Stem Cells International http://www.hindawi.com The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Acupoint Injection of Autologous Stromal Vascular Fraction and Allogeneic Adipose-Derived Stem Cells to Treat Hip Dysplasia in Dogs Mon, 11 Aug 2014 08:51:25 +0000 http://www.hindawi.com/journals/sci/2014/391274/ Stem cells isolated from adipose tissue show great therapeutic potential in veterinary medicine, but some points such as the use of fresh or cultured cells and route of administration need better knowledge. This study aimed to evaluate the effect of autologous stromal vascular fraction (SVF, ) or allogeneic cultured adipose-derived stem cells (ASCs, ) injected into acupuncture points in dogs with hip dysplasia and weak response to drug therapy. Canine ASCs have proliferation and differentiation potential similar to ASCs from other species. After the first week of treatment, clinical evaluation showed marked improvement compared with baseline results in all patients treated with autologous SVF and three of the dogs treated with allogeneic ASCs. On days 15 and 30, all dogs showed improvement in range of motion, lameness at trot, and pain on manipulation of the joints, except for one ASC-treated patient. Positive results were more clearly seen in the SVF-treated group. These results show that autologous SVF or allogeneic ASCs can be safely used in acupoint injection for treating hip dysplasia in dogs and represent an important therapeutic alternative for this type of pathology. Further studies are necessary to assess a possible advantage of SVF cells in treating joint diseases. Camila Marx, Maiele Dornelles Silveira, Isabel Selbach, Ariel Silveira da Silva, Luisa Maria Gomes de Macedo Braga, Melissa Camassola, and Nance Beyer Nardi Copyright © 2014 Camila Marx et al. All rights reserved. Immunological Barriers to Stem Cell Therapy in the Central Nervous System Tue, 05 Aug 2014 09:08:25 +0000 http://www.hindawi.com/journals/sci/2014/507905/ The central nervous system is vulnerable to many neurodegenerative disorders such as Alzheimer’s disease that result in the extensive loss of neuronal cells. Stem cells have the ability to differentiate into many types of cells, which make them ideal for treating such disorders. Although stem cell therapy has shown some promising results in animal models for many brain disorders it has yet to translate into the clinic. A major hurdle to the translation of stem cell therapy into the clinic is the immune response faced by stem cell transplants. Here, we focus on immunological and related hurdles to stem cell therapies for central nervous system disorders. Gregory E. Tullis, Kathleen Spears, and Mark D. Kirk Copyright © 2014 Gregory E. Tullis et al. All rights reserved. Efficacy of Topical Mesenchymal Stem Cell Therapy in the Treatment of Experimental Dry Eye Syndrome Model Thu, 17 Jul 2014 08:59:04 +0000 http://www.hindawi.com/journals/sci/2014/250230/ Purpose. The current study was set out to address the therapeutic efficacy of topically applied mesenchymal stem cells (MSCs) on dry eye syndrome (DES) induced by benzalkonium chloride (BAC) in rats. Methods. Rats were divided into two groups just after establishment of DES. Eye drops containing either bromodeoxyuridine labeled MSCs () or phosphate buffer solution () were topically applied once daily for one week. Schirmer test, break-up time score, ocular surface evaluation tests, and corneal inflammatory index scoring tests were applied to all rats at baseline and after treatment. All rats were sacrificed after one week for histological and electron microscopic analysis. Results. Mean aqueous tear volume and tear film stability were significantly increased in rats treated with MSCs (). Infiltration of bromodeoxyuridine labeled MSCs into the meibomian glands and conjunctival epithelium was observed in MSCs treated rats. Increased number of secretory granules and number of goblet cells were observed in MSCs treated rats. Conclusion. Topical application of MSCs could be a safe and effective method for the treatment of DES and could potentially be used for further clinical research studies. Emrullah Beyazyıldız, Ferda Alpaslan Pınarlı, Özlem Beyazyıldız, Emine Rümeysa Hekimoğlu, Uğur Acar, Muhammed Necati Demir, Aynur Albayrak, Figen Kaymaz, Güngör Sobacı, and Tuncay Delibaşı Copyright © 2014 Emrullah Beyazyıldız et al. All rights reserved. The Secretome of Bone Marrow and Wharton Jelly Derived Mesenchymal Stem Cells Induces Differentiation and Neurite Outgrowth in SH-SY5Y Cells Tue, 15 Jul 2014 06:53:07 +0000 http://www.hindawi.com/journals/sci/2014/438352/ The goal of this study was to determine and compare the effects of the secretome of mesenchymal stem cells (MSCs) isolated from human bone-marrow (BMSCs) and the Wharton jelly surrounding the vein and arteries of the umbilical cord (human umbilical cord perivascular cells (HUCPVCs)) on the survival and differentiation of a human neuroblastoma cell line (SH-SY5Y). For this purpose, SH-SY5Y cells were differentiated with conditioned media (CM) from the MSCs