Stem Cells International The latest articles from Hindawi Publishing Corporation © 2015 , Hindawi Publishing Corporation . All rights reserved. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells Mon, 23 Nov 2015 09:53:34 +0000 The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis. Giacomo Palazzolo, Mattia Quattrocelli, Jaan Toelen, Roberto Dominici, Luigi Anastasia, Guido Tettamenti, Inès Barthelemy, Stephane Blot, Rik Gijsbers, Marco Cassano, and Maurilio Sampaolesi Copyright © 2016 Giacomo Palazzolo et al. All rights reserved. Transcriptome Analysis of Long Noncoding RNAs in Toll-Like Receptor 3-Activated Mesenchymal Stem Cells Mon, 23 Nov 2015 08:54:26 +0000 Mesenchymal stem cells (MSCs) possess great immunomodulatory capacity which lays the foundation for their therapeutic effects in a variety of diseases. Recently, toll-like receptors (TLR) have been shown to modulate MSC functions; however, the underlying molecular mechanisms are poorly understood. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are an important class of regulators involved in a wide range of biological processes. To explore the potential involvement of lncRNAs in TLR stimulated MSCs, we performed a comprehensive lncRNA and mRNA profiling through microarray. 10.2% of lncRNAs (1733 out of 16967) and 15.1% of mRNA transcripts (1760 out of 11632) were significantly differentially expressed (absolute fold-change 5 , P value ) in TLR3 stimulated MSCs. Furthermore, we characterized the differentially expressed lncRNAs through their classes and length distribution and correlated them with differentially expressed mRNA. Here, we are the first to determine genome-wide lncRNAs expression patterns in TLR3 stimulated MSCs by microarray and this work could provide a comprehensive framework of the transcriptome landscapes of TLR3 stimulated MSCs. Shihua Wang, Xiaoxia Li, and Robert Chunhua Zhao Copyright © 2016 Shihua Wang et al. All rights reserved. Endometrial Mesenchymal Stem Cells Isolated from Menstrual Blood by Adherence Mon, 23 Nov 2015 07:52:18 +0000 Objective. To find a convenient and efficient way to isolate MSCs from human menstrual blood and to investigate their biological characteristics, proliferative capacity, and secretion levels. Methods. MSCs were isolated from menstrual blood of 3 healthy women using adherence. Cell immunological phenotype was examined by flow cytometry; the adipogenic, osteogenic, and chondrogenic differentiation of MSCs was examined by Oil-Red-O staining, ALP staining, and Alcian Blue staining, respectively; and the secretion of cytokines, including vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and insulin-like growth factor-1 (IGF-1), was detected using enzyme-linked immunosorbent assay. Results. MB-MSCs were successfully isolated from human menstrual blood using adherence. They were positive for CD73, CD105, CD29, and CD44, but negative for CD31 and CD45. The differentiated MB-MSCs were positive for ALP staining, Oil-Red-O staining, and Alcian Blue staining. In addition, they could secrete antiapoptotic cytokines, such as VEGF, IGF-1, and HGF. Conclusion. It is feasible to isolate MSCs from human menstrual blood, thus avoiding invasive procedures and ethical controversies. Adherence could be a promising alternative to the density gradient centrifugation for the isolation of MSCs from menstrual blood. Xue Du, Qing Yuan, Ye Qu, Yuan Zhou, and Jia Bei Copyright © 2016 Xue Du et al. All rights reserved. Epigenetics and Shared Molecular Processes in the Regeneration of Complex Structures Sun, 22 Nov 2015 14:31:13 +0000 The ability to regenerate complex structures is broadly represented in both plant and animal kingdoms. Although regenerative abilities vary significantly amongst metazoans, cumulative studies have identified cellular events that are broadly observed during regenerative events. For example, structural damage is recognized and wound healing initiated upon injury, which is followed by programmed cell death in the vicinity of damaged tissue and a burst in proliferation of progenitor cells. Sustained proliferation and localization of progenitor cells to site of injury give rise to an assembly of differentiating cells known as the regeneration blastema, which fosters the development of new tissue. Finally, preexisting tissue rearranges and integrates with newly differentiated cells to restore proportionality and function. While heterogeneity exists in the basic processes displayed during regenerative events in different species—most notably the cellular source contributing to formation of new tissue—activation of conserved molecular pathways is imperative for proper regulation of cells during regeneration. Perhaps the most fundamental of such molecular processes entails chromatin rearrangements, which prime large changes in gene expression required for differentiation and/or dedifferentiation of progenitor cells. This review provides an overview of known contributions to regenerative processes by noncoding RNAs and chromatin-modifying enzymes involved in epigenetic regulation. Labib Rouhana and Junichi Tasaki Copyright © 2016 Labib Rouhana and Junichi Tasaki. All rights reserved. