About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2012 (2012), Article ID 494571, 16 pages
http://dx.doi.org/10.6064/2012/494571
Review Article

Detection of Microorganisms in Granulomas That Have Been Formalin-Fixed: Review of the Literature Regarding Use of Molecular Methods

Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA

Received 19 November 2012; Accepted 11 December 2012

Academic Editors: G. Marucci and D. Sanglard

Copyright © 2012 Jeannette Guarner. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Ramakrishnan, “Revisiting the role of the granuloma in tuberculosis,” Nature Reviews Immunology, vol. 12, no. 5, pp. 352–366, 2012. View at Publisher · View at Google Scholar
  2. L. W. Lamps, “Hepatic granulomas, with an emphasis on infectious causes,” Advances in Anatomic Pathology, vol. 15, no. 6, pp. 309–318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Geramizadeh, R. Jahangid, and E. Moradi, “Causes of hepatic granuloma: a 12-year single center experience from Southern Iran,” Archives of Iranian Medicine, vol. 14, pp. 288–289, 2011.
  4. S. Mukhopadhyay, “Role of histology in the diagnosis of infectious causes of granulomatous lung disease,” Current Opinion in Pulmonary Medicine, vol. 17, no. 3, pp. 189–196, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Psarros, J. Riddell, T. Gandhi, C. A. Kauffman, and S. K. Cinti, “Bartonella henselae infections in solid organ transplant recipients: report of 5 cases and review of the literature,” Medicine, vol. 91, no. 2, pp. 111–121, 2012. View at Publisher · View at Google Scholar
  6. J. Ollague-Sierra and J. Ollague-Torres, “New clinical and histological patterns of acute disseminated histoplasmosis in human immunodeficiency virus-positive patients with acquired immunodeficiency syndrome,” American Journal of Dermatopathology. In press. View at Publisher · View at Google Scholar
  7. C. Nopvichai, A. Sanpavat, R. Sawatdee et al., “PCR detection of Mycobacterium tuberculosis in necrotising non-granulomatous lymphadenitis using formalin-fixed paraffin-embedded tissue: a study in Thai patients,” Journal of Clinical Pathology, vol. 62, no. 9, pp. 812–815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. K. Ramdial, Y. Sing, S. Subrayan et al., “Granulomas in acquired immunodeficiency syndrome-associated cutaneous Kaposi sarcoma: evidence for a role for Mycobacterium tuberculosis,” Journal of Cutaneous Pathology, vol. 37, no. 8, pp. 827–834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Akbulut, N. Sogutcu, and Y. Yagmur, “Coexistence of breast cancer and tuberculosis in axillary lymph nodes: a case report and literature review,” Breast Cancer Research and Treatment, vol. 130, no. 3, pp. 1037–1042, 2011. View at Publisher · View at Google Scholar
  10. P. H. Hartel, K. Shilo, M. Klassen-Fischer et al., “Granulomatous reaction to Pneumocystis jirovecii: clinicopathologic review of 20 cases,” American Journal of Surgical Pathology, vol. 34, no. 5, pp. 730–734, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Chang, L. Y. Shih, C. W. Wang, W. Y. Chuang, and C. C. Chen, “Granulomatous Pneumocystis jiroveci pneumonia in a patient with diffuse large b-cell lymphoma: case report and review of the literature,” Acta Haematologica, vol. 123, no. 1, pp. 30–33, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Totet, H. Duwat, G. Daste, A. Berry, R. Escamilla, and G. Nevez, “Pneumocystis jirovecii genotypes and granulomatous pneumocystosis,” Medecine et Maladies Infectieuses, vol. 36, no. 4, pp. 229–231, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. L. D. Notarangelo, “Primary immunodeficiencies,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2, supplement 2, pp. S182–S194, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. M. A. Park, J. T. Li, J. B. Hagan, D. E. Maddox, and R. S. Abraham, “Common variable immunodeficiency: a new look at an old disease,” The Lancet, vol. 372, no. 9637, pp. 489–502, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. G. James, “A clinicopathological classification of granulomatous disorders,” Postgraduate Medical Journal, vol. 76, no. 898, pp. 457–465, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. A. R. Travassos, J. Borges-Costa, J. Raposo, L. S. Almeida, and P. Filipe, “Recurrence of peripheral T-cell lymphoma as granulomas in the lower limbs,” Anais Brasileiros de Dermatologia, vol. 87, no. 5, pp. 772–774, 2012. View at Publisher · View at Google Scholar