populations referred above. Retinoic acid cultured cells were used as control for neuronal differentiated SH-SY5Y cells. SH-SY5Y cells viability assessment revealed that the secretome of BMSCs and HUCPVCs, in the form of CM, was able to induce their survival. Moreover, immunocytochemical experiments showed that CM from both MSCs was capable of inducing neuronal differentiation of SH-SY5Y cells. Finally, neurite lengths assessment and quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) analysis demonstrated that CM from BMSCs and HUCPVCs differently induced neurite outgrowth and mRNA levels of neuronal markers exhibited by SH-SY5Y cells. Overall, our results show that the secretome of both BMSCs and HUCPVCs was capable of supporting SH-SY5Y cells survival and promoting their differentiation towards a neuronal phenotype. Ana O. Pires, Andreia Neves-Carvalho, Nuno Sousa, and António J. Salgado Copyright © 2014 Ana O. Pires et al. All rights reserved. Management of Fibrosis: The Mesenchymal Stromal Cells Breakthrough Mon, 14 Jul 2014 09:59:56 +0000 http://www.hindawi.com/journals/sci/2014/340257/ Fibrosis is the endpoint of many chronic inflammatory diseases and is defined by an abnormal accumulation of extracellular matrix components. Despite its slow progression, it leads to organ malfunction. Fibrosis can affect almost any tissue. Due to its high frequency, in particular in the heart, lungs, liver, and kidneys, many studies have been conducted to find satisfactory treatments. Despite these efforts, current fibrosis management therapies either are insufficiently effective or induce severe adverse effects. In the light of these facts, innovative experimental therapies are being investigated. Among these, cell therapy is regarded as one of the best candidates. In particular, mesenchymal stromal cells (MSCs) have great potential in the treatment of inflammatory diseases. The value of their immunomodulatory effects and their ability to act on profibrotic factors such as oxidative stress, hypoxia, and the transforming growth factor-β1 pathway has already been highlighted in preclinical and clinical studies. Furthermore, their propensity to act depending on the microenvironment surrounding them enhances their curative properties. In this paper, we review a large range of studies addressing the use of MSCs in the treatment of fibrotic diseases. The results reported here suggest that MSCs have antifibrotic potential for several organs. Benoît Usunier, Marc Benderitter, Radia Tamarat, and Alain Chapel Copyright © 2014 Benoît Usunier et al. All rights reserved. Stem Cells: Innovations in Clinical Applications Mon, 07 Jul 2014 07:48:08 +0000 http://www.hindawi.com/journals/sci/2014/516278/ The use of mesenchymal stem cells (MSCs) as clinical therapeutics is a relatively new avenue of study for treatment of a variety of diseases. The therapeutic impact of the MSCs is based upon their multiplicities of function and interaction with host tissues. MSCs can be anti-inflammatory, antifibrotic, antimicrobial, and regenerative, all which may improve outcomes in scenarios of damaged tissues and inflammation. Although most studies focus on utilizing MSCs to direct clinical efficacy, it is the ability to orchestrate host response in surrounding tissue that is especially unique and versatile. This orchestration of host response can be applied to a variety of clinical scenarios not only through cell-cell interactions but also through production of bioactive secreted factors. These bioactive factors include small proteins, chemokines, cytokines, and other cellular regulators. These factors have the capacity to induce angiogenesis or blood vessel development, be chemotactic, and induce cellular recruitment. MSCs also have the capacity to differentiate with the implicated environment to regenerate tissue or accommodate host tissue in a cell specific manner. The differentiation cannot only be done in vivo but also can be optimized in vitro prior to in vivo administration, potentiating the versatility of the MSCs and opening avenues for corrective therapy and cell delivery of genes. The differentiation process depends on the environment with which the MSCs are put and results in active communication between the newly administered cells host tissue. Since these properties have been identified, there are a variety of clinical trials and studies being conducted on MSCs ability to treat human disease. This review outlines the potential use of MSCs, the types of tissue, and the innovative applications of MSCs for the treatment of diseases. Morgan T. Sutton and Tracey L. Bonfield Copyright © 2014 Morgan T. Sutton and Tracey L. Bonfield. All rights reserved. A Cocktail Method for Promoting Cardiomyocyte Differentiation from Bone Marrow-Derived Mesenchymal Stem Cells Mon, 23 Jun 2014 08:10:22 +0000 http://www.hindawi.com/journals/sci/2014/162024/ A growing body of evidence supports the argument that bone marrow-derived mesenchymal stem cells (MSCs) can differentiate into cardiomyocyte-like cells in an appropriate cellular