Article ID 609259, 16 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Damek-Poprawa, A. Volgina, J. Korostoff et al., “Targeted inhibition of CD133+ cells in oral cancer cell lines,” Journal of Dental Research, vol. 90, no. 5, pp. 638–645, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Baumann, M. Krause, and R. Hill, “Exploring the role of cancer stem cells in radioresistance,” Nature Reviews Cancer, vol. 8, no. 7, pp. 545–554, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Y. Frank, T. Schatton, and M. H. Frank, “The therapeutic promise of the cancer stem cell concept,” Journal of Clinical Investigation, vol. 120, no. 1, pp. 41–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Dalerba, R. W. Cho, and M. F. Clarke, “Cancer stem cells: models and concepts,” Annual Review of Medicine, vol. 58, pp. 267–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. A. Rasheed, J. Kowalski, B. D. Smith, and W. Matsui, “Concise review: emerging concepts in clinical targeting of cancer stem cells,” Stem Cells, vol. 29, no. 6, pp. 883–887, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Baum, J. Settleman, and M. P. Quinlan, “Transitions between epithelial and mesenchymal states in development and disease,” Seminars in Cell and Developmental Biology, vol. 19, no. 3, pp. 294–308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Brabletz, A. Jung, S. Spaderna, F. Hlubek, and T. Kirchner, “Migrating cancer stem cells—an integrated concept of malignant tumour progression,” Nature Reviews Cancer, vol. 5, no. 9, pp. 744–749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Chen, Y. Wei, M. Hummel et al., “Evidence for epithelial-mesenchymal transition in cancer stem cells of head and neck squamous cell carcinoma,” PLoS ONE, vol. 6, no. 1, Article ID e16466, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. S. J. Davis, V. Divi, J. H. Owen et al., “Metastatic potential of cancer stem cells in head and neck squamous cell carcinoma,” Archives of Otolaryngology, vol. 136, no. 12, pp. 1260–1266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Orian-Rousseau, “CD44, a therapeutic target for metastasising tumours,” European Journal of Cancer, vol. 46, no. 7, pp. 1271–1277, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Pang, W. L. Law, A. C. Y. Chu et al., “A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer,” Cell Stem Cell, vol. 6, no. 6, pp. 603–615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Sun and Z. Wang, “Head neck squamous cell carcinoma c-Met+ cells display cancer stem cell properties and are responsible for cisplatin-resistance and metastasis,” International Journal of Cancer, vol. 129, no. 10, pp. 2337–2348, 2011. View at Publisher · View at Google Scholar
  55. D. C. Radisky and M. A. LaBarge, “Epithelial-mesenchymal transition and the stem cell phenotype,” Cell Stem Cell, vol. 2, no. 6, pp. 511–512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Mishra and M. Verma, “Cancer biomarkers: are we ready for the prime time?” Cancers, vol. 2, no. 1, pp. 190–208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Chikamatsu, G. Takahashi, K. Sakakura, S. Ferrone, and K. Masuyama, “Immunoregulatory properties of CD44+ cancer stem-like cells in squamous cell carcinoma of the head and neck,” Head and Neck, vol. 33, no. 2, pp. 208–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. Q. Yu, B. P. Toole, and I. Stamenkovic, “Induction of apoptosis of metastatic mammary carcinoma cells invivo by disruption of tumor cell surface CD44 function,” Journal of Experimental Medicine, vol. 186, no. 12, pp. 1985–1996, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. Q. Yu and I. Stamenkovic, “Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion,” Genes and Development, vol. 13, no. 1, pp. 35–48, 1999. View at Scopus
  60. H. R. Kim, M. A. Wheeler, C. M. Wilson et al., “Hyaluronan facilitates invasion of colon carcinoma cells in vitro via interaction with CD44,” Cancer Research, vol. 64, no. 13, pp. 4569–4576, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Golshani, L. Lopez, V. Estrella, M. Kramer, N. Iida, and V. B. Lokeshwar, “Hyaluronic acid synthase-1 expression regulates bladder cancer growth, invasion, and angiogenesis through CD44,” Cancer Research, vol. 68, no. 2, pp. 483–491, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Kajita, Y. Itoh, T. Chiba et al., “Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration,” Journal of Cell Biology, vol. 153, no. 5, pp. 893–904, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. C. M. Isacke and H. Yarwood, “The hyaluronan receptor, CD44,” International Journal of Biochemistry and Cell Biology, vol. 34, no. 7, pp. 718–721, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Dalerba, S. J. Dylla, I. K. Park et al., “Phenotypic characterization of human colorectal cancer stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 24, pp. 10158–10163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Li, D. G. Heidt, P. Dalerba et al., “Identification of pancreatic cancer stem cells,” Cancer Research, vol. 67, no. 3, pp. 1030–1037, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. C. A. O'Brien, A. Pollett, S. Gallinger, and J. E. Dick, “A human colon cancer cell capable of initiating tumour growth in immunodeficient mice,” Nature, vol. 445, no. 7123, pp. 106–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. S. K. Singh, I. D. Clarke, M. Terasaki et al., “Identification of a cancer stem cell in human brain tumors,” Cancer Research, vol. 63, no. 18, pp. 5821–5828, 2003. View at Scopus