  17. C. Rizzardi, M. Schneider, E. Barresi, A. Brollo, and M. Melato, “Metastasis of high grade renal cell carcinoma, clear cell type, in fibrous dysplasia with superimposed giant cell reparative granuloma,” Pathologica, vol. 101, no. 6, pp. 240–243, 2009. View at Scopus
  18. D. T. Alexandrescu, N. H. Riordan, T. E. Ichim et al., “On the missing link between inflammation and cancer,” Dermatology Online Journal, vol. 17, no. 1, article 10, 2011. View at Scopus
  19. D. P. Steinfort, A. Tsui, J. Grieve, M. L. Hibbs, G. P. Anderson, and L. B. Irving, “Sarcoidal reactions in regional lymph nodes of patients with early stage non-small cell lung cancer predict improved disease-free survival: a pilot case-control study,” Human Pathology, vol. 43, no. 3, pp. 333–338, 2012. View at Publisher · View at Google Scholar
  20. L. M. Heinzerling, M. D. Anliker, J. Müller, M. Schlaeppi, and R. von Moos, “Sarcoidosis induced by interferon-α in melanoma patients: incidence, clinical manifestations, and management strategies,” Journal of Immunotherapy, vol. 33, no. 8, pp. 834–839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Berthod, R. Lazor, I. Letovanec et al., “Pulmonary sarcoid-like granulomatosis induced by ipilimumab,” Journal of Clinical Oncology, vol. 30, no. 17, pp. e156–e159, 2012. View at Publisher · View at Google Scholar
  22. H. A. Fuchs and S. B. Tanner, “Granulomatous disorders of the nose and paranasal sinuses,” Current Opinion in Otolaryngology and Head and Neck Surgery, vol. 17, no. 1, pp. 23–27, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. K. A. Oswald-Richter and W. P. Drake, “The etiologic role of infectious antigens in sarcoidosis pathogenesis,” Seminars in Respiratory and Critical Care Medicine, vol. 31, no. 4, pp. 375–379, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. S. M. Lagana, R. K. Moreira, and J. H. Lefkowitch, “Hepatic granulomas: pathogenesis and differential diagnosis,” Clinics in Liver Disease, vol. 14, no. 4, pp. 605–617, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Kilic, G. Metan, and E. Alp, “Clinical presentations and diagnosis of brucellosis,” Recent Patents on Anti-Infective Drug Discovery. In press.
  26. J. D. Colmenero, P. Morata, J. D. Ruiz-Mesa et al., “Multiplex real-time polymerase chain reaction: a practical approach for rapid diagnosis of tuberculous and brucellar vertebral osteomyelitis,” Spine, vol. 35, no. 24, pp. E1392–E1396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Turhan, M. Kurt, Y. O. Ozderin, and O. K. Kurt, “Hepatic granulomas: a clinicopathologic analysis of 86 cases,” Pathology Research and Practice, vol. 207, no. 6, pp. 359–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. El-Khalawany, I. Meraag, B. Eassa, and H. H. El-Naby, “Clinicopathological features and the practice of diagnosing infectious cutaneous granulomas in Egypt,” International Journal of Infectious Diseases, vol. 15, no. 9, pp. e620–e626, 2011. View at Publisher · View at Google Scholar
  29. A. R. Zink, W. Grabner, and A. G. Nerlich, “Molecular identification of human tuberculosis in recent and historic bone tissue samples: the role of molecular techniques for the study of historic tuberculosis,” American Journal of Physical Anthropology, vol. 126, no. 1, pp. 32–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Y. W. Li, S. T. H. Lo, and C. S. Ng, “Molecular detection of Mycobacterium tuberculosis in tissues showing granulomatous inflammation without demonstrable acid-fast bacilli,” Diagnostic Molecular Pathology, vol. 9, no. 2, pp. 67–74, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. J. S. Park, Y. A. Kang, S. Y. Kwon et al., “Nested PCR in lung tissue for diagnosis of pulmonary tuberculosis,” European Respiratory Journal, vol. 35, no. 4, pp. 851–857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. A. R. Zink and A. G. Nerlich, “Molecular strain identification of the Mycobacterium tuberculosis complex in archival tissue samples,” Journal of Clinical Pathology, vol. 