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function Sun, 22 Nov 2015 14:24:19 +0000 Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA) pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs) derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW) and high/middle molecular weight (HMW/MMW) adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial fibroblasts (RA-FLS) and peripheral blood mononuclear cells (PBMCs) from healthy donors have been analysed. RA-ASCs secreted spontaneously TGFβ, IL-6, IL-1Ra, PGE2, IL-8, and VEGF. Secretion of all these factors was considerably upregulated by HMW/MMW adiponectin, but not by LMW adiponectin and leptin. Stimulation with HMW/MMW adiponectin partially abolished proproliferative effect of ASC-derived soluble factors on RA-FLS but did not affect IL-6 secretion in FLS cultures. ASCs pretreated with HMW/MMW adiponectin maintained their anti-inflammatory function towards PBMCs, which was manifested by moderate PBMCs proliferation inhibition and IL-10 secretion induction. We have proved that HMW/MMW adiponectin stimulates secretory potential of rheumatoid ASCs but does not exert strong impact on ASCs function towards RA-FLS and PBMCs. Urszula Skalska and Ewa Kontny Copyright © 2016 Urszula Skalska and Ewa Kontny. All rights reserved. Developmental Pathways Direct Pancreatic Cancer Initiation from Its Cellular Origin Sun, 22 Nov 2015 14:24:04 +0000 Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis, since it is usually diagnosed at advanced stages. In order to employ tools for early detection, a better understanding of the early stages of PDA development from its main precursors, pancreatic intraepithelial neoplasia (PanIN), and intraductal papillary mucinous neoplasm (IPMN) is needed. Recent studies on murine PDA models have identified a different exocrine origin for PanINs and IPMNs. In both processes, developmental pathways direct the initiation of PDA precursors from their cellular ancestors. In this review, the current understanding of early PDA development is summarized. Maximilian Reichert, Karin Blume, Alexander Kleger, Daniel Hartmann, and Guido von Figura Copyright © 2016 Maximilian Reichert et al. All rights reserved. A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements Sun, 22 Nov 2015 14:08:25 +0000 Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs) silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1) the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2) a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations. Astrid D. Haase Copyright © 2016 Astrid D. Haase. All rights reserved. How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart? Sun, 22 Nov 2015 13:51:01 +0000 Mesenchymal stem cell (MSC) is an intensely studied stem cell type applied for cardiac repair. For decades, the preclinical researches on animal model and clinical trials have suggested that MSC transplantation exerts therapeutic effect on ischemic heart disease. However, there remain major limitations to be overcome, one of which is the very low survival rate after transplantation in heart tissue. Various strategies have been tried to improve the MSC survival, and many of them showed promising results. In this review, we analyzed the studies in recent years to summarize the methods, effects, and mechanisms of the new strategies to address this question. Liangpeng Li, Xiongwen Chen, Wei Eric Wang, and Chunyu Zeng Copyright © 2016 Liangpeng Li et al. All rights reserved. Epigenetic Control of Haematopoietic Stem Cell Aging and Its Clinical Implications Sun, 22 Nov 2015 13:48:51 +0000 Aging, chronic inflammation, and environmental insults play an important role in a number of disease processes through alterations of the epigenome. In this review we explore how age-related changes in the epigenetic landscape can affect heterogeneity within the haematopoietic stem cell (HSC) compartment and the deriving clinical implications. Fizzah Aziz Choudry and Mattia Frontini Copyright © 2016 Fizzah Aziz Choudry and Mattia Frontini. All rights reserved. A Genomic Study of DNA Alteration Events Caused by Ionizing Radiation in Human Embryonic Stem Cells via Next-Generation Sequencing Sun, 22 Nov 2015 13:39:16 +0000 Ionizing radiation (IR) is a known mutagen that is widely employed for medical diagnostic and therapeutic purposes. To study the extent of genetic variations in DNA caused by IR, we used IR-sensitive human embryonic stem cells (hESCs). Four hESC cell lines, H1, H7, H9, and H14, were subjected to IR at 0.2 or 1 Gy dose and then maintained in culture for four days before being harvested for DNA isolation. Irradiation with 1 Gy dose resulted in significant cell death, ranging from 60% to 90% reduction