environment, but the differentiation rate is low. A cocktail method was designed: we investigated the role of 5-azacytidine (5-aza), salvianolic acid B (SalB), and cardiomyocyte lysis medium (CLM) in inducing MSCs to acquire the phenotypical characteristics of cardiomyocytes. The fourth-passage MSCs were treated with 5-aza, SalB, CLM, 5-aza+salB, 5-aza+CLM, SalB+CLM, and 5-aza+SalB+CLM for 2 weeks. Immunofluorescence results showed that cTnT expression in the 5-aza+salB+CLM group was stronger than other groups. Real-time qPCR and Western blotting analyses showed that cTnT, alpha-cardiac actin, mef-2c, Cx43, and GSK-3beta expression increased while beta-catenin expression decreased. The salB+5-aza+CLM group had the most evident effects. SalB combined with 5-aza and CLM improved cardiomyocyte differentiation from MSCs. In the MSCs differentiation process, the Wnt/beta-catenin signaling pathway had been inhibited. Qing Gao, Maojuan Guo, Xijuan Jiang, Xiantong Hu, Yijing Wang, and Yingchang Fan Copyright © 2014 Qing Gao et al. All rights reserved. A Proposed Quantitative Index for Assessing the Potential Contribution of Reprogramming to Cancer Stem Cell Kinetics Mon, 12 May 2014 13:54:06 +0000 http://www.hindawi.com/journals/sci/2014/249309/ Enrichment of cancer stem cells (CSCs) is thought to be responsible for glioblastoma multiforme (GBM) recurrence after radiation therapy. Simulation results from our agent-based cellular automata model reveal that the enrichment of CSCs may result either from an increased symmetric self-renewal division rate of CSCs or a reprogramming of non-stem cancer cells (CCs) to a stem cell state. Based on plateau-to-peak ratio of the CSC fraction in the tumor following radiation, a downward trend from peak to subsequent plateau (i.e., a plateau-to-peak ratio exceeding 1.0) was found to be inconsistent with increased symmetric division alone and favors instead a strong reprogramming component. The two contributions together are seen to be the product of a dynamic equilibrium between CSCs and CCs that is highly regulated by the kinetics of single cells, including the potential for CCs to reacquire a stem cell state and confer phenotypic plasticity to the population as a whole. We conclude that tumor malignancy can be gauged by a degree of cancer cell plasticity. Xuefeng Gao, J. Tyson McDonald, Mamta Naidu, Philip Hahnfeldt, and Lynn Hlatky Copyright © 2014 Xuefeng Gao et al. All rights reserved. The Efficacy of Mesenchymal Stem Cell Transplantation in Caustic Esophagus Injury: An Experimental Study Sun, 04 May 2014 12:06:24 +0000 http://www.hindawi.com/journals/sci/2014/939674/ Introduction. Ingestion of corrosive substances may lead to stricture formation in esophagus as a late complication. Full thickness injury seems to exterminate tissue stem cells of esophagus. Mesenchymal stem cells (MSCs) can differentiate into specific cell lineages and have the capacity of homing in sites of injury. Aim and Methods. We aimed to investigate the efficacy of MSC transplantation, on prevention of esophageal damage and stricture formation after caustic esophagus injury in rats. 54 rats were allocated into four groups; 4 rats were sacrificed for MSC production. Group 1, untreated controls (: 10). Group 2, membrane labeled MSCs-treated rats (: 20). Group 3, biodistribution of fluorodeoxyglucose labeled MSCs via positron emission tomography (PET) imaging (: 10). Group 4, sham operated (: 10). Standard caustic esophageal burns were created and MSCs were transplanted 24 hours after. All rats were sacrificed at the 21st days. Results. PET scan images revealed the homing behavior of MSCs to the injury site. The histopathology damage score was not significantly different from controls. However, we demonstrated Dil labeled epithelial and muscle cells which were originating from transplanted MSCs. Conclusion. MSC transplantation after caustic esophageal injury may be a helpful treatment modality; however, probably repeated infusions are needed. Murat Kantarcioglu, Bahadir Caliskan, Hakan Demirci, Ozgur Karacalioglu, Murat Kekilli, Zulfikar Polat, Armagan Gunal, Melih Akinci, Cagri Uysal, Sami Eksert, Hasan Gurel, Gurkan Celebi, Ferit Avcu, Ali Ugur Ural, and Sait Bagci Copyright © 2014 Murat Kantarcioglu et al. All rights reserved. Enhanced Adipogenicity of Bone Marrow Mesenchymal Stem Cells in Aplastic Anemia Wed, 30 Apr 2014 08:26:37 +0000 http://www.hindawi.com/journals/sci/2014/276862/ Fatty bone marrow (BM) and defective hematopoiesis are a pathologic hallmark of aplastic anemia (AA). We have investigated adipogenic and osteogenic potential of BM mesenchymal stem cells (BM-MSC) in 10 AA patients (08 males and 02 females) with median age of 37 years (range: 06 to 79 years) and in the same number of age and sex matched controls. It was observed that BM-MSC of AA patients had a morphology, phenotype, and osteogenic differentiation potential similar to control subjects but adipocytes differentiated from AA BM-MSC had a higher density and larger size of lipid droplets and they expressed significantly higher levels of adiponectin and FABP4 genes and proteins as compared to control BM-MSC ( for both). Thus our data shows that AA BM-MSC have enhanced adipogenicity, which may have an important implication in the pathogenesis of the disease. Naresh Kumar Tripathy, Saurabh Pratap Singh, and Soniya Nityanand Copyright © 2014 Naresh Kumar Tripathy et al. All rights reserved. Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases Wed, 30 Apr 2014 07:59:24 +0000 http://www.hindawi.com/journals/sci/2014/306573/ Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs) are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials. Andrea Farini, Clementina Sitzia, Silvia Erratico, Mirella Meregalli, and Yvan Torrente Copyright © 2014 Andrea Farini et al. All rights reserved. Mesenchymal Stromal Cells: Novel Methods for Characterization, Understanding Differentiation, and Function Wed, 09 Apr 2014 13:43:20 +0000 http://www.hindawi.com/journals/sci/2014/630936/ Vivek Tanavde, Mohan C. Vemuri, and Radhika Pochampally Copyright © 2014 Vivek Tanavde et al. All rights reserved. Magnetic Nanoparticle Based Nonviral MicroRNA Delivery into Freshly Isolated CD105+ hMSCs Mon, 31 Mar 2014 06:36:12 +0000 http://www.hindawi.com/journals/sci/2014/197154/ Genetic modifications of bone marrow derived human mesenchymal stem cells (hMSCs) using microRNAs (miRs) may be used to improve their therapeutic potential and enable innovative strategies in tissue regeneration. However, most of the studies use cultured hMSCs, although these can lose their stem cell characteristics during expansion. Therefore, we aimed to develop a nonviral miR carrier based on polyethylenimine (PEI) bound to magnetic nanoparticles (MNPs) for efficient miR delivery in freshly isolated hMSCs. MNP based transfection is preferable for genetic modifications in vivo due to improved selectivity, safety of delivery, and reduced side effects. Thus, in this study different miR/PEI and miR/PEI/MNP complex formulations were tested in vitro for uptake efficiency and cytotoxicity with respect to the influence of an external magnetic field. Afterwards, optimized magnetic complexes were selected and compared to commercially available magnetic vectors (Magnetofectamine, CombiMag). We found that all tested transfection reagents had high miR uptake rates (yielded over 60%) and no significant cytotoxic effects. Our work may become crucial for virus-free introduction of therapeutic miRs as well as other nucleic acids in vivo. Moreover, in the field of targeted stem cell therapy nucleic acid delivery prior to transplantation may allowfor initial cell modulation in vitro. Anna Schade, Paula Müller, Evgenya Delyagina, Natalia Voronina, Anna Skorska, Cornelia Lux, Gustav Steinhoff, and Robert David Copyright © 2014 Anna Schade et al. All rights reserved. Migration, Proliferation, and Differentiation of Cord Blood Mesenchymal Stromal Cells Treated with Histone Deacetylase Inhibitor Valproic Acid Sun, 16 Mar 2014 11:45:51 +0000 http://www.hindawi.com/journals/sci/2014/610495/ Mesenchymal stromal cells (MSC) have great potential for cellular therapies as they can be directed to differentiate into certain lineages or to exert paracrine effects at sites of injury. The interactions between stromal cell-derived factor (SDF)-1 and its receptors CXCR4 and CXCR7 play pivotal roles in the migration of MSC to injured tissues. We evaluated whether a histone deacetylase inhibitor valproic acid (VPA) modulates the migration of cord blood (CB-) derived MSC towards SDF-1 and their proliferation and differentiation. We found that in MSC, VPA increased (i) the gene and total protein expression of CXCR4 and CXCR7 and primed migration towards a low gradient of SDF-1, (ii) the gene expression of MMP-2 and secretion and activation of proMMP-2, (iii) the proliferation and gene expression of pluripotency markers SOX2 and Oct-4, and exposure to lower concentrations of VPA (≤5 mM) had no effect on their differentiation to osteocytes and chondrocytes. Thus, our study indicates that VPA enhances the migration of CB MSC towards SDF-1 by increasing the expression of CXCR4, CXCR7, and MMP-2. VPA at low concentrations may be used for ex vivo treatment of MSC to increase their recruitment to sites of injury without compromising their ability to proliferate or differentiate. Leah A. Marquez-Curtis, Yuanyuan Qiu, April Xu, and Anna Janowska-Wieczorek Copyright © 2014 Leah A. Marquez-Curtis et al. All rights reserved. Mesenchymal Stem Cell Biodistribution, Migration, and Homing In Vivo Tue, 11 Mar 2014 12:23:33 +0000 http://www.hindawi.com/journals/sci/2014/292109/ Weian Zhao, Donald G. Phinney, Dominique Bonnet, Massimo Dominici, and Mauro Krampera Copyright © 2014 Weian Zhao et al. All rights reserved. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs Tue, 25 Feb 2014 12:54:55 +0000 http://www.hindawi.com/journals/sci/2014/437521/ The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury. Euler Moraes Penha, Cássio Santana Meira, Elisalva Teixeira Guimarães, Marcus Vinícius Pinheiro Mendonça, Faye Alice Gravely, Cláudia Maria Bahia Pinheiro, Taiana Maria Bahia Pinheiro, Stella Maria Barrouin-Melo, Ricardo Ribeiro-dos-Santos, and Milena Botelho Pereira Soares Copyright © 2014 Euler Moraes Penha et al. All rights reserved. SOX2 Is Regulated Differently from NANOG and OCT4 in Human Embryonic Stem Cells during Early Differentiation Initiated with Sodium Butyrate Wed, 19 Feb 2014 08:10:27 +0000 http://www.hindawi.com/journals/sci/2014/298163/ Transcription factors NANOG, OCT4, and SOX2 regulate self-renewal and pluripotency in human embryonic stem (hES) cells; however, their expression profiles during early differentiation of hES cells are unclear. In this study, we used multiparameter flow cytometric assay to detect all three transcription factors (NANOG, OCT4, and SOX2) simultaneously at single cell level and monitored the changes in their expression during early differentiation towards endodermal lineage (induced by sodium butyrate). We observed at least four distinct populations of hES cells, characterized by specific expression patterns of NANOG, OCT4, and SOX2 and differentiation markers. Our results show that a single cell can express both differentiation and pluripotency markers at the same time, indicating a gradual mode of developmental transition in these cells. Notably, distinct regulation of SOX2 during early differentiation events was detected, highlighting the potential importance of this transcription factor for self-renewal of hES cells during differentiation. Ade Kallas, Martin Pook, Annika Trei, and Toivo Maimets Copyright © 2014 Ade Kallas et al. All rights reserved. Long-Term Quantitative Biodistribution and Side Effects of Human Mesenchymal Stem Cells (hMSCs) Engraftment in NOD/SCID Mice following Irradiation Tue, 11 Feb 2014 12:04:06 +0000 http://www.hindawi.com/journals/sci/2014/939275/ There is little information on the fate of infused mesenchymal stem cells (MSCs) and long-term side effects after irradiation exposure. We addressed these questions using human MSCs (hMSCs) intravenously infused to nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice submitted to total body irradiation (TBI) or local irradiation (abdominal or leg irradiation). The animals were sacrificed 3 to 120 days after irradiation and the quantitative and spatial distribution of hMSCs were studied by polymerase chain reaction (PCR). Following their infusion into nonirradiated animals, hMSCs homed to various tissues. Engraftment depended on the dose of irradiation and the area exposed. Total body irradiation induced an increased hMSC engraftment level compared to nonirradiated mice, while local irradiations increased hMSC engraftment locally in the area of irradiation. Long-term engraftment of systemically administered hMSCs in NOD/SCID mice increased significantly in response to tissue injuries produced by local or total body irradiation until 2 weeks then slowly decreased depending on organs and the configuration of irradiation. In all cases, no tissue abnormality or abnormal hMSCs proliferation was observed at 120 days after irradiation. This work supports the safe and efficient use of MSCs by injection as an alternative approach in the short- and long-term treatment of severe complications after radiotherapy for patients refractory to conventional treatments. Sabine François, Benoit Usunier, Luc Douay, Marc Benderitter, and Alain Chapel Copyright © 2014 Sabine François et al. All rights reserved. Stimulation of Neural Stem Cell Proliferation by Inhibition of Phosphodiesterase 5 Sun, 12 Jan 2014 00:00:00 +0000 http://www.hindawi.com/journals/sci/2014/878397/ The involvement of nitric oxide (NO) and cyclic GMP (cGMP) in neurogenesis has been progressively unmasked over the last decade. Phosphodiesterase 5 (PDE5) specifically degrades cGMP and is highly abundant in the mammalian brain. Inhibition of cGMP hydrolysis by blocking PDE5 is a possible strategy to enhance the first step of neurogenesis, proliferation of neural stem cells (NSC). In this work, we have studied the effect on cell proliferation of 3 inhibitors with different selectivity and potency for PDE5, T0156, sildenafil, and zaprinast, using subventricular zone-(SVZ-) derived NSC cultures. We observed that a short- (6 h) or a long-term (24 h) treatment with PDE5 inhibitors increased SVZ-derived NSC proliferation. Cell proliferation induced by PDE5 inhibitors was dependent on the activation of the mitogen-activated protein kinase (MAPK) and was abolished by inhibitors of MAPK signaling, soluble guanylyl cyclase, and protein kinase G. Moreover, sildenafil neither activated ERK1/2 nor altered levels, suggesting the involvement of pathways different from those activated by T0156 or zaprinast. In agreement with the present results, PDE5 inhibitors may be an interesting therapeutic approach for enhancing the proliferation stage of adult neurogenesis. Ana I. Santos, Bruno P. Carreira, Rui J. Nobre, Caetana M. Carvalho, and Inês M. Araújo Copyright © 2014 Ana I. Santos et al. All rights reserved. Strategies Affording Prevascularized Cell-Based Constructs for