57, no. 11, pp. 1185–1192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. L. S. Amand, D. N. Frank, M. A. de-Groote, R. J. Basaraba, I. M. Orme, and N. R. Pace, “Use of specific rRNA oligonucleotide probes for microscopic detection of Mycobacterium tuberculosis in culture and tissue specimens,” Journal of Clinical Microbiology, vol. 43, no. 10, pp. 5369–5371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. N. Nakano, R. Wada, N. Yajima, N. Yamamoto, Y. Wakai, and H. Otsuka, “Mycobacterial infection of the musculoskeletal tissues: the use of pathological specimens for identification of causative species by PCR-direct sequencing of 16S rDNA,” Japanese Journal of Infectious Diseases, vol. 63, no. 3, pp. 188–191, 2010. View at Scopus
  35. S. Schulz, A. D. Cabras, M. Kremer et al., “Species identification of Mycobacteria in paraffin-embedded tissues: frequent detection of nontuberculous Mycobacteria,” Modern Pathology, vol. 18, no. 2, pp. 274–282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Kulkarni, S. Vyas, A. Supe, and G. Kadival, “Use of polymerase chain reaction in the diagnosis of abdominal tuberculosis,” Journal of Gastroenterology and Hepatology, vol. 21, no. 5, pp. 819–823, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Mahaisavariya, A. Chaiprasert, J. Manonukul, S. Khemngern, and N. Tingtoy, “Detection and identification of Mycobacterium species by polymerase chain reaction (PCR) from paraffin-embedded tissue compare to AFB staining in pathological sections,” Journal of the Medical Association of Thailand, vol. 88, no. 1, pp. 108–113, 2005. View at Scopus
  38. D. Kidane, J. O. Olobo, A. Habte et al., “Identification of the causative organism of tuberculous lymphadenitis in Ethiopia by PCR,” Journal of Clinical Microbiology, vol. 40, no. 11, pp. 4230–4234, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Lefmann, B. Schweickert, P. Buchholz et al., “Evaluation of peptide nucleic acid-fluorescence in situ hybridization for identification of clinically relevant Mycobacteria in clinical specimens and tissue sections,” Journal of Clinical Microbiology, vol. 44, no. 10, pp. 3760–3767, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. M. G. Sumi, A. Mathai, R. Sheela et al., “Diagnostic utility of polymerase chain reaction and immunohistochemical techniques for the laboratory diagnosis of intracranial tuberculoma,” Clinical Neuropathology, vol. 20, no. 4, pp. 176–180, 2001. View at Scopus
  41. J. S. Pedersen, I. Clarke, and J. Mills, “Improved detection of Mycobacteria species in formalin-fixed tissue sections,” Histopathology, vol. 59, no. 5, pp. 993–1005, 2011. View at Publisher · View at Google Scholar
  42. D. Y. Park, J. Y. Kim, K. U. Choi et al., “Comparison of polymerase chain reaction with histopathologic features for diagnosis of tuberculosis in formalin-fixed, paraffin-embedded histologic specimens,” Archives of Pathology and Laboratory Medicine, vol. 127, no. 3, pp. 326–330, 2003. View at Scopus
  43. E. Quirós, A. Bettinardi, A. Quirós, G. Piédrola, and M. C. Maroto, “Detection of mycobacterial DNA in papulonecrotic tuberculid lesions by polymerase chain reaction,” Journal of Clinical Laboratory Analysis, vol. 14, no. 4, pp. 133–135, 2000. View at Publisher · View at Google Scholar
  44. K. Chawla, S. Gupta, C. Mukhopadhyay, P. S. Rao, and S. S. Bhat, “PCR for M. tuberculosis in tissue samples,” Journal of Infection in Developing Countries, vol. 3, no. 2, pp. 83–87, 2009. View at Scopus
  45. G. M. Taylor, D. R. Worth, S. Palmer, K. Jahans, and R. G. Hewinson, “Rapid detection of Mycobacterium bovis DNA in cattle lymph nodes with visible lesions using PCR,” BMC Veterinary Research, vol. 3, article 12, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Selva, V. Hofman, F. Berto et al., “The value of polymerase chain reaction detection of Mycobacterium tuberculosis in granulomas isolated by laser capture microdissection,” Pathology, vol. 36, no. 1, pp. 77–81, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. C. H. Hsiao, Y. T. Lin, C. C. Lai, C. H. Chou, and P. R. Hsueh, “Identification of nontuberculous mycobacterial infection by IS6110 and hsp65 gene analysis on lung tissues,” Diagnostic Microbiology and Infectious Disease, vol. 68, no. 3, pp. 241–246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Nakanaga, Y. Hoshino, M. Wakabayashi et al., “Mycobacterium shigaense sp. nov., a novel slowly growing scotochromogenic mycobacterium that produced nodules in an erythroderma patient with severe cellular immunodeficiency and a history of Hodgkin's disease,” Journal of Dermatology, vol. 39, no. 4, pp. 389–396, 2012. View at Publisher · View at Google Scholar