in cell population. Since IR is often implicated as a risk for inducing cancer, a primer pool targeting genomic “hotspot” regions that are frequently mutated in human cancer genes was used to generate libraries from irradiated and control samples. Using a semiconductor-based next-generation sequencing approach, we were able to consistently sequence these samples with deep coverage for reliable data analysis. A possible rare nucleotide variant was identified in the KIT gene (chr4:55593481) exclusively in H1 hESCs irradiated with 1 Gy dose. More extensive further studies are warranted to assess the extent and distribution of genetic changes in hESCs after IR exposure. Van Nguyen, Irina V. Panyutin, Igor G. Panyutin, and Ronald D. Neumann Copyright © 2016 Van Nguyen et al. All rights reserved. Uric Acid-Induced Adipocyte Dysfunction Is Attenuated by HO-1 Upregulation: Potential Role of Antioxidant Therapy to Target Obesity Sun, 22 Nov 2015 13:29:50 +0000 Increased uric acid levels have been implicated in the pathogenesis of metabolic syndrome. To examine the mechanisms by which this occurs, we hypothesized that an increase in heme oxygenase 1, a potent antioxidant gene, will decrease uric acid levels and adipocyte dysfunction via suppression of ROS and xanthine oxidase (XO) levels. We examined the effect of uric acid on adipogenesis in human mesenchymal stem cells (MSCs) in the presence and absence of cobalt protoporphyrin (CoPP), an HO-1 inducer, and tin mesoporphyrin (SnMP), an HO activity inhibitor. Uric acid increased adipogenesis by increasing NADPH oxidase expression and elevation in the adipogenesis markers C/EBPα, PPARγ, and Mest, while decreasing small lipid droplets and Wnt10b levels. We treated MSCs with fructose, a fuel source that increases uric acid levels. Our results showed that fructose increased XO expression as compared to the control and concomitant treatment with CoPP significantly decreased XO expression and uric acid levels. These beneficial effects of CoPP were reversed by SnMP, supporting a role for HO activity in mediating these effects. These findings demonstrate that increased levels of HO-1 appear crucial in modulating the phenotype of adipocytes exposed to uric acid and in downregulating XO and NADPH oxidase levels. Komal Sodhi, Jordan Hilgefort, George Banks, Chelsea Gilliam, Sarah Stevens, Hayden A. Ansinelli, Morghan Getty, Nader G. Abraham, Joseph I. Shapiro, and Zeid Khitan Copyright © 2016 Komal Sodhi et al. All rights reserved. Dynamic Proteomic Analysis of Pancreatic Mesenchyme Reveals Novel Factors That Enhance Human Embryonic Stem Cell to Pancreatic Cell Differentiation Sun, 22 Nov 2015 13:15:47 +0000 Current approaches in human embryonic stem cell (hESC) to pancreatic beta cell differentiation have largely been based on knowledge gained from developmental studies of the epithelial pancreas, while the potential roles of other supporting tissue compartments have not been fully explored. One such tissue is the pancreatic mesenchyme that supports epithelial organogenesis throughout embryogenesis. We hypothesized that detailed characterization of the pancreatic mesenchyme might result in the identification of novel factors not used in current differentiation protocols. Supplementing existing hESC differentiation conditions with such factors might create a more comprehensive simulation of normal development in cell culture. To validate our hypothesis, we took advantage of a novel transgenic mouse model to isolate the pancreatic mesenchyme at distinct embryonic and postnatal stages for subsequent proteomic analysis. Refined sample preparation and analysis conditions across four embryonic and prenatal time points resulted in the identification of 21,498 peptides with high-confidence mapping to 1,502 proteins. Expression analysis of pancreata confirmed the presence of three potentially important factors in cell differentiation: Galectin-1 (LGALS1), Neuroplastin (NPTN), and the Laminin α-2 subunit (LAMA2). Two of the three factors (LGALS1 and LAMA2) increased expression of pancreatic progenitor transcript levels in a published hESC to beta cell differentiation protocol. In addition, LAMA2 partially blocks cell culture induced beta cell dedifferentiation. Summarily, we provide evidence that proteomic analysis of supporting tissues such as the pancreatic mesenchyme allows for the identification of potentially important factors guiding hESC to pancreas differentiation. Holger A. Russ, Limor Landsman, Christopher L. Moss, Roger Higdon, Renee L. Greer, Kelly Kaihara, Randy Salamon, Eugene Kolker, and Matthias Hebrok Copyright © 2016 Holger A. Russ et al. All rights reserved. Spheroid Culture of Mesenchymal Stem Cells Mon, 16 Nov 2015 08:48:51 +0000 Compared with traditional 2D adherent cell culture, 3D spheroidal cell aggregates, or spheroids, are regarded as more physiological, and this technique has been exploited in the field of oncology, stem cell