About this Journal Submit a Manuscript Table of Contents
Stem Cells International
Volume 2013 (2013), Article ID 678063, 5 pages
http://dx.doi.org/10.1155/2013/678063
Review Article

Biodistribution of Mesenchymal Stem/Stromal Cells in a Preclinical Setting

1UMR5273 CNRS, UPS, EFS—INSERM U1031, STROMALab, Toulouse, France
2EFS Pyrénées-Méditerranée, Toulouse, France

Received 14 May 2013; Accepted 8 July 2013

Academic Editor: Mauro Krampera

Copyright © 2013 Luc Sensebé and Sandrine Fleury-Cappellesso. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Friedenstein, J. F. Gorskaja, and N. N. Kulagina, “Fibroblast precursors in normal and irradiated mouse hematopoietic organs,” Experimental Hematology, vol. 4, no. 5, pp. 267–274, 1976. View at Scopus
  2. A. I. Caplan, “The mesengenic process,” Clinics in Plastic Surgery, vol. 21, no. 3, pp. 429–435, 1994. View at Scopus
  3. R. Quarto, M. Mastrogiacomo, R. Cancedda et al., “Repair of large bone defects with the use of autologous bone marrow stromal cells,” New England Journal of Medicine, vol. 344, no. 5, pp. 385–386, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Takashima, T. Era, K. Nakao et al., “Neuroepithelial cells supply an initial transient wave of MSC differentiation,” Cell, vol. 129, no. 7, pp. 1377–1388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Dominici, K. le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. de Ugarte, K. Morizono, A. Elbarbary et al., “Comparison of multi-lineage cells from human adipose tissue and bone marrow,” Cells Tissues Organs, vol. 174, no. 3, pp. 101–109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. G. Phinney and L. Sensebé, “Mesenchymal stromal cells: misconceptions and evolving concepts,” Cytotherapy, vol. 15, pp. 140–145, 2013. View at Publisher · View at Google Scholar
  9. K. le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” The Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Tan, W. Wu, X. Xu et al., “Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial,” Journal of the American Medical Association, vol. 307, no. 11, pp. 1169–1177, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. D. G. Phinney and D. J. Prockop, “Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views,” Stem Cells, vol. 25, no. 11, pp. 2896–2902, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Breitbach, T. Bostani, W. Roell et al., “Potential risks of bone marrow cell transplantation into infarcted hearts,” Blood, vol. 110, no. 4, pp. 1362–1369, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Djouad, P. Plence, C. Bony et al., “Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals,” Blood, vol. 102, no. 10, pp. 3837–3844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Houghton, H. Li, X. Fan et al., “Mutations in bone marrow-derived stromal stem cells unmask latent malignancy,” Stem Cells and Development, vol. 19, no. 8, pp. 1153–1166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Bouchez, L. Sensebé, P. Vourc'h et al., “Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson's disease,” Neurochemistry International, vol. 52, no. 7, pp. 1332–1342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Bensidhoum, A. Chapel, S. Francois et al., “Homing of in vitro expanded Stro-1- or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment,” Blood, vol. 103, no. 9, pp. 3313–3319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Gholamrezanezhad, S. Mirpour, M. Bagheri et al., “In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis,” Nuclear Medicine and Biology, vol. 38, no. 7, pp. 961–967, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Wolfs, T. Struys, T. Notelaers et al., “18F-FDG labeling of mesenchymal stem cells and multipotent adult progenitor cells for PET imaging: effects on ultrastrucute and differentiation capacity.,” Journal of Nuclear Medicine, vol. 54, pp. 447–454, 2013. View at Publisher · View at Google Scholar
  19. M. Vilalta, I. R. Dégano, J. Bagó et al., “Biodistribution, long-term survival, and safety of human adipose tissue-derived mesenchymal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging,” Stem Cells and Development, vol. 17, no. 5, pp. 993–1004, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-K. Chang, Y.-P. Liu, J. H. Ho, S.-C. Hsu, and O. K. Lee, “Amine-surface-modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 30, pp. 1499–1506, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Schmidtke-Schrezenmeier, M. Urban, A. Musyanovych et al., “Labeling of mesenchymal stromal cells with iron oxidepoly(l-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties,” Cytotherapy, vol. 13, no. 8, pp. 962–975, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Toupet, M. Maumus, J.-A. Peyrafitte et al., “Long-term detection of human adipose derived mesenchymal stem cells after intra-articular injection,” Arthritis & Rheumatism, vol. 65, no. 7, pp. 1786–1794, 2013. View at Publisher · View at Google Scholar
  23. R. H. Lee, A. A. Pulin, M. J. Seo et al., “Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6,” Cell Stem Cell, vol. 5, no. 1, pp. 54–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. G. Manz and J. P. di Santo, “Renaissance for mouse models of human hematopoiesis and immunobiology,” Nature Immunology, vol. 10, no. 10, pp. 1039–1042, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Mouiseddine, S. François, A. Semont et al., “Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model,” British Journal of Radiology, vol. 80, no. 1, pp. S49–S55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Allers, W. D. Sierralta, S. Neubauer, F. Rivera, J. J. Minguell, and P. A. Conget, “Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice,” Transplantation, vol. 78, no. 4, pp. 503–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Chapel, J. M. Bertho, M. Bensidhoum et al., “Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome,” Journal of Gene Medicine, vol. 5, no. 12, pp. 1028–1038, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Mitkari, E. Kerkelä, J. Nystedt et al., “Intra-arterial infusion of human bone marrow-derived mesenchymal stem cells results in transient localization in the brain after cerebral ischemia in rats,” Experimental Neurology, vol. 239, pp. 158–162, 2013.
  29. J.-K. Yoon, B.-N. Park, W.-Y. Shim, J. Y. Shin, G. Lee, and Y. H. Ahn, “In vivo tracking of 111In-labeled bone marrow mesenchymal stem cells in acute brain trauma model,” Nuclear Medicine and Biology, vol. 37, no. 3, pp. 381–388, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Ramot, M. Meiron, A. Toren, M. Steiner, and A. Nyska, “Safety and biodistribution profile of Placental-derived mesenchymal stromal cells (PLX-PAD) following intramuscular delivery,” Toxicologic Pathology, vol. 37, no. 5, pp. 606–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Bouacida, P. Rosset, V. Trichet et al., “Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells,” PLoS One, vol. 7, no. 11, Article ID e48648, 2012. View at Publisher · View at Google Scholar
  32. O. Ringdén, M. Uzunel, I. Rasmusson et al., “Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease,” Transplantation, vol. 81, no. 10, pp. 1390–1397, 2006. View at Publisher · View at Google Scholar · View at Scopus