  49. A. Y. Chuang, M. H. Tsou, S. J. Chang et al., “Mycobacterium abscessus granulomatous prostatitis,” American Journal of Surgical Pathology, vol. 36, no. 3, pp. 418–422, 2012. View at Publisher · View at Google Scholar
  50. M. Kaevska, I. Slana, P. Kralik et al., “‘Mycobacterium avium subsp. hominissuis’ in neck lymph nodes of children and their environment examined by culture and triplex quantitative real-time PCR,” Journal of Clinical Microbiology, vol. 49, no. 1, pp. 167–172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. F. G. N. Rosado, C. W. Stratton, and C. A. Mosse, “Clinicopathologic correlation of epidemiologic and histopathologic features of pediatric bacterial lymphadenitis,” Archives of Pathology and Laboratory Medicine, vol. 135, no. 11, pp. 1490–1493, 2011. View at Publisher · View at Google Scholar
  52. P. Zhao, Y. Y. Zhang, Y. B. Li, Y. Zhu, and K. L. Wan, “Diagnosis of pulmonary disease caused by Mycobacterium abscessus: a case report,” Journal of International Medical Research, vol. 39, no. 3, pp. 968–975, 2011.
  53. L. S. B. van Coppenraet, V. T. H. B. M. Smit, K. E. Templeton, E. C. J. Claas, and E. J. Kuijper, “Application of real-time PCR to recognize atypical Mycobacteria in archival skin biopsies: high prevalence of Mycobacterium haemophilum,” Diagnostic Molecular Pathology, vol. 16, no. 2, pp. 81–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. S. K. P. Lau, S. O. T. Curreem, A. H. Y. Ngan, C. K. Yeung, K. Y. Yuen, and P. C. Y. Woo, “First report of disseminated Mycobacterium skin infections in two liver transplant recipients and rapid diagnosis by hsp65 gene sequencing,” Journal of Clinical Microbiology, vol. 49, no. 11, pp. 3733–3738, 2011. View at Publisher · View at Google Scholar
  55. R. van-Hest, A. van-der-Zanden, M. Boeree et al., “Mycobacterium heckeshornense infection in an immunocompetent patient and identification by 16S rRNA sequence analysis of culture material and a histopathology tissue specimen,” Journal of Clinical Microbiology, vol. 42, no. 9, pp. 4386–4389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. N. D. Bills, S. H. Hinrichs, T. A. Aden, R. S. Wickert, and P. C. Iwen, “Molecular identification of Mycobacterium chimaera as a cause of infection in a patient with chronic obstructive pulmonary disease,” Diagnostic Microbiology and Infectious Disease, vol. 63, no. 3, pp. 292–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Al Dahouk and K. Nöckler, “Implications of laboratory diagnosis on brucellosis therapy,” Expert Review of Anti-Infective Therapy, vol. 9, no. 7, pp. 833–845, 2011. View at Publisher · View at Google Scholar
  58. L. W. Lamps, J. M. Havens, A. Sjostedt, D. L. Page, and M. A. Scott, “Histologic and molecular diagnosis of tularemia: a potential bioterriorism agent endemic to North America,” Modern Pathology, vol. 17, no. 5, pp. 489–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Maurin, I. Pelloux, J. P. Brion, J.-N. Del Banõ, and A. Picard, “Human tularemia in France, 2006–2010,” Clinical Infectious Diseases, vol. 53, no. 10, pp. e133–e141, 2011. View at Publisher · View at Google Scholar
  60. C. P. Tamboli, M. R. Good, E. M. Reynolds, P. Sharma, and F. A. Mitros, “Anti-Yersinia antibodies are not associated with microscopic colitis in an American case-control study,” Scandinavian Journal of Gastroenterology, vol. 46, no. 12, pp. 1442–1448, 2011. View at Publisher · View at Google Scholar
  61. R. Stephan, N. Cernela, D. Ziegler, et al., “Rapid species specifc identifcation and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectrometry,” Journal of Microbiological Methods, vol. 87, no. 2, pp. 150–153, 2011. View at Publisher · View at Google Scholar