biology, and tissue engineering. Mesenchymal stem cells (MSCs) cultured in spheroids have enhanced anti-inflammatory, angiogenic, and tissue reparative/regenerative effects with improved cell survival after transplantation. Cytoskeletal reorganization and drastic changes in cell morphology in MSC spheroids indicate a major difference in mechanophysical properties compared with 2D culture. Enhanced multidifferentiation potential, upregulated expression of pluripotency marker genes, and delayed replicative senescence indicate enhanced stemness in MSC spheroids. Furthermore, spheroid formation causes drastic changes in the gene expression profile of MSC in microarray analyses. In spite of these significant changes, underlying molecular mechanisms and signaling pathways triggering and sustaining these changes are largely unknown. Zoe Cesarz and Kenichi Tamama Copyright © 2016 Zoe Cesarz and Kenichi Tamama. All rights reserved. Three-Dimensional Aggregates Enhance the Therapeutic Effects of Adipose Mesenchymal Stem Cells for Ischemia-Reperfusion Induced Kidney Injury in Rats Mon, 16 Nov 2015 08:47:51 +0000 It has been shown that administration of adipose derived mesenchymal stem cells (AdMSCs) enhanced structural and functional recovery of renal ischemia-reperfusion (IR) injury. Low engraftment of stem cells, however, limits the therapeutic effects of AdMSCs. The present study was designed to enhance the therapeutic effects of AdMSCs by delivering AdMSCs in a three-dimensional (3D) aggregates form. Microwell was used to produce 3D AdMSCs aggregates. In vitro data indicated that AdMSCs in 3D aggregates were less susceptible to oxidative and hypoxia stress induced by 200 μM peroxide and hypoxia/reoxygenation, respectively, compared with those cultured in two-dimensional (2D) monolayer. Furthermore, AdMSCs in 3D aggregates secreted more proangiogenic factors than those cultured in 2D monolayer. 2D AdMSCs or 3D AdMSCs aggregates were injected into renal cortex immediately after induction of renal IR injury. In vivo data revealed that 3D aggregates enhanced the effects of AdMSCs in recovering function and structure after renal IR injury. Improved grafted AdMSCs were observed in kidney injected with 3D aggregates compared with AdMSCs cultured in 2D monolayer. Our results demonstrated that 3D AdMSCs aggregated produced by microwell enhanced the retention and therapeutic effects of AdMSCs for renal IR injury. Xiaozhi Zhao, Xuefeng Qiu, Yanting Zhang, Shiwei Zhang, Xiaoping Gu, and Hongqian Guo Copyright © 2016 Xiaozhi Zhao et al. All rights reserved. Extracellular Vesicles: Evolving Factors in Stem Cell Biology Mon, 16 Nov 2015 08:31:20 +0000 Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies. Muhammad Nawaz, Farah Fatima, Krishna C. Vallabhaneni, Patrice Penfornis, Hadi Valadi, Karin Ekström, Sharad Kholia, Jason D. Whitt, Joseph D. Fernandes, Radhika Pochampally, Jeremy A. Squire, and Giovanni Camussi Copyright © 2016 Muhammad Nawaz et al. All rights reserved. Bone Marrow-Derived Cells as a Therapeutic Approach to Optic Nerve Diseases Mon, 16 Nov 2015 08:11:50 +0000 Following optic nerve injury associated with acute or progressive diseases, retinal ganglion cells (RGCs) of adult mammals degenerate and undergo apoptosis. These diseases have limited therapeutic options, due to the low inherent capacity of RGCs to regenerate and due to the inhibitory milieu of the central nervous system. Among the numerous treatment approaches investigated to stimulate neuronal survival and axonal extension, cell transplantation emerges as a promising option. This review focuses on cell therapies with bone marrow mononuclear cells and bone marrow-derived mesenchymal stem cells, which have shown positive therapeutic effects in animal models of optic neuropathies. Different aspects of available preclinical studies are analyzed, including cell distribution, potential doses, routes of administration, and mechanisms of action. Finally, published and ongoing clinical trials are summarized. Louise A. Mesentier-Louro, Camila Zaverucha-do-Valle, Paulo H. Rosado-de-Castro, Almir J. Silva-Junior, Pedro M. Pimentel-Coelho, Rosalia Mendez-Otero, and Marcelo F. Santiago Copyright © 2016 Louise A. Mesentier-Louro et al. All rights reserved. Delta-Like-1 Changes the Immunomodulatory Property of OP9 Cells Mon, 16 Nov 2015 08:01:31 +0000 As stromal cells and recently confirmed mesenchymal stem cells, OP9 cells support hematopoiesis stem cell (HSC) differentiation into the B lymphocyte lineage, yet Delta-like-1 (DL1) overexpressing OP9 (OP9DL1) cells promote the development of early T lymphocytes from HSC. However, the immunomodulatory capacity of OP9 or OP9DL1 on mature B and T cell proliferation has not been elucidated. Here, we show that OP9 and OP9DL1 have similar proliferation capacities and immunophenotypes except DL1 expression. Compared with OP9, OP9DL1 displayed more osteogenesis and less adipogenesis when cultured