  68. A. Okamoto, K. Chikamatsu, K. Sakakura, K. Hatsushika, G. Takahashi, and K. Masuyama, “Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck,” Oral Oncology, vol. 45, no. 7, pp. 633–639, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. L. J. Harper, K. Piper, J. Common, F. Fortune, and I. C. Mackenzie, “Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma,” Journal of Oral Pathology and Medicine, vol. 36, no. 10, pp. 594–603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Gammon, A. Biddle, B. Fazil, L. Harper, and I. C. Mackenzie, “Stem cell characteristics of cell sub-populations in cell lines derived from head and neck cancers of Fanconi anemia patients,” Journal of Oral Pathology and Medicine, vol. 40, no. 2, pp. 143–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. C. Chen, Y. W. Chen, H. S. Hsu et al., “Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer,” Biochemical and Biophysical Research Communications, vol. 385, no. 3, pp. 307–313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. B. Joshua, M. J. Kaplan, I. Doweck, R. Pai, I. L. Weissman, and L. E. Ailles, “Frequency of cells expressing CD44, a Head and Neck cancer stem cell marker: correlation with tumor aggressiveness,” Head and Neck, vol. 34, no. 1, pp. 42–49, 2012. View at Publisher · View at Google Scholar
  73. L. R. Oliveira, J. P. Oliveira-Costa, I. M. Araujo et al., “Cancer stem cell immunophenotypes in oral squamous cell carcinoma,” Journal of Oral Pathology and Medicine, vol. 40, no. 2, pp. 135–142, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Su, X. H. Xu, Q. Huang et al., “Identification of cancer stem-like CD44+ cells in human nasopharyngeal carcinoma cell line,” Archives of Medical Research, vol. 42, no. 1, pp. 15–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. S. J. Wang, G. Wong, A. M. De Heer, W. Xia, and L. Y. W. Bourguignon, “CD44 Variant isoforms in head and neck squamous cell carcinoma progression,” Laryngoscope, vol. 119, no. 8, pp. 1518–1530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. L. L. Kokko, S. Hurme, S. M. Maula et al., “Significance of site-specific prognosis of cancer stem cell marker CD44 in head and neck squamous-cell carcinoma,” Oral Oncology, vol. 47, no. 6, pp. 510–516, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. J. T. Lin, T. H. Chang, C. S. Chang et al., “Prognostic value of pretreatment CD44 mRNA in peripheral blood of patients with locally advanced head and neck cancer,” Oral Oncology, vol. 46, no. 5, pp. e29–e33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Mack and O. Gires, “CD44s and CD44v6 expression in head and neck epithelia,” PLoS ONE, vol. 3, no. 10, Article ID e3360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. C. Lim, S. Y. Oh, Y. Y. Cha, S. H. Kim, X. Jin, and H. Kim, “Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas,” Oral Oncology, vol. 47, no. 2, pp. 83–91, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. M. R. Clay, M. Tabor, J. H. Owen et al., “Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase,” Head and Neck, vol. 32, no. 9, pp. 1195–1201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Ginestier, M. H. Hur, E. Charafe-Jauffret et al., “ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome,” Cell Stem Cell, vol. 1, no. 5, pp. 555–567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. E. H. Huang, M. J. Hynes, T. Zhang et al., “Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis,” Cancer Research, vol. 69, no. 8, pp. 3382–3389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. F. Jiang, Q. Qiu, A. Khanna et al., “Aldehyde dehydrogenase 1 is a tumor stem cell-Associated marker in lung cancer,” Molecular Cancer Research, vol. 7, no. 3, pp. 330–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Ma, W. C. Kwok, T. K. W. Lee et al., “Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations,” Molecular Cancer Research, vol. 6, no. 7, pp. 1146–1153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. C. Chen, C. J. Chang, H. S. Hsu et al., “Inhibition of tumorigenicity and enhancement of radiochemosensitivity in head and neck squamous cell cancer-derived ALDH1-positive cells by knockdown of Bmi-1,” Oral Oncology, vol. 46, no. 3, pp. 158–165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. M. I. Koukourakis, A. Giatromanolaki, V. Tsakmaki, and E. Sivridis, “Cancer stem cell phenotype relates to radio-chemotherapy outcome in locally advanced squamous cell head-neck cancer,” British Journal of Cancer, vol. 106, no. 5, pp. 846–853, 2012. View at Publisher · View at Google Scholar