  62. H. Müller, K. Eisendle, W. Bräuninger, H. Kutzner, L. Cerroni, and B. Zelger, “Comparative analysis of immunohistochemistry, polymerase chain reaction and focus-floating microscopy for the detection of Treponema pallidum in mucocutaneous lesions of primary, secondary and tertiary syphilis,” British Journal of Dermatology, vol. 165, no. 1, pp. 50–60, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Behrhof, E. Springer, W. Bräuninger, C. J. Kirkpatrick, and A. Weber, “PCR testing for Treponema pallidum in paraffin-embedded skin biopsy specimens: test design and impact on the diagnosis of syphilis,” Journal of Clinical Pathology, vol. 61, no. 3, pp. 390–395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. G. F. Cota, M. R. de Sousa, F. N. Demarqui, and A. Rabello, “The diagnostic accuracy of serologic and molecular methods for detecting visceral leishmaniasis in HIV infected patients: meta-analysis,” PLoS Neglected Tropical Diseases, vol. 6, no. 5, Article ID e1665, 2012. View at Publisher · View at Google Scholar
  65. H. Goto and J. A. L. Lindoso, “Cutaneous and mucocutaneous leishmaniasis,” Infectious Disease Clinics of North America, vol. 26, no. 2, pp. 293–307, 2012. View at Publisher · View at Google Scholar
  66. L. Yehia, M. Adib-Houreih, W. F. Raslan et al., “Molecular diagnosis of cutaneous leishmaniasis and species identification: analysis of 122 biopsies with varied parasite index,” Journal of Cutaneous Pathology, vol. 39, no. 3, pp. 347–355, 2012. View at Publisher · View at Google Scholar
  67. R. V. de Andrade, M. N. B. de Lucena, L. C. L. Ferreira et al., “The use of polymerase chain reaction to confirm diagnosis in skin biopsies consistent with American tegumentary leishmaniasis at histopathology: a study of 90 cases,” Anais Brasileiros de Dermatologia, vol. 86, no. 5, pp. 892–896, 2011.
  68. F. Robert-Gangneux and M.-L. Dardé, “Epidemiology of and diagnostic strategies for toxoplasmosis,” Clinical Microbiology Reviews, vol. 25, no. 2, pp. 264–296, 2012. View at Publisher · View at Google Scholar
  69. G. Saadatnia and M. Golkar, “A review on human toxoplasmosis,” Scandinavian Journal of Infectious Diseases, vol. 44, no. 11, pp. 805–814, 2012. View at Publisher · View at Google Scholar
  70. O. Villard, B. Cimon, J. Franck et al., “Evaluation of the usefulness of six commercial agglutination assays for serologic diagnosis of toxoplasmosis,” Diagnostic Microbiology and Infectious Disease, vol. 73, no. 3, pp. 231–235, 2012. View at Publisher · View at Google Scholar
  71. G. Akpek, A. Uslu, T. Huebner, et al., “Granulomatous amebic encephalitis: an under-recognized cause of infectiousmortality after hematopoietic stemcell transplantation,” Transplant Infectious Disease, vol. 13, no. 4, pp. 366–373, 2011. View at Publisher · View at Google Scholar
  72. J. Guarner, J. Bartlett, W. J. Shieh, C. D. Paddock, G. S. Visvesvara, and S. R. Zaki, “Histopathologic spectrum and immunohistochemical diagnosis of amebic meningoencephalitis,” Modern Pathology, vol. 20, no. 12, pp. 1230–1237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Khairnar, G. S. Tamber, F. Ralevski, and D. R. Pillai, “Comparison of molecular diagnostic methods for the detection of Acanthamoeba spp. from clinical specimens submitted for keratitis,” Diagnostic Microbiology and Infectious Disease, vol. 70, no. 4, pp. 499–506, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. P. Goldschmidt, S. Degorge, D. Benallaoua, L. Batellier, D. Di-Cave, and C. Chaumeil, “Rapid detection and simultaneous molecular profile characterization of Acanthamoeba infections,” Diagnostic Microbiology and Infectious Disease, vol. 74, no. 2, pp. 137–141, 2012. View at Publisher · View at Google Scholar
  75. B. Gryseels, “Schistosomiasis,” Infectious Disease Clinics of North America, vol. 26, no. 2, pp. 383–397, 2012. View at Publisher · View at Google Scholar
  76. M. G. Cavalcanti, M. M. I. Gonçalves, M. M. Barreto et al., “Genital schistosomiasis mansoni concomitant to genital tumor in areas of low endemicity: challenging diagnosis,” Brazilian Journal of Infectious Diseases, vol. 15, no. 2, pp. 174–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. M. J. Enk, G. Oliveira e Silva, and N. B. Rodrigues, “Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area,” PLoS ONE, vol. 7, no. 6, Article ID e38947, 2012. View at Publisher · View at Google Scholar