in the respective induction media. Both OP9 and OP9DL1 inhibited mature B and T cell proliferation. Furthermore, OP9 showed stronger inhibition on B cell proliferation and OP9DL1 exhibited stronger inhibition on T cell proliferation. With stimulation, both OP9 and OP9DL1 showed increased nitrate oxide (NO) production. The NO levels of OP9 were higher than that of OP9DL1 when stimulated with TNFα/IFNγ or LPS/IL4. Taken together, our study reveals a previously unrecognized role of OP9 and OP9DL1 in mature B and T cell proliferation. DL1 overexpression alone changed the properties of OP9 cells in addition to their role in early B cell development. Lei Zhang, Rui-Jie Dang, Yan-Mei Yang, Dian-Chao Cui, Ping Li, Yan-Li Ni, Tong Hao, Changyong Wang, Xiao-Xia Jiang, and Nan-Zhu Fang Copyright © 2016 Lei Zhang et al. All rights reserved. Encapsulated Whole Bone Marrow Cells Improve Survival in Wistar Rats after 90% Partial Hepatectomy Mon, 16 Nov 2015 07:42:19 +0000 Background and Aims. The use of bone marrow cells has been suggested as an alternative treatment for acute liver failure. In this study, we investigate the effect of encapsulated whole bone marrow cells in a liver failure model. Methods. Encapsulated cells or empty capsules were implanted in rats submitted to 90% partial hepatectomy. The survival rate was assessed. Another group was euthanized at 6, 12, 24, 48, and 72 hours after hepatectomy to study expression of cytokines and growth factors. Results. Whole bone marrow group showed a higher than 10 days survival rate compared to empty capsules group. Gene expression related to early phase of liver regeneration at 6 hours after hepatectomy was decreased in encapsulated cells group, whereas genes related to regeneration were increased at 12, 24, and 48 hours. Whole bone marrow group showed lower regeneration rate at 72 hours and higher expression and activity of caspase 3. In contrast, lysosomal-β-glucuronidase activity was elevated in empty capsules group. Conclusions. The results show that encapsulated whole bone marrow cells reduce the expression of genes involved in liver regeneration and increase those responsible for ending hepatocyte division. In addition, these cells favor apoptotic cell death and decrease necrosis, thus increasing survival. Carolina Uribe-Cruz, Carlos Oscar Kieling, Mónica Luján López, Alessandro Osvaldt, Gustavo Ochs de Muñoz, Themis Reverbel da Silveira, Roberto Giugliani, and Ursula Matte Copyright © 2016 Carolina Uribe-Cruz et al. All rights reserved. Effects of Magnetically Guided, SPIO-Labeled, and Neurotrophin-3 Gene-Modified Bone Mesenchymal Stem Cells in a Rat Model of Spinal Cord Injury Mon, 16 Nov 2015 07:05:19 +0000 Despite advances in our understanding of spinal cord injury (SCI) mechanisms, there are still no effective treatment approaches to restore functionality. Although many studies have demonstrated that transplanting NT3 gene-transfected bone marrow-derived mesenchymal stem cells (BMSCs) is an effective approach to treat SCI, the approach is often low efficient in the delivery of engrafted BMSCs to the site of injury. In this study, we investigated the therapeutic effects of magnetic targeting of NT3 gene-transfected BMSCs via lumbar puncture in a rat model of SCI. With the aid of a magnetic targeting cells delivery system, we can not only deliver the engrafted BMSCs to the site of injury more efficiently, but also perform cells imaging in vivo using MR. In addition, we also found that this composite strategy could significantly improve functional recovery and nerve regeneration compared to transplanting NT3 gene-transfected BMSCs without magnetic targeting system. Our results suggest that this composite strategy could be promising for clinical applications. Rui-Ping Zhang, Ling-Jie Wang, Sheng He, Jun Xie, and Jian-Ding Li Copyright © 2016 Rui-Ping Zhang et al. All rights reserved. Adipose-Derived Stem Cells Alleviate Radiation-Induced Muscular Fibrosis by Suppressing the Expression of TGF-β1 Mon, 16 Nov 2015 07:03:47 +0000 We aim to investigate the effects of adipose-derived stem cells (ASCs) transplantation on irradiation-induced skeletal muscle fibrosis. Sixty-four rabbits were randomly divided into ASCs group and PBS group followed by irradiation at unilateral hip with a single dose of 80 Gy. Nonirradiated side with normal skeletal muscle served as normal control. Skeletal muscle tissues were collected from eight rabbits in each group at 1 w, 4 w, 8 w, and 26 w after irradiation. Migration of ASCs was observed in the peripheral tissues along the needle passage in the injured muscle. The proportion of the area of collagen fibers to the total area in sections of ASCs group was lower than those of PBS groups at 4 w, 8 w, and 26 w after irradiation. Significant decrease was noted in the integrated optimal density of the transforming growth factor 1 (TGF-1) in the ASCs group compared with those of PBS group at 4 w, 8 w, and 26 w