  87. Y. Wu and P. Y. Wu, “CD133 as a marker for cancer stem cells: progresses and concerns,” Stem Cells and Development, vol. 18, no. 8, pp. 1127–1134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. Q. Zhang, S. Shi, Y. Yen, J. Brown, J. Q. Ta, and A. D. Le, “A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy,” Cancer Letters, vol. 289, no. 2, pp. 151–160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. X. D. Wei, L. Zhou, L. Cheng, J. Tian, J. J. Jiang, and J. MacCallum, “In vivo investigation of CD133 as a putative marker of cancer stem cells in hep-2 cell line,” Head and Neck, vol. 31, no. 1, pp. 94–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. Y. Sun, J. Han, Y. Lu, X. Yang, and M. Fan, “Biological characteristics of a cell subpopulation in tongue squamous cell carcinoma,” Oral Diseases, vol. 18, no. 2, pp. 169–177, 2012. View at Publisher · View at Google Scholar
  91. S. V. Shmelkov, J. M. Butler, A. T. Hooper et al., “CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors,” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2111–2120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Wang, P. Ø. Sakariassen, O. Tsinkalovsky et al., “CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells,” International Journal of Cancer, vol. 122, no. 4, pp. 761–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. A. T. Ogden, A. E. Waziri, R. A. Lochhead et al., “Identification of A2B5+CD133-tumor-initiating cells in adult human gliomas,” Neurosurgery, vol. 62, no. 2, pp. 505–514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. M. A. LaBarge and M. J. Bissell, “Is CD133 a marker of metastatic colon cancer stem cells?” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2021–2024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. C. Lim, J. H. Han, H. J. Kang, E. C. Choi, and C.-H. Kim, “Overexpression of c-Met promotes invasion and metastasis of small oral tongue carcinoma,” Oral Oncology, vol. 48, no. 11, pp. 1114–1119, 2012. View at Publisher · View at Google Scholar
  96. D. Zhao, S.-H. Wang, Y. Feng, C.-G. Hua, J. Zhao, and X.-F. Tang, “Intratumoral c-Met expression is associated with vascular endothelial growth factor C expression, lymphangiogenesis, and lymph node metastasis in oral squamous cell carcinoma: implications for use as a prognostic marker,” Human Pathology, vol. 42, no. 10, pp. 1514–1523, 2011. View at Publisher · View at Google Scholar
  97. J. Dou and N. Gu, “Emerging strategies for the identification and targeting of cancer stem cells,” Tumor Biology, vol. 31, no. 4, pp. 243–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. W. Liu, J.-Q. Feng, X.-M. Shen, H.-Y. Wang, Y. Liu, and Z.-T. Zhou, “Two stem cell markers, ATP-binding cassette, G2 subfamily (ABCG2) and BMI-1, predict the transformation of oral leukoplakia to cancer: a long-term follow-up study,” Cancer, vol. 118, no. 6, pp. 1693–1700, 2012. View at Publisher · View at Google Scholar
  99. M. Grimm, M. Krimmel, J. Polligkeit et al., “ABCB5 expression and cancer stem cell hypothesis in oral squamous cell carcinoma,” European Journal of Cancer, vol. 48, no. 17, pp. 3186–3197, 2012. View at Publisher · View at Google Scholar
  100. Y. S. Chan, L. Yang, and H. H. Ng, “Transcriptional regulatory networks in embryonic stem cells,” Progress in Drug Research, vol. 67, pp. 239–252, 2011. View at Scopus
  101. X. Wang, Y. Wang, L. Yu et al., “CSPG4 in cancer: multiple roles,” Current Molecular Medicine, vol. 10, no. 4, pp. 419–429, 2010. View at Publisher · View at Google Scholar
  102. S. Ohtsuka and S. Dalton, “Molecular and biological properties of pluripotent embryonic stem cells,” Gene Therapy, vol. 15, no. 2, pp. 74–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Okamoto, H. Okazawa, A. Okuda, M. Sakai, M. Muramatsu, and H. Hamada, “A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells,” Cell, vol. 60, no. 3, pp. 461–472, 1990. View at Publisher · View at Google Scholar · View at Scopus
  104. M. H. Rosner, M. A. Vigano, K. Ozato et al., “A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo,” Nature, vol. 345, no. 6277, pp. 686–692, 1990. View at Publisher · View at Google Scholar · View at Scopus
  105. I. Chambers, D. Colby, M. Robertson et al., “Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells,” Cell, vol. 113, no. 5, pp. 643–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. K. Mitsui, Y. Tokuzawa, H. Itoh et al., “The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells,” Cell, vol. 113, no. 5, pp. 631–642, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. A. A. Avilion, S. K. Nicolis, L. H. Pevny, L. Perez, N. Vivian, and R. Lovell-Badge, “Multipotent cell lineages in early mouse development depend on SOX2 function,” Genes and Development, vol. 17, no. 1, pp. 126–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Okita, T. Ichisaka, and S. Yamanaka, “Generation of germline-competent induced pluripotent stem cells,” Nature, vol. 448, no. 7151, pp. 313–317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. I. H. Park, R. Zhao, J. A. West et al., “Reprogramming of human somatic cells to pluripotency with defined factors,” Nature, vol. 451, no. 7175, pp. 141–146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Nichols, B. Zevnik, K. Anastassiadis et al., “Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4,” Cell, vol. 95, no. 3, pp. 379–391, 1998. View at Publisher · View at Google Scholar · View at Scopus