  78. H. F. Kinkel, S. Dittrich, B. Baümer, and T. Weitzel, “Evaluation of eight serological tests for diagnosis of imported schistosomiasis,” Clinical and Vaccine Immunology, vol. 19, no. 6, pp. 948–953, 2012. View at Publisher · View at Google Scholar
  79. T. H. Le, K. T. Nguyen, N. T. B. Nguyen et al., “Development and evaluation of a single-step duplex PCR for simultaneous detection of Fasciola hepatica and Fasciola gigantica (family Fasciolidae, class Trematoda, phylum Platyhelminthes),” Journal of Clinical Microbiology, vol. 50, no. 8, pp. 2720–2726, 2012. View at Publisher · View at Google Scholar
  80. M. A. Valero, M. V. Periago, I. Pérez-Crespo et al., “Assessing the validity of an ELISA test for the serological diagnosis of human fascioliasis in different epidemiological situations,” Tropical Medicine and International Health, vol. 17, no. 5, pp. 630–636, 2012. View at Publisher · View at Google Scholar
  81. Z. A. Demerdash, T. M. Diab, I. R. Aly et al., “Diagnostic efficacy of monoclonal antibody based sandwich enzyme linked immunosorbent assay (ELISA) for detection of Fasciola gigantica excretory/secretory antigens in both serum and stool,” Parasites and Vectors, vol. 4, no. 1, pp. 176–183, 2011. View at Publisher · View at Google Scholar
  82. S. Mattiucci, M. Paoletti, F. Borrini et al., “First molecular identification of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae) in a paraffin-embedded granuloma taken from a case of human intestinal anisakiasis in Italy,” BMC Infectious Diseases, vol. 11, article 82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Kim, J. O. Jo, S. H. Choi et al., “Seroprevalence of antibodies against anisakis simplex larvae among health-examined residents in three hospitals of Southern parts of Korea,” Korean Journal of Parasitology, vol. 49, no. 2, pp. 139–144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Guarner and M. E. Brandt, “Histopathologic diagnosis of fungal infections in the 21st century,” Clinical Microbiology Reviews, vol. 24, no. 2, pp. 247–280, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. L. R. McTaggart, N. L. Wengenack, and S. E. Richardson, “Validation of the mycAssay pneumocystis kit for detection of Pneumocystis jirovecii in bronchoalveolar lavage specimens by comparison to a laboratory standard of direct immunofluorescence microscopy, real-time PCR, or conventional PCR,” Journal of Clinical Microbiology, vol. 50, no. 6, pp. 1856–1859, 2012. View at Publisher · View at Google Scholar
  86. S. le Gal, C. Damiani, A. Rouillé et al., “A cluster of Pneumocystis infections among renal transplant recipients: molecular evidence of colonized patients as potential infectious sources of Pneumocystis jirovecii,” Clinical Infectious Diseases, vol. 54, no. 7, pp. e62–e71, 2012. View at Publisher · View at Google Scholar
  87. D. E. Karageorgopoulos, J. M. Qu, I. P. Korbila, Y.-G. Zhu, V. A. Vasileiou, and M. E. Falagas, “Accuracy of β-d-glucan for the diagnosis of Pneumocystis jirovecii pneumonia: a meta-analysis,” Clinical Microbiology and Infection, vol. 19, no. 1, pp. 39–49, 2013. View at Publisher · View at Google Scholar
  88. S. A. Koepsell, S. H. Hinrichs, and P. C. Iwen, “Applying a real-time PCR assay for Histoplasma capsulatum to clinically relevant formalin-fixed paraffin-embedded human tissue,” Journal of Clinical Microbiology, vol. 50, no. 10, pp. 3395–3397, 2012. View at Publisher · View at Google Scholar
  89. N. E. Babady, S. P. Buckwalter, L. Hall, K. M. Le Febre, M. J. Binnicker, and N. L. Wengenack, “Detection of Blastomyces dermatitidis and Histoplasma capsulatum from culture isolates and clinical specimens by use of real-time PCR,” Journal of Clinical Microbiology, vol. 49, no. 9, pp. 3204–3208, 2011. View at Publisher · View at Google Scholar
  90. P. Connolly, C. A. Hage, J. R. Bariola et al., “Blastomyces dermatitidis antigen detection by quantitative enzyme immunoassay,” Clinical and Vaccine Immunology, vol. 19, no. 1, pp. 53–56, 2012. View at Publisher · View at Google Scholar
  91. O. Welsh, L. Vera-Cabrera, A. Rendon, G. Gonzalez, and A. Bonifaz, “Coccidioidomycosis,” Clinics in Dermatology, vol. 30, no. 6, pp. 573–591, 2012. View at Publisher · View at Google Scholar