Myocardial Tissue Engineering Sun, 05 Jan 2014 13:08:16 +0000 http://www.hindawi.com/journals/sci/2014/434169/ The production of a functional cardiac tissue to be transplanted in the injured area of the infarcted myocardium represents a challenge for regenerative medicine. Most cell-based grafts are unviable because of inadequate perfusion; therefore, prevascularization might be a suitable approach for myocardial tissue engineering. To this aim, cells with a differentiation potential towards vascular and cardiac muscle phenotypes have been cocultured in 2D or 3D appropriate scaffolds. In addition to these basic approaches, more sophisticated strategies have been followed employing mixed-cell sheets, microvascular modules, and inosculation from vascular explants. Technologies exerting spatial control of vascular cells, such as topographical surface roughening and ordered patterning, represent other ways to drive scaffold vascularization. Finally, microfluidic devices and bioreactors exerting mechanical stress have also been employed for high-throughput scaling-up production in order to accelerate muscle differentiation and speeding the endothelialization process. Future research should address issues such as how to optimize cells, biomaterials, and biochemical components to improve the vascular integration of the construct within the cardiac wall, satisfying the metabolic and functional needs of the myocardial tissue. Claudio Muscari, Emanuele Giordano, Francesca Bonafè, Marco Govoni, and Carlo Guarnieri Copyright © 2014 Claudio Muscari et al. All rights reserved. Nonviral Gene Delivery of Growth and Differentiation Factor 5 to Human Mesenchymal Stem Cells Injected into a 3D Bovine Intervertebral Disc Organ Culture System Mon, 23 Dec 2013 09:13:02 +0000 http://www.hindawi.com/journals/sci/2013/326828/ Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration. Christian Bucher, Amiq Gazdhar, Lorin M. Benneker, Thomas Geiser, and Benjamin Gantenbein-Ritter Copyright © 2013 Christian Bucher et al. All rights reserved. Multipotent to Pluripotent Properties of Adult Stem Cells Sun, 15 Dec 2013 18:16:30 +0000 http://www.hindawi.com/journals/sci/2013/813780/ Deepa Bhartiya, Kenneth R. Boheler, and Pranela Rameshwar Copyright © 2013 Deepa Bhartiya et al. All rights reserved. A Review of Stem Cell Translation and Potential Confounds by Cancer Stem Cells Tue, 10 Dec 2013 08:22:28 +0000 http://www.hindawi.com/journals/sci/2013/241048/ Mesenchymal stem cells (MSCs) are multipotent cells found in both fetal and adult tissues. MSCs show promise for cellular therapy for several disorders such as those associated with inflammation. In adults, MSCs primarily reside in the bone marrow (BM) and adipose tissues. In BM, MSCs are found at low frequency around blood vessels and trabecula. MSCs are attractive candidates for regenerative medicine given their ease in harvesting and expansion and their unique ability to bypass the immune system in an allogeneic host. Additionally, MSCs exert pathotropism by their ability to migrate to diseased regions. Despite the “attractive” properties of MSCs, their translation to patients requires indepth research. “Off-the-shelf” MSCs are proposed for use in an allogeneic host. Thus, the transplanted MSCs, when placed in a foreign host, could receive cue from the microenvironment for cellular transformation. An important problem with the use of MSCs involves their ability to facilitate the support of breast and other cancers as carcinoma-associated fibroblasts. MSCs could show distinct effect on each subset of cancer cells. This could lead to untoward effect during MSC therapy since the MSCs would be able to interact with undiagnosed cancer cells, which might be in a dormant state. Based on these arguments, further preclinical research is needed to ensure patient safety with MSC therapy. Here, we discuss the basic biology of MSCs, discuss current applications, and provide evidence why it is important to understand MSC biology in the context of diseased microenvironment for safe application. Bernadette Bibber, Garima Sinha, Aline R. M. Lobba, Steven J. Greco, and Pranela Rameshwar Copyright © 2013 Bernadette Bibber et al. All rights reserved. Coculture with Late, but Not Early, Human Endothelial Progenitor Cells Up Regulates IL-1β Expression in THP-1 Monocytic Cells in a Paracrine Manner Mon, 09 Dec 2013 09:43:13 +0000 http://www.hindawi.com/journals/sci/2013/859643/ Endothelial progenitor cells (EPCs) have been used in clinical trials to treat ischemic heart disease. Monocyte infiltration plays an important role in inflammation, angiogenesis, and tissue repair during tissue ischemia. It is important to understand the interactions between EPCs and monocytes. In this study, a human EPC/THP-1 monocytic cell coculture system was used to examine EPC effect on IL-1α, IL-1β, and TNF-α expression in THP-1 cells. Late, but not early, EPCs upregulated IL-1β expression at both mRNA and protein levels. In contrast, neither early nor late EPCs affected IL-1α or TNF-α expression. Coculture with