after irradiation. Moreover, the expression of TGF-1 was lower in the ASCs group compared to those of the PBS group at each time point determined by Western blot analysis. ASCs transplantation could alleviate irradiation fibrosis by suppressing the level of TGF-1 in the irradiated skeletal muscle. Wei Sun, Xinchu Ni, Suping Sun, Leiming Cai, Jingping Yu, Jian Wang, Bin Nie, Zhiqiang Sun, Xinye Ni, and Xiufeng Cao Copyright © 2016 Wei Sun et al. All rights reserved. Ciprofloxacin Improves the Stemness of Human Dermal Papilla Cells Mon, 16 Nov 2015 06:44:43 +0000 Improvement in the expansion method of adult stem cells may augment their use in regenerative therapy. Using human dermal papilla cell line as well as primary dermal papilla cells as model systems, the present study demonstrated that ciprofloxacin treatment could prevent the loss of stemness during culture. Clonogenicity and stem cell markers of dermal papilla cells were shown to gradually decrease in the culture in a time-dependent manner. Treatment of the cells with nontoxic concentrations of ciprofloxacin could maintain both stem cell morphology and clonogenicity, as well as all stem cells markers. We found that ciprofloxacin exerted its effect through ATP-dependent tyrosine kinase/glycogen synthase kinase3β dependent mechanism which in turn upregulated β-catenin. Besides, ciprofloxacin was shown to induce epithelial-mesenchymal transition in DPCs as the transcription factors ZEB1 and Snail were significantly increased. Furthermore, the self-renewal proteins of Wnt/β-catenin pathway, namely, Nanog and Oct-4 were significantly upregulated in the ciprofloxacin-treated cells. The effects of ciprofloxacin in preserving stem cell features were confirmed in the primary dermal papilla cells directly obtained from human hair follicles. Together, these results revealed a novel application of ciprofloxacin for stem cell maintenance and provided the underlying mechanisms that are responsible for the stemness in dermal papilla cells. Chayanin Kiratipaiboon, Parkpoom Tengamnuay, and Pithi Chanvorachote Copyright © 2016 Chayanin Kiratipaiboon et al. All rights reserved. Effects on Proliferation and Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells Engineered to Express Neurotrophic Factors Sun, 15 Nov 2015 13:45:37 +0000 Mesenchymal stem cells (MSCs) are multipotential cells with capability to form colonies in vitro and differentiate into distinctive end-stage cell types. Although MSCs secrete many cytokines, the efficacy can be improved through combination with neurotrophic factors (NTFs). Moreover, MSCs are excellent opportunities for local delivery of NTFs into injured tissues. The aim of this present study is to evaluate the effects of overexpressing NTFs on proliferation and differentiation of human umbilical cord-derived mesenchymal stem cells (HUMSCs). Overexpressing NTFs had no effect on cell proliferation. Overexpressing NT-3, BDNF, and NGF also had no significant effect on the differentiation of HUMSCs. Overexpressing NTFs all promoted the neurite outgrowth of embryonic chick E9 dorsal root ganglion (DRG). The gene expression profiles of the control and NT-3- and BDNF-modified HUMSCs were compared using RNA sequencing and biological processes and activities were revealed. This study provides novel information about the effects of overexpressing NTFs on HUMSCs and insight into the choice of optimal NTFs for combined cell and gene therapy. Yi Wang, Youguo Ying, and Xiaoyan Cui Copyright © 2016 Yi Wang et al. All rights reserved. Derivation of Pluripotent Cells from Mouse SSCs Seems to Be Age Dependent Mon, 09 Nov 2015 15:30:59 +0000 Here, we aimed to answer important and fundamental questions in germ cell biology with special focus on the age of the male donor cells and the possibility to generate embryonic stem cell- (ESC-) like cells. While it is believed that spermatogonial stem cells (SSCs) and truly pluripotent ESC-like cells can be isolated from adult mice, it remained unknown if the spontaneous conversion of SSCs to ESC-like cells fails at some age. Similarly, there have been differences in the literature about the duration of cultures during which ESC-like cells may appear. We demonstrate the possibility to derive ESC-like cells from SSC cultures until they reach adolescence or up to 7 weeks of age, but we point out the impossibility to derive these cells from older, mature adult mice. The inability of real adult SSCs to shift to a pluripotent state coincides with a decline in expression of the core pluripotency genes Oct4, Nanog, and Sox2 in SSCs with age. At the same time genes of the spermatogonial differentiation pathway increase. The generated ESC-like cells were similar to ESCs and express pluripotency markers. In vitro they differentiate into all three germ lineages; they form complex teratomas after transplantation in SCID mice and produce chimeric mice. Hossein Azizi, Sabine Conrad, Ursula Hinz, Behrouz