  92. G. R. Thompson, J. M. Lunetta, S. M. Johnson et al., “Early treatment with fluconazole may abrogate the development of IgG antibodies in coccidioidomycosis,” Clinical Infectious Diseases, vol. 53, no. 6, pp. e20–e24, 2011. View at Publisher · View at Google Scholar
  93. D. Vucicevic, J. E. Blair, M. J. Binnicker et al., “The utility of Coccidioides polymerase chain reaction testing in the clinical setting,” Mycopathologia, vol. 170, no. 5, pp. 345–351, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. R. S. de-Freitas, K. C. Dantas, R. S. P. Garcia, M. M. C. Magri, and H. F. de-Andrade, “Paracoccidioides brasiliensis causing a rib lesion in an adult AIDS patient,” Human Pathology, vol. 41, no. 9, pp. 1350–1354, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. F. R. R. Teles and M. L. Martins, “Laboratorial diagnosis of paracoccidioidomycosis and new insights for the future of fungal diagnosis,” Talanta, vol. 85, no. 5, pp. 2254–2264, 2011. View at Publisher · View at Google Scholar
  96. M. C. Z. Perenha-Viana, I. A. A. Gonzales, S. R. Brockelt, L. N. C. Machado, and T. I. E. Svidzinski, “Serological diagnosis of paracoccidioidomycosis through a Western blot technique,” Clinical and Vaccine Immunology, vol. 19, no. 4, pp. 616–619, 2012. View at Publisher · View at Google Scholar
  97. D. A. Relman, T. M. Schmidt, R. P. MacDermott, and S. Falkow, “Identification of the uncultured bacillus of Whipple's disease,” The New England Journal of Medicine, vol. 327, no. 5, pp. 293–301, 1992. View at Scopus
  98. D. A. Relman, P. W. Lepp, K. N. Sadler, and T. M. Schmidt, “Phylogenetic relationships among the agent of bacillary angiomatosis, Bartonella bacilliformis, and other alpha-proteobacteria,” Molecular Microbiology, vol. 6, no. 13, pp. 1801–1807, 1992. View at Publisher · View at Google Scholar · View at Scopus
  99. V. Rickerts, G. Just-Nübling, F. Konrad et al., “Diagnosis of invasive aspergillosis and mucormycosis in immunocompromised patients by seminested PCR assay of tissue samples,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 25, no. 1, pp. 8–13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. A. Lau, S. Chen, T. Sorrell et al., “Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens,” Journal of Clinical Microbiology, vol. 45, no. 2, pp. 380–385, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Muñoz-Cadavid, S. Rudd, S. R. Zaki et al., “Improving molecular detection of fungal DNA in formalin-fixed paraffin-embedded tissues: comparison of five tissue DNA extraction methods using panfungal PCR,” Journal of Clinical Microbiology, vol. 48, no. 6, pp. 2147–2153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. I. Brownell, F. Ramiŕez-Valle, M. Sanchez, and S. Prystowsky, “Evidence for Mycobacteria in sarcoidosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 5, pp. 899–905, 2011. View at Publisher · View at Google Scholar
  103. W. P. Drake, Z. Pei, D. T. Pride, R. D. Collins, T. L. Cover, and M. J. Blaser, “Molecular analysis of sarcoidosis tissues for Mycobacterium species DNA,” Emerging Infectious Diseases, vol. 8, no. 11, pp. 1334–1341, 2002. View at Scopus
  104. Y. Zhou, H. P. Li, Q. H. Li et al., “Differentiation of sarcoidosis from tuberculosis using real-time PCR assay for the detection and quantification of Mycobacterium tuberculosis,” Sarcoidosis Vasculitis and Diffuse Lung Diseases, vol. 25, no. 2, pp. 93–99, 2008. View at Scopus
  105. Z. Song, L. Marzilli, B. M. Greenlee et al., “Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis,” Journal of Experimental Medicine, vol. 201, no. 5, pp. 755–767, 2005. View at Publisher · View at Google Scholar
  106. H. Ichikawa, M. Kataoka, J. Hiramatsu et al., “Quantitative analysis of propionibacterial DNA in bronchoalveolar lavage cells from patients with sarcoidosis,” Sarcoidosis Vasculitis and Diffuse Lung Diseases, vol. 25, no. 1, pp. 15–20, 2008. View at Scopus
  107. D. Steensels, J. Verhaegen, and K. Lagrou, “Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of bacteria and yeasts in a clinical microbiology laboratory: a review,” Acta Clinica Belgica, vol. 66, pp. 267–273, 2011.