  112. S. Gidekel, G. Pizov, Y. Bergman, and E. Pikarsky, “Oct-3/4 is a dose-dependent oncogenic fate determinant,” Cancer Cell, vol. 4, no. 5, pp. 361–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. M. H. Tai, C. C. Chang, L. K. Olson, and J. E. Trosko, “Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis,” Carcinogenesis, vol. 26, no. 2, pp. 495–502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. G. I. Abelev and N. L. Lazarevich, “Control of differentiation in progression of epithelial tumors,” Advances in Cancer Research, vol. 95, pp. 61–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Siu, C. Lee, D. Dang, C. Lee, and D. M. Ramos, “Stem cell markers as predictors of oral cancer invasion,” Anticancer Research, vol. 32, no. 4, pp. 1163–1166, 2012.
  116. L.-L. Tsai, C.-C. Yu, and Y.-C. Chang, “Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma,” Journal of Oral Pathology and Medicine, vol. 40, no. 8, pp. 621–628, 2011. View at Publisher · View at Google Scholar
  117. N. Ge, H. X. Lin, X. S. Xiao et al., “Prognostic significance of Oct4 and Sox2 expression in hypopharyngeal squamous cell carcinoma,” Journal of Translational Medicine, vol. 8, article 94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. A. J. Bass, H. Watanabe, C. H. Mermel et al., “SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas,” Nature Genetics, vol. 41, no. 11, pp. 1238–1242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. A. J. Dalley, Z. Upton, and C. S. Farah, “Organotypic culture of normal, dysplastic and squamous cell carcinoma-derived oral cell lines reveals loss of spatial regulation of CD44 and p75NTR in malignancy,” Journal of Oral Pathology and Medicine, vol. 42, no. 1, pp. 37–46, 2013. View at Publisher · View at Google Scholar
  120. J. P. Thiery, “Epithelial-mesenchymal transitions in development and pathologies,” Current Opinion in Cell Biology, vol. 15, no. 6, pp. 740–746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. J. P. Thiery and J. P. Sleeman, “Complex networks orchestrate epithelial-mesenchymal transitions,” Nature Reviews Molecular Cell Biology, vol. 7, no. 2, pp. 131–142, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. T. Tsuji, S. Ibaragi, K. Shima et al., “Epithelial-mesenchymal transition induced by growth suppressor p12 CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth,” Cancer Research, vol. 68, no. 24, pp. 10377–10386, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. M. E. Kupferman, T. Jiffar, A. El-Naggar et al., “TrkB induces EMT and has a key role in invasion of head and neck squamous cell carcinoma,” Oncogene, vol. 29, no. 14, pp. 2047–2059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. M. J. Blanco, G. Moreno-Bueno, D. Sarrio et al., “Correlation of Snail expression with histological grade and lymph node status in breast carcinomas,” Oncogene, vol. 21, no. 20, pp. 3241–3246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. M. A. Ginos, G. P. Page, B. S. Michalowicz et al., “Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck,” Cancer Research, vol. 64, no. 1, pp. 55–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. J. Yang, S. A. Mani, and R. A. Weinberg, “Exploring a new twist on tumor metastasis,” Cancer Research, vol. 66, no. 9, pp. 4549–4552, 2006. View at Publisher · View at Google Scholar · View at Scopus
  127. M. H. Yang, M. Z. Wu, S. H. Chiou et al., “Direct regulation of TWIST by HIF-1α promotes metastasis,” Nature Cell Biology, vol. 10, no. 3, pp. 295–305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. D. Meulemans and M. Bronner-Fraser, “Gene-regulatory interactions in neural crest evolution and development,” Developmental Cell, vol. 7, no. 3, pp. 291–299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. T. Reya and H. Clevers, “Wnt signalling in stem cells and cancer,” Nature, vol. 434, no. 7035, pp. 843–850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Song, I. Chang, Z. Chen, M. Kang, and C. Y. Wang, “Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling,” PLoS ONE, vol. 5, no. 7, Article ID e11456, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. P.-Y. Chu, F.-W. Hu, C. C. Yu et al., “Epithelial-mesenchymal transition transcription factor ZEB1/ZEB2 co-expression predicts poor prognosis and maintains tumor-initiating properties in head and neck cancer,” Oral Oncology, vol. 49, no. 1, pp. 34–41, 2013. View at Publisher · View at Google Scholar