Asgari, Daniel Nanus, Heike Peterziel, Akbar Hajizadeh Moghaddam, Hossein Baharvand, and Thomas Skutella Copyright © 2016 Hossein Azizi et al. All rights reserved. Challenges in Translating Germinal Stem Cell Research and Therapy Mon, 09 Nov 2015 15:07:27 +0000 Irma Virant-Klun, Hong-Thuy Bui, and Mariusz Z. Ratajczak Copyright © 2016 Irma Virant-Klun et al. All rights reserved. MicroRNAs: From Female Fertility, Germ Cells, and Stem Cells to Cancer in Humans Mon, 09 Nov 2015 14:54:26 +0000 MicroRNAs are a family of naturally occurring small noncoding RNA molecules that play an important regulatory role in gene expression. They are suggested to regulate a large proportion of protein encoding genes by mediating the translational suppression and posttranscriptional control of gene expression. Recent findings show that microRNAs are emerging as important regulators of cellular differentiation and dedifferentiation, and are deeply involved in developmental processes including human preimplantation development. They keep a balance between pluripotency and differentiation in the embryo and embryonic stem cells. Moreover, it became evident that dysregulation of microRNA expression may play a fundamental role in progression and dissemination of different cancers including ovarian cancer. The interest is still increased by the discovery of exosomes, that is, cell-derived vesicles, which can carry different proteins but also microRNAs between different cells and are involved in cell-to-cell communication. MicroRNAs, together with exosomes, have a great potential to be used for prognosis, therapy, and biomarkers of different diseases including infertility. The aim of this review paper is to summarize the existent knowledge on microRNAs related to female fertility and cancer: from primordial germ cells and ovarian function, germinal stem cells, oocytes, and embryos to embryonic stem cells. Irma Virant-Klun, Anders Ståhlberg, Mikael Kubista, and Thomas Skutella Copyright © 2016 Irma Virant-Klun et al. All rights reserved. Long-Term Oocyte-Like Cell Development in Cultures Derived from Neonatal Marmoset Monkey Ovary Mon, 09 Nov 2015 14:41:46 +0000 We use the common marmoset monkey (Callithrix jacchus) as a preclinical nonhuman primate model to study reproductive and stem cell biology. The neonatal marmoset monkey ovary contains numerous primitive premeiotic germ cells (oogonia) expressing pluripotent stem cell markers including OCT4A (POU5F1). This is a peculiarity compared to neonatal human and rodent ovaries. Here, we aimed at culturing marmoset oogonia from neonatal ovaries. We established a culture system being stable for more than 20 passages and 5 months. Importantly, comparative transcriptome analysis of the cultured cells with neonatal ovary, embryonic stem cells, and fibroblasts revealed a lack of germ cell and pluripotency genes indicating the complete loss of oogonia upon initiation of the culture. From passage 4 onwards, however, the cultured cells produced large spherical, free-floating cells resembling oocyte-like cells (OLCs). OLCs strongly expressed several germ cell genes and may derive from the ovarian surface epithelium. In summary, our novel primate ovarian cell culture initially lacked detectable germ cells but then produced OLCs over a long period of time. This culture system may allow a deeper analysis of early phases of female primate germ cell development and—after significant refinement—possibly also the production of monkey oocytes. Bentolhoda Fereydouni, Gabriela Salinas-Riester, Michael Heistermann, Ralf Dressel, Lucia Lewerich, Charis Drummer, and Rüdiger Behr Copyright © 2016 Bentolhoda Fereydouni et al. All rights reserved. Effective Mobilization of Very Small Embryonic-Like Stem Cells and Hematopoietic Stem/Progenitor Cells but Not Endothelial Progenitor Cells by Follicle-Stimulating Hormone Therapy Mon, 09 Nov 2015 14:23:04 +0000 Recently, murine hematopoietic progenitor stem cells (HSCs) and very small embryonic-like stem cells (VSELs) were demonstrated to express receptors for sex hormones including follicle-stimulating hormone (FSH). This raised the question of whether FSH therapy at clinically applied doses can mobilize stem/progenitor cells in humans. Here we assessed frequencies of VSELs (referred to as Lin−CD235a−CD45−CD133+ cells), HSPCs (referred to as Lin−CD235a−CD45+CD133+ cells), and endothelial progenitor cells (EPCs, identified as CD34+CD144+, CD34+CD133+, and CD34+CD309+CD133+ cells) in fifteen female patients subjected to the FSH therapy. We demonstrated that FSH therapy resulted in statistically significant enhancement in peripheral blood (PB) number of both VSELs and HSPCs. In contrast, the pattern of responses of EPCs delineated by different cell phenotypes was not uniform and we did not observe any significant changes in EPC numbers following hormone therapy. Our data indicate that FSH therapy mobilizes VSELs and HSPCs into peripheral