  108. K. Sogawa, M. Watanabe, K. Sato et al., “Use of the MALDI BioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms,” Analytical and Bioanalytical Chemistry, vol. 400, no. 7, pp. 1905–1911, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. A. A. Ghavanini and D. G. Munoz, “Intracranial caseating granulomas with no infectious organism detected,” Canadian Journal of Neurological Sciences, vol. 38, no. 1, pp. 82–87, 2011. View at Scopus
  110. J. Zuñiga, D. Torres-García, T. Santos-Mendoza, T. S. Rodriguez-Reyna, J. Granados, and E. J. Yunis, “Cellular and humoral mechanisms involved in the control of tuberculosis,” Clinical and Developmental Immunology, vol. 2012, Article ID 193923, 18 pages, 2012. View at Publisher · View at Google Scholar
  111. F. G. C. Abath, C. N. L. Morais, C. E. L. Montenegro, T. A. Wynn, and S. M. L. Montenegro, “Immunopathogenic mechanisms in schistosomiasis: what can be learnt from human studies?” Trends in Parasitology, vol. 22, no. 2, pp. 85–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. R. Appelberg, “Neutrophils and intracellular pathogens: beyond phagocytosis and killing,” Trends in Microbiology, vol. 15, no. 2, pp. 87–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. T. D. Bold and J. D. Ernst, “Who benefits from granulomas, Mycobacteria or host?” Cell, vol. 136, no. 1, pp. 17–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. R. L. Hunter, “Pathology of post primary tuberculosis of the lung: an illustrated critical review,” Tuberculosis, vol. 91, no. 6, pp. 497–509, 2011. View at Publisher · View at Google Scholar
  115. J. Barrios-Payán, M. Saqui-Salces, M. Jeyanathan et al., “Extrapulmonary locations of Mycobacterium tuberculosis DNA during latent infection,” Journal of Infectious Diseases, vol. 206, no. 8, pp. 1194–1205, 2012. View at Publisher · View at Google Scholar
  116. H. D. Donoghue, “Insights gained from palaeomicrobiology into ancient and modern tuberculosis,” Clinical Microbiology and Infection, vol. 17, no. 6, pp. 821–829, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. J. L. Taylor, J. M. Hattle, S. A. Dreitz et al., “Role for matrix metalloproteinase 9 in granuloma formation during pulmonary Mycobacterium tuberculosis infection,” Infection and Immunity, vol. 74, no. 11, pp. 6135–6144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. D. G. Russell, “Mycobacterium tuberculosis and the intimate discourse of a chronic infection,” Immunological Reviews, vol. 240, no. 1, pp. 252–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  119. M. J. Kim, H. C. Wainwright, M. Locketz et al., “Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism,” EMBO Molecular Medicine, vol. 2, no. 7, pp. 258–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. M. E. Onwuamaegbu, R. A. Belcher, and C. Soare, “Cell wall-deficient bacteria as a cause of infections: a review of the clinical significance,” Journal of International Medical Research, vol. 33, no. 1, pp. 1–20, 2005. View at Scopus
  121. S. T. Brown, I. Brett, P. L. Almenoff, M. Lesser, M. Terrin, and A. S. Teirstein, “Recovery of cell wall-deficient organisms from blood does not distinguish between patients with sarcoidosis and control subjects,” Chest, vol. 123, no. 2, pp. 413–417, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Hibiya, E. Shigeto, K. Iida et al., “Distribution of mycobacterial antigen based on differences of histological characteristics in pulmonary Mycobacterium avium infectious diseases—consideration of the extent of surgical resection from the pathological standpoint,” Pathology Research and Practice, vol. 208, no. 1, pp. 53–58, 2012. View at Publisher · View at Google Scholar
  123. M. S. Wilson, M. M. Mentink-Kane, J. T. Pesce, T. R. Ramalingam, R. Thompson, and T. A. Wynn, “Immunopathology of schistosomiasis,” Immunology and Cell Biology, vol. 85, no. 2, pp. 148–154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Delaby, L. Gorvel, L. Espinosa et al., “Defective monocyte dynamics in Q fever granuloma deficiency,” Journal of Infectious Diseases, vol. 205, no. 7, pp. 1086–1094, 2012. View at Publisher · View at Google Scholar