  132. V. Häyry, L. K. Mäkinen, T. Atula et al., “Bmi-1 expression predicts prognosis in squamous cell carcinoma of the tongue,” British Journal of Cancer, vol. 102, no. 5, pp. 892–897, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. M. K. Kang, R. H. Kim, S. J. Kim et al., “Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival,” British Journal of Cancer, vol. 96, no. 1, pp. 126–133, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. C. Y. Chen, S. H. Chiou, C. Y. Huang et al., “Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model,” Journal of Biomedical Science, vol. 16, no. 1, article 100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. K. Chikamatsu, H. Ishii, G. Takahashi et al., “Resistance to apoptosis-inducing stimuli in CD44+ head and neck squamous cell carcinoma cells,” Head and Neck, vol. 34, no. 3, pp. 336–343, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. G. Ganguli-Indra, C. Wasylyk, X. Liang et al., “CTIP2 expression in human head and neck squamous cell carcinoma is linked to poorly differentiated tumor status,” PLoS ONE, vol. 4, no. 4, Article ID e5367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. W. L. Lo, C. C. Yu, G. Y. Chiou et al., “MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells,” Journal of Pathology, vol. 223, no. 4, pp. 482–495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. H. Chen, L. Zhou, G. Wan, T. Dou, and J. Tian, “BMI1 promotes the progression of laryngeal squamous cell carcinoma,” Oral Oncology, vol. 47, no. 6, pp. 472–481, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. P. Attner, J. Du, A. Näsman et al., “The role of human papillomavirus in the increased incidence of base of tongue cancer,” International Journal of Cancer, vol. 126, no. 12, pp. 2879–2884, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. X. H. Liang, J. Lewis, R. Foote, D. Smith, and D. Kademani, “Prevalence and significance of human papillomavirus in oral tongue cancer: the Mayo Clinic Experience,” Journal of Oral and Maxillofacial Surgery, vol. 66, no. 9, pp. 1875–1880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  141. S. S. Zeki, T. A. Graham, and N. A. Wright, “Stem cells and their implications for colorectal cancer,” Nature Reviews Gastroenterology and Hepatology, vol. 8, no. 2, pp. 90–100, 2011. View at Publisher · View at Google Scholar
  142. N. Barker, J. H. van Es, J. Kuipers et al., “Identification of stem cells in small intestine and colon by marker gene Lgr5,” Nature, vol. 449, no. 7165, pp. 1003–1007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. B. H. A. Von Rahden, S. Kircher, M. Lazariotou et al., “LgR5 expression and cancer stem cell hypothesis: clue to define the true origin of esophageal adenocarcinomas with and without Barrett's Esophagus?” Journal of Experimental and Clinical Cancer Research, vol. 30, no. 1, article 23, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. T. McClanahan, S. Koseoglu, K. Smith et al., “Identification of overexpression of orphan G Protein-Coupled Receptor GPR49 in human colon and ovarian primary tumors,” Cancer Biology and Therapy, vol. 5, no. 4, pp. 419–426, 2006. View at Scopus
  145. Y. Yamamoto, M. Sakamoto, G. Fujii et al., “Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with β-catenin mutations,” Hepatology, vol. 37, no. 3, pp. 528–533, 2003. View at Publisher · View at Google Scholar · View at Scopus
  146. H. Takahashi, H. Ishii, N. Nishida et al., “Significance of Lgr5+ve cancer stem cells in the colon and rectum,” Annals of Surgical Oncology, vol. 18, no. 4, pp. 1166–1174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. N. Barker and H. Clevers, “Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells,” Gastroenterology, vol. 138, no. 5, pp. 1681–1696, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Haegebarth and H. Clevers, “Wnt signaling, Lgr5, and stem cells in the intestine and skin,” American Journal of Pathology, vol. 174, no. 3, pp. 715–721, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. K. Tanese, M. Fukuma, T. Yamada et al., “G-protein-coupled receptor GPR49 is up-regulated in basal cell carcinoma and promotes cell proliferation and tumor formation,” American Journal of Pathology, vol. 173, no. 3, pp. 835–843, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. M. van de Wetering, E. Sancho, C. Verweij et al., “The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells,” Cell, vol. 111, no. 2, pp. 241–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  151. H. Morita, S. Mazerbourg, D. M. Bouley et al., “Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension,” Molecular and Cellular Biology, vol. 24, no. 22, pp. 9736–9743, 2004. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Suomalainen and I. Thesleff, “Patterns of Wnt pathway activity in the mouse incisor indicate absence of Wnt/β-catenin signaling in the epithelial stem cells,” Developmental Dynamics, vol. 239, no. 1, pp. 364–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. H. Kawahara, T. Imai, H. Imataka, M. Tsujimoto, K. Matsumoto, and H. Okano, “Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP,” Journal of Cell Biology, vol. 181, no. 4, pp. 639–653, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. X. Y. Wang, Y. Yin, H. Yuan, T. Sakamaki, H. Okano, and R. I. Glazer, “Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the wnt and notch pathways,” Molecular and Cellular Biology, vol. 28, no. 11, pp. 3589–3599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  155. S. M. Sureban, R. May, R. J. George et al., “Knockdown of RNA binding protein musashi-1 leads to tumor regression in vivo,” Gastroenterology, vol. 134, no. 5, pp. 1448–1458, 2008. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Bianco, L. Strizzi, N. Normanno, N. Khan, and D. S. Salomon, “Cripto-1: an oncofetal gene with many faces,” Current Topics in Developmental Biology, vol. 67, pp. 85–133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. O. Adewumi, B. Aflatoonian, L. Ahrlund-Richter et al., “Characterization of human embryonic stem cell lines by the International Stem Cell Initiative,” Nature Biotechnology, vol. 25, no. 7, pp. 803–816, 2007. View at Publisher · View at Google Scholar
  158. L. Strizzi, C. Bianco, N. Normanno, and D. Salomon, “Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis,” Oncogene, vol. 24, no. 37, pp. 5731–5741, 2005. View at Publisher · View at Google Scholar · View at Scopus
  159. R. Montesano, R. Sarközi, and H. Schramek, “Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells,” Biochemical and Biophysical Research Communications, vol. 374, no. 1, pp. 164–168, 2008. View at Publisher · View at Google Scholar · View at Scopus
  160. D. Su, S. Zhu, X. Han et al., “BMP4-Smad signaling pathway mediates adriamycin-induced premature senescence in lung cancer cells,” Journal of Biological Chemistry, vol. 284, no. 18, pp. 12153–12164, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. J. M. Ketolainen, E. L. Alarmo, V. J. Tuominen, and A. Kallioniemi, “Parallel inhibition of cell growth and induction of cell migration and invasion in breast cancer cells by bone morphogenetic protein 4,” Breast Cancer Research and Treatment, vol. 124, no. 2, pp. 377–386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. B. L. M. Hogan, “Bone morphogenetic proteins in development,” Current Opinion in Genetics and Development, vol. 6, no. 4, pp. 432–438, 1996. View at Publisher · View at Google Scholar · View at Scopus
  163. W. Balemans and W. van Hul, “Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators,” Developmental Biology, vol. 250, no. 2, pp. 231–250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  164. D. Chen, M. Zhao, and G. R. Mundy, “Bone morphogenetic proteins,” Growth Factors, vol. 22, no. 4, pp. 233–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  165. A. B. Villaret, A. Schreiber, F. Facchetti et al., “Immunostaining patterns of CD31 and podoplanin in previously untreated advanced oral/oropharyngeal cancer: prognostic implications,” Head and Neck, vol. 32, no. 6, pp. 786–792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. L. Vormittag, D. Thurnher, S. Geleff et al., “Co-expression of Bmi-1 and podoplanin predicts overall survival in patients with squamous cell carcinoma of the head and neck treated with radio(chemo)therapy,” International Journal of Radiation Oncology Biology Physics, vol. 73, no. 3, pp. 913–918, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. C. Margaritescu, M. Raica, D. Pirici et al., “Podoplanin expression in tumor-free resection margins of oral squamous cell carcinomas: an immunohistochemical and fractal analysis study,” Histology and Histopathology, vol. 25, no. 6, pp. 701–711, 2010. View at Scopus
  168. M. Kreppel, U. Drebber, I. Wedemeyer, et al., “Podoplanin expression predicts prognosis in patients with oral squamous cell carcinoma treated with neoadjuvant radiochemotherapy,” Oral Oncology, vol. 47, no. 9, pp. 873–878, 2011. View at Publisher · View at Google Scholar
  169. H. Kawaguchi, A. K. El-Naggar, V. Papadimitrakopoulou et al., “Podoplanin: a novel marker for oral cancer risk in patients with oral premalignancy,” Journal of Clinical Oncology, vol. 26, no. 3, pp. 354–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  170. P. Shi, W. Liu, Z. T. Zhou, Q. B. He, and W. W. Jiang, “Podoplanin and ABCG2: malignant transformation risk markers for oral lichen planus,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 3, pp. 844–849, 2010. View at Publisher · View at Google Scholar · View at Scopus
  171. L. M. Abbey, G. E. Kaugars, J. C. Gunsolley et al., “Intraexaminer and interexaminer reliability in the diagnosis of oral epithelial dysplasia,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and, vol. 80, no. 2, pp. 188–191, 1995. View at Scopus
  172. S. F. De Sousa, F. O. Gleber-Netto, H. H. De Oliveira-Neto, A. C. Batista, M. H. Nogueira Guimarães Abreu, and M. C. F. De Aguiar, “Lymphangiogenesis and podoplanin expression in oral squamous cell carcinoma and the associated lymph nodes,” Applied Immunohistochemistry and Molecular Morphology, vol. 20, no. 6, pp. 588–594, 2012. View at Publisher · View at Google Scholar
  173. R. E. Friedrich, S. Bartel-Friedrich, and C. Hagel, “Expression of podoplanin in primary and metastatic poorly differentiated and undifferentiated carcinomas of the head and neck,” Anticancer Research, vol. 32, no. 5, pp. 2019–2022, 2012.