blood that on one hand supports their developmental origin from germ lineage, and on the other hand FSH can become a promising candidate tool for mobilizing HSCs and stem cells with VSEL phenotype in clinical settings. Monika Zbucka-Kretowska, Andrzej Eljaszewicz, Danuta Lipinska, Kamil Grubczak, Malgorzata Rusak, Grzegorz Mrugacz, Milena Dabrowska, Mariusz Z. Ratajczak, and Marcin Moniuszko Copyright © 2016 Monika Zbucka-Kretowska et al. All rights reserved. Endurance Exercise Mobilizes Developmentally Early Stem Cells into Peripheral Blood and Increases Their Number in Bone Marrow: Implications for Tissue Regeneration Mon, 09 Nov 2015 13:47:21 +0000 Endurance exercise has been reported to increase the number of circulating hematopoietic stem/progenitor cells (HSPCs) in peripheral blood (PB) as well as in bone marrow (BM). We therefore became interested in whether endurance exercise has the same effect on very small embryonic-like stem cells (VSELs), which have been described as a population of developmentally early stem cells residing in BM. Mice were run daily for 1 hour on a treadmill for periods of 5 days or 5 weeks. Human volunteers had trained in long-distance running for one year, six times per week. FACS-based analyses and RT-PCR of murine and human VSELs and HSPCs from collected bone marrow and peripheral blood were performed. We observed that endurance exercise increased the number of VSELs circulating in PB and residing in BM. In parallel, we observed an increase in the number of HSPCs. These observations were subsequently confirmed in young athletes, who showed an increase in circulating VSELs and HSPCs after intensive running exercise. We provide for the first time evidence that endurance exercise may have beneficial effects on the expansion of developmentally early stem cells. We hypothesize that these circulating stem cells are involved in repairing minor exercise-related tissue and organ injuries. Krzysztof Marycz, Katarzyna Mierzejewska, Agnieszka Śmieszek, Ewa Suszynska, Iwona Malicka, Magda Kucia, and Mariusz Z. Ratajczak Copyright © 2016 Krzysztof Marycz et al. All rights reserved. Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly Mon, 09 Nov 2015 13:44:22 +0000 Adult mammalian ovary has been under the scanner for more than a decade now since it was proposed to harbor stem cells that undergo postnatal oogenesis during reproductive period like spermatogenesis in testis. Stem cells are located in the ovary surface epithelium and exist in adult and menopausal ovary as well as in ovary with premature failure. Stem cells comprise two distinct populations including spherical, very small embryonic-like stem cells (VSELs which express nuclear OCT-4 and other pluripotent and primordial germ cells specific markers) and slightly bigger ovarian germ stem cells (OGSCs with cytoplasmic OCT-4 which are equivalent to spermatogonial stem cells in the testes). These stem cells have the ability to spontaneously differentiate into oocyte-like structures in vitro and on exposure to a younger healthy niche. Bone marrow may be an alternative source of these stem cells. The stem cells express FSHR and respond to FSH by undergoing self-renewal, clonal expansion, and initiating neo-oogenesis and primordial follicle assembly. VSELs are relatively quiescent and were recently reported to survive chemotherapy and initiate oogenesis in mice when exposed to FSH. This emerging understanding and further research in the field will help evolving novel strategies to manage ovarian pathologies and also towards oncofertility. Deepa Bhartiya, Seema Parte, Hiren Patel, Kalpana Sriraman, Kusum Zaveri, and Indira Hinduja Copyright © 2016 Deepa Bhartiya et al. All rights reserved. Primordial Germ Cells: Current Knowledge and Perspectives Mon, 09 Nov 2015 13:37:37 +0000 Infertility is a condition that occurs very frequently and understanding what defines normal fertility is crucial to helping patients. Causes of infertility are numerous and the treatment often does not lead to desired pregnancy especially when there is a lack of functional gametes. In humans, the primordial germ cell (PGC) is the primary undifferentiated stem cell type that will differentiate towards gametes: spermatozoa or oocytes. With the development of stem cell biology and differentiation protocols, PGC can be obtained from pluripotent stem cells providing a new therapeutic possibility to treat infertile couples. Recent studies demonstrated that viable mouse pups could be obtained from in vitro differentiated stem cells suggesting that translation of these results to human is closer. Therefore, the aim of this review is to summarize current knowledge about PGC indicating the perspective of their use in both research and medical application for the treatment of infertility. Aleksandar Nikolic, Vladislav Volarevic, Lyle Armstrong, Majlinda Lako, and Miodrag Stojkovic Copyright © 2016 Aleksandar Nikolic et al. All rights reserved.