human umbilical vein endothelial cells did not alter IL-1β expression. It has been shown that activation of integrin β2 in human neutrophils augments IL-1β synthesis; however integrin β2 was not involved in IL-1β expression in THP-1 cells. Addition of late EPC conditioned medium to THP-1 cell culture led to a modest increase of IL-1β mRNA levels, indicating that late EPCs upregulate IL-1β expression partly through a paracrine pathway. IL-1β, an important inflammation mediator, has been shown to promote EPC function. Our data therefore suggest that late EPCs can exert self-enhancement effects by interacting with monocytes and that EPCs might modulate inflammatory reactions by regulating IL-1β expression in monocytes. Qiuwang Zhang, Ivana Kandic, Jeffrey T. Barfield, and Michael J. Kutryk Copyright © 2013 Qiuwang Zhang et al. All rights reserved. Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor Sun, 24 Nov 2013 09:23:06 +0000 http://www.hindawi.com/journals/sci/2013/372164/ Adipose-derived stem cells (ADSCs) are a heterogeneous cell population that may be enriched by positive selection with antibodies against the low-affinity nerve growth factor receptor (LNGFR or CD271), yielding a selective cell universe with higher proliferation and differentiation potential. This paper addresses the need for determining the quantity of ADSCs positive for the CD271 receptor and its correlation with donor's age. Mononuclear cells were harvested from the lower backs of 35 female donors and purified using magnetic beads. Multipotency capacity was tested by the expression of stemness genes and through differentiation into preosteoblasts and adipocytes. A significant statistical difference was found in CD271+ concentrations between defined age intervals. The highest yield was found within women on the 30–40-year-old age range. CD271+ ADSCs from all age groups showed differentiation capabilities as well as expression of typical multipotent stem cell genes. Our data suggest that the amount of CD271+ cells correlates inversely with age. However, the ability to obtain these cells was maintained through all age ranges with a yield higher than what has been reported from bone marrow. Our findings propose CD271+ ADSCs as the primary choice for tissue regeneration and autologous stem cell therapies in older subjects. Raquel Cuevas-Diaz Duran, Maria Teresa González-Garza, Alejandro Cardenas-Lopez, Luis Chavez-Castilla, Delia Elva Cruz-Vega, and Jorge E. Moreno-Cuevas Copyright © 2013 Raquel Cuevas-Diaz Duran et al. All rights reserved. Differentiation of Dental Pulp Stem Cells into Neuron-Like Cells in Serum-Free Medium Mon, 18 Nov 2013 14:15:02 +0000 http://www.hindawi.com/journals/sci/2013/250740/ Dental pulp tissue contains dental pulp stem cells (DPSCs). Dental pulp cells (also known as dental pulp-derived mesenchymal stem cells) are capable of differentiating into multilineage cells including neuron-like cells. The aim of this study was to examine the capability of DPSCs to differentiate into neuron-like cells without using any reagents or growth factors. DPSCs were isolated from teeth extracted from 6- to 8-week-old mice and maintained in complete medium. The cells from the fourth passage were induced to differentiate by culturing in medium without serum or growth factors. RT-PCR molecular analysis showed characteristics of Cd146+, Cd166+, and Cd31− in DPSCs, indicating that these cells are mesenchymal stem cells rather than hematopoietic stem cells. After 5 days of neuronal differentiation, the cells showed neuron-like morphological changes and expressed MAP2 protein. The activation of Nestin was observed at low level prior to differentiation and increased after 5 days of culture in differentiation medium, whereas Tub3 was activated only after 5 days of neuronal differentiation. The proliferation of the differentiated cells decreased in comparison to that of the control cells. Dental pulp stem cells are induced to differentiate into neuron-like cells when cultured in serum- and growth factor-free medium. Shahrul Hisham Zainal Ariffin, Shabnam Kermani, Intan Zarina Zainol Abidin, Rohaya Megat Abdul Wahab, Zulham Yamamoto, Sahidan Senafi, Zaidah Zainal Ariffin, and Mohamad Abdul Razak Copyright © 2013 Shahrul Hisham Zainal Ariffin et al. All rights reserved. Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury Thu, 07 Nov 2013 09:01:49 +0000 http://www.hindawi.com/journals/sci/2013/534263/ In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC) is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 ( = 20). Injection of cell culture medium performed in group 2 ( = 20) served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin ( < 0.017), total protein ( < 0.031), glutamic oxaloacetic transaminase ( < 0.001), and lactate dehydrogenase ( < 0.04) levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure. Eva Koellensperger, Willem Niesen, Jonas Kolbenschlag, Felix Gramley, Guenter Germann, and Uwe Leimer Copyright © 2013 Eva Koellensperger et al. All rights reserved. DNA Methylation Changes during In Vitro