  174. H. Inoue, Y. Miyazaki, K. Kikuchi et al., “Podoplanin expression during dysplasia-carcinoma sequence in the oral cavity,” Tumor Biology, vol. 33, no. 1, pp. 183–194, 2012. View at Publisher · View at Google Scholar
  175. M. Kreppel, I. Wedemeyer, C. Mauch, J. E. Zöller, and M. Scheer, “Podoplanin expression in cutaneous head and neck squamous cell carcinoma-prognostic value and clinicopathologic implications,” Journal of Surgical Oncology, 2012. View at Publisher · View at Google Scholar
  176. Y. Shimamura, T. Abe, M. Nakahira, T. Yoda, and S.-I. Murata, “Immunohistochemical analysis of oral dysplasia: diagnostic assessment by fascin and podoplanin expression,” Acta Histochemica et Cytochemica, vol. 44, no. 6, pp. 239–245, 2011. View at Publisher · View at Google Scholar
  177. J.-Q. Feng, J.-G. Mi, L. Wu et al., “Expression of podoplanin and ABCG2 in oral erythroplakia correlate with oral cancer development,” Oral Oncology, vol. 48, no. 9, pp. 848–852, 2012. View at Publisher · View at Google Scholar
  178. A. B. Hjelmeland and J. N. Rich, “The quest for self-identity: not all cancer stem cells are the same,” Clinical Cancer Research, vol. 18, no. 13, pp. 3495–3498, 2012. View at Publisher · View at Google Scholar
  179. S. Krishnamurthy, Z. Dong, D. Vodopyanov et al., “Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells,” Cancer Research, vol. 70, no. 23, pp. 9969–9978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. K. Moharamzadeh, I. M. Brook, R. van Noort, A. M. Scutt, and M. H. Thornhill, “Tissue-engineered oral mucosa: a review of the scientific literature,” Journal of Dental Research, vol. 86, no. 2, pp. 115–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  181. C. Geissler, M. Hambek, M. Leinung et al., “The challenge of tumor heterogeneity—different phenotypes of cancer stem cells in a head and neck squamous cell carcinoma xenograft mouse model,” In Vivo, vol. 26, no. 4, pp. 593–598, 2012.
  182. T. Wang, C. W. Ong, J. Shi et al., “Sequential expression of putative stem cell markers in gastric carcinogenesis,” British Journal of Cancer, vol. 105, no. 5, pp. 658–665, 2011. View at Publisher · View at Google Scholar
  183. C. Erfurt, E. Müller, S. Emmerling et al., “Melanoma-associated chondroitin sulphate proteoglycan as a new target antigen for CD4+ T cells in melanoma patients,” International Journal of Cancer, vol. 124, no. 10, pp. 2341–2346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  184. T. F. Bumol and R. A. Reisfeld, “Unique glycoprotein—proteoglycan complex defined by monoclonal antibody on human melanoma cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 4 I, pp. 1245–1249, 1982. View at Scopus
  185. W. B. Stallcup, “The NG2 antigen, a putative lineage marker: immunofluorescent localization in primary cultures of rat brain,” Developmental Biology, vol. 83, no. 1, pp. 154–165, 1981. View at Scopus
  186. G. Pluschke, M. vanek, A. Evans et al., “Molecular cloning of a human melanoma-associated chondroitin sulfate proteoglycan,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9710–9715, 1996. View at Publisher · View at Google Scholar · View at Scopus
  187. M. A. Burg, K. A. Grako, and W. B. Stallcup, “Expression of the NG2 proteoglycan enhances the growth and metastatic properties of melanoma cells,” Journal of Cellular Physiology, vol. 177, no. 2, pp. 299–312, 1998. View at Publisher · View at Google Scholar
  188. J. Yang, M. A. Price, Y. L. Gui et al., “Melanoma proteoglycan modifies gene expression to stimulate tumor cell motility, growth, and epithelial-to-mesenchymal transition,” Cancer Research, vol. 69, no. 19, pp. 7538–7547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  189. J. Iida, K. L. Wilhelmson, J. Ng et al., “Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A),” Biochemical Journal, vol. 403, no. 3, pp. 553–563, 2007. View at Publisher · View at Google Scholar · View at Scopus