Propagation of Human Mesenchymal Stem Cells: Implications for Their Genomic Stability? Wed, 30 Oct 2013 10:40:15 +0000 http://www.hindawi.com/journals/sci/2013/192425/ Mesenchymal stem cells (MSCs) hold great promise for the treatment of numerous diseases. A major problem for MSC therapeutic use is represented by the very low amount of MSCs which can be isolated from different tissues; thus ex vivo expansion is indispensable. Long-term culture, however, is associated with extensive morphological and functional changes of MSCs. In addition, the concern that they may accumulate stochastic mutations which lead the risk of malignant transformation still remains. Overall, the genome of human MSCs (hMSCs) appears to be apparently stable throughout culture, though transient clonal aneuploidies have been detected. Particular attention should be given to the use of low-oxygen environment in order to increase the proliferative capacity of hMSCs, since data on the effect of hypoxic culture conditions on genomic stability are few and contradictory. Furthermore, specific and reproducible epigenetic changes were acquired by hMSCs during ex vivo expansion, which may be connected and trigger all the biological changes observed. In this review we address current issues on long-term culture of hMSCs with a 360-degree view, starting from the genomic profiles and back, looking for an epigenetic interpretation of their genetic stability. Angela Bentivegna, Mariarosaria Miloso, Gabriele Riva, Dana Foudah, Valentina Butta, Leda Dalprà, and Giovanni Tredici Copyright © 2013 Angela Bentivegna et al. All rights reserved. Adiponectin Deficiency Blunts Hypoxia-Induced Mobilization and Homing of Circulating Angiogenic Cells Tue, 29 Oct 2013 18:12:06 +0000 http://www.hindawi.com/journals/sci/2013/260156/ Aim. We investigated the effects of adiponectin deficiency on circulating angiogenic cell (CAC) mobilization, homing, and neovascularization in the setting of acute myocardial infarction (AMI). Methods & Results. AMI was induced in wild-type (WT) () and adiponectin knockout (Adipoq−/−) mice (). One week after AMI, bone marrow (BM) concentration and mobilization of Sca-1+ and Lin−Sca-1+ progenitor cells (PCs) were markedly attenuated under Adipoq−/− conditions, as assessed by flow cytometry. The mRNA expression of HIF-1-dependent chemotactic factors, such as Cxcl12 () and Ccl5 (), and vascular adhesion molecules, such as Icam1 (), and Vcam1 (), was significantly lower in the infarction border zone of Adipoq−/− mice. Histologically, Adipoq−/− mice evidenced a decrease in neovascularization capacity in the infarction border zone (). Overall, capillary density was positively correlated with Sca-1+ PC numbers in BM () and peripheral blood (PB) () and with the expression of the homing factors Cxcl12 (), Icam1 () and Vcam1 (). Conclusions. Adiponectin deficiency reduced the BM reserve and mobilization capacity of CACs, attenuated the expression of hypoxia-induced chemokines and vascular adhesion molecules, and impaired the neovascularization capacity one week after AMI. Bert R. Everaert, Vincent J. Nijenhuis, Florence C. M. Reith, Vicky Y. Hoymans, Jean-Pierre Timmermans, and Christiaan J. Vrints Copyright © 2013 Bert R. Everaert et al. All rights reserved. Distinct iPS Cells Show Different Cardiac Differentiation Efficiency Sun, 27 Oct 2013 16:30:11 +0000 http://www.hindawi.com/journals/sci/2013/659739/ Patient-specific induced pluripotent stem (iPS) cells can be generated by introducing transcription factors that are highly expressed in embryonic stem (ES) cells into somatic cells. This opens up new possibilities for cell transplantation-based regenerative medicine by overcoming the ethical issues and immunological problems associated with ES cells. Despite the development of various methods for the generation of iPS cells that have resulted in increased efficiency, safety, and general versatility, it remains unknown which types of iPS cells are suitable for clinical use. Therefore, the aims of the present study were to assess (1) the differentiation potential, time course, and efficiency of different types of iPS cell lines to differentiate into cardiomyocytes in vitro and (2) the properties of the iPS cell-derived cardiomyocytes. We found that high-quality iPS cells exhibited better cardiomyocyte differentiation in terms of the time course and efficiency of differentiation than low-quality iPS cells, which hardly ever differentiated into cardiomyocytes. Because of the different properties of the various iPS cell lines such as cardiac differentiation efficiency and potential safety hazards, newly established iPS cell lines must be characterized prior to their use in cardiac regenerative medicine. Yohei Ohno, Shinsuke Yuasa, Toru Egashira, Tomohisa Seki, Hisayuki Hashimoto, Shugo Tohyama, Yuki Saito, Akira Kunitomi, Kenichiro Shimoji, Takeshi Onizuka, Toshimi Kageyama, Kojiro Yae, Tomofumi Tanaka, Ruri Kaneda, Fumiyuki Hattori, Mitsushige Murata, Kensuke Kimura, and Keiichi Fukuda Copyright © 2013 Yohei Ohno et al. All rights reserved.