  190. A. Müller, B. Homey, H. Soto et al., “Involvement of chemokine receptors in breast cancer metastasis,” Nature, vol. 410, no. 6824, pp. 50–56, 2001. View at Publisher · View at Google Scholar · View at Scopus
  191. R. S. Taichman, C. Cooper, E. T. Keller, K. J. Pienta, N. S. Taichman, and L. K. McCauley, “Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone,” Cancer Research, vol. 62, no. 6, pp. 1832–1837, 2002. View at Scopus
  192. T. Oonuma, M. Morimatsu, T. Nakagawa et al., “Role of CXCR4 and SDF-1 in mammary tumor metastasis in the cat,” Journal of Veterinary Medical Science, vol. 65, no. 10, pp. 1069–1073, 2003. View at Publisher · View at Google Scholar · View at Scopus
  193. H. Tamamura, A. Hori, N. Kanzaki et al., “T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer,” FEBS Letters, vol. 550, no. 1–3, pp. 79–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  194. J. Libura, J. Drukala, M. Majka et al., “CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion,” Blood, vol. 100, no. 7, pp. 2597–2606, 2002. View at Publisher · View at Google Scholar · View at Scopus
  195. M. Kato, J. Kitayama, S. Kazama, and H. Nagawa, “Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma,” Breast Cancer Research, vol. 5, no. 5, pp. R144–R150, 2003. View at Scopus
  196. M. Kucia, R. Reca, K. Miekus et al., “Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis,” Stem Cells, vol. 23, no. 7, pp. 879–894, 2005. View at Publisher · View at Google Scholar · View at Scopus
  197. C. C. Yun, H. Sun, D. Wang et al., “LPA2 receptor mediates mitogenic signals in human colon cancer cells,” American Journal of Physiology, vol. 289, no. 1, pp. C2–C11, 2005. View at Publisher · View at Google Scholar · View at Scopus
  198. G. W. M. Swart, “Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration,” European Journal of Cell Biology, vol. 81, no. 6, pp. 313–321, 2002. View at Scopus
  199. D. G. Lee, J.-H. Lee, B. K. Choi et al., “H+-myo-inositol transporter SLC2A13 as a potential marker for cancer stem cells in an oral squamous cell carcinoma,” Current Cancer Drug Targets, vol. 11, no. 8, pp. 966–975, 2011. View at Publisher · View at Google Scholar
  200. E. Martín-Villar, F. G. Scholl, C. Gamallo et al., “Characterization of human PA2.26 antigen (T1α-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas,” International Journal of Cancer, vol. 113, no. 6, pp. 899–910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  201. P. Yuan, S. Temam, A. El-Naggar et al., “Overexpression of podoplanin in oral cancer and its association with poor clinical outcome,” Cancer, vol. 107, no. 3, pp. 563–569, 2006. View at Publisher · View at Google Scholar · View at Scopus
  202. M. Kreppel, M. Scheer, U. Drebber, L. Ritter, and J. E. Zöller, “Impact of podoplanin expression in oral squamous cell carcinoma: clinical and histopathologic correlations,” Virchows Archiv, vol. 456, no. 5, pp. 473–482, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. J. P. Rodrigo, D. García-Carracedo, M. V. González, G. Mancebo, M. F. Fresno, and J. García-Pedrero, “Podoplanin expression in the development and progression of laryngeal squamous cell carcinomas,” Molecular Cancer, vol. 9, article 48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  204. G. F. Huber, F. R. Fritzsche, L. Züllig et al., “Podoplanin expression correlates with sentinel lymph node metastasis in early squamous cell carcinomas of the oral cavity and oropharynx,” International Journal of Cancer, vol. 129, no. 6, pp. 1404–1409, 2011. View at Publisher · View at Google Scholar · View at Scopus
  205. A. Funayama, J. Cheng, S. Maruyama et al., “Enhanced expression of podoplanin in oral carcinomas in situ and squamous cell carcinomas,” Pathobiology, vol. 78, no. 3, pp. 171–180, 2011. View at Publisher · View at Google Scholar
  206. I. H. El-Sayed, “Nanotechnology in head and neck cancer: the race is on,” Current Oncology Reports, vol. 12, no. 2, pp. 121–128, 2010. View at Publisher · View at Google Scholar · View at Scopus