About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2013 (2013), Article ID 249101, 11 pages
http://dx.doi.org/10.1155/2013/249101
Review Article

Current and Future Therapies for Multiple Sclerosis

Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA

Received 19 December 2012; Accepted 13 January 2013

Academic Editors: P. Annunziata, D. Franciotta, and L. Tremolizzo

Copyright © 2013 Alireza Minagar. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Noseworthy, C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker, “Multiple sclerosis,” The New England Journal of Medicine, vol. 343, no. 13, pp. 938–952, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Luessi, V. Siffrin, and F. Zipp, “Neurodegeneration in multiple sclerosis: novel treatment strategies,” Expert Review of Neurotherapeutics, vol. 12, no. 9, pp. 1061–1077, 2012. View at Publisher · View at Google Scholar
  3. E. M. Frohman, M. K. Racke, and C. S. Raine, “Medical progress: multiple sclerosis—the plaque and its pathogenesis,” The New England Journal of Medicine, vol. 354, no. 9, pp. 942–955, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Nylander and D. A. Hafler, “Multiple sclerosis,” Journal of Clinical Investigation, vol. 122, no. 4, pp. 1180–1188, 2012. View at Publisher · View at Google Scholar
  5. G. Disanto, J. M. Morahan, and S. V. Ramagopalan, “Multiple sclerosis: risk factors and their interactions,” CNS and Neurological Disorders—Drug Targets, vol. 11, no. 5, pp. 545–555, 2012. View at Publisher · View at Google Scholar
  6. L. Crespy, W. Zaaraoui, M. Lemaire et al., “Prevalence of grey matter pathology in early multiple sclerosis assessed by magnetization transfer ratio imaging,” PLoS ONE, vol. 6, no. 9, Article ID e24969, 2011.
  7. D. H. Miller, D. T. Chard, and O. Ciccarelli, “Clinically isolated syndromes,” The Lancet Neurology, vol. 11, no. 2, pp. 157–169, 2012. View at Publisher · View at Google Scholar
  8. E. M. Mowry, “Natural history of multiple sclerosis: early prognostic factors,” Neurologic Clinics, vol. 29, no. 2, pp. 279–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Vukusic and C. Confavreux, “Natural history of multiple sclerosis: risk factors and prognostic indicators,” Current Opinion in Neurology, vol. 20, no. 3, pp. 269–274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. F. D. Lublin, “Clinical features and diagnosis of multiple sclerosis,” Neurologic Clinics, vol. 23, no. 1, pp. 1–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. P. Borazanci, M. K. Harris, R. N. Schwendimann et al., “Multiple sclerosis: clinical features, pathophysiology, neuroimaging and future therapies,” Future Neurology, vol. 4, no. 2, pp. 229–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. B. G. W. Arnason, “Interferon β in multiple sclerosis,” Clinical Immunology and Immunopathology, vol. 81, no. 1, pp. 1–11, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. M. Huang, N. Stoyanova, Y. P. Jin et al., “Altered phenotype and function of blood dendritic cells in multiple sclerosis are modulated by IFN-β and IL-10,” Clinical and Experimental Immunology, vol. 124, no. 2, pp. 306–314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Shapiro, Y. Galboiz, N. Lahat, A. Kinarty, and A. Miller, “The “immunological-synapse” at its APC side in relapsing and secondary-progressive multiple sclerosis: modulation by interferon-β,” Journal of Neuroimmunology, vol. 144, no. 1-2, pp. 116–124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Zang, J. Hong, R. Robinson, S. Li, V. M. Rivera, and J. Z. Zhang, “Immune regulatory properties and interactions of Copolymer-I and β-interferon 1a in multiple sclerosis,” Journal of Neuroimmunology, vol. 137, no. 1-2, pp. 144–153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Ozenci, M. Kouwenhoven, N. Teleshova, M. Pashenkov, S. Fredrikson, and H. Link, “Multiple sclerosis: pro- and anti-inflammatory cytokines and metalloproteinases are affected differentially by treatment with IFN-β,” Journal of Neuroimmunology, vol. 108, no. 1-2, pp. 236–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Özenci, M. Kouwenhoven, Y. M. Huang, P. Kivisäkk, and H. Link, “Multiple sclerosis is associated with an imbalance between tumour necrosis factor-alpha (TNF-α)- and IL-10-secreting blood cells that is corrected by interferon-β (IFN-β) treatment,” Clinical and Experimental Immunology, vol. 120, no. 1, pp. 147–153, 2000. View at Scopus
  18. A. Minagar, A. Long, T. Ma et al., “Interferon (IFN)-β1a and IFN-β1b block IFN-γ-induced disintegration of endothelial junction integrity and barrier,” Endothelium, vol. 10, no. 6, pp. 299–307, 2003. View at Scopus
  19. M. Lowery-Nordberg, E. Eaton, E. Gonzalez-Toledo et al., “The effects of high dose interferon-β1a on plasma microparticles: correlation with MRI parameters,” Journal of Neuroinflammation, vol. 8, article 43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Haghjooy Javanmard, M. Saadatnia, V. Homayouni et al., “Interferon-β-1b protects against multiple sclerosis-induced endothelial cells apoptosis,” Frontiers in Bioscience (Elite Edition), vol. 4, pp. 1368–1374, 2012.
  21. A. Prat, A. Al-Asmi, P. Duquette, and J. P. Antel, “Lymphocyte migration and multiple sclerosis: relation with disease course and therapy,” Annals of Neurology, vol. 46, no. 2, pp. 253–256, 1999. View at Publisher · View at Google Scholar
  22. A. Minagar, J. S. Alexander, R. N. Schwendimann et al., “Combination therapy with interferon β-1a and doxycycline in multiple sclerosis: an open-label trial,” Archives of Neurology, vol. 65, no. 2, pp. 199–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. The IFNB Multiple Sclerosis Study Group, “Interferon β-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial,” Neurology, vol. 43, no. 4, pp. 655–661, 1993. View at Scopus
  24. D. W. Paty and D. K. B. Li, “Interferon β-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial,” Neurology, vol. 43, no. 4, pp. 662–667, 1993. View at Scopus
  25. D. H. Miller, P. D. Molyneux, G. J. Barker, D. G. MacManus, I. F. Moseley, and K. Wagner, “Effect of interferon-β1b on magnetic resonance imaging outcomes in secondary progressive multiple sclerosis: results of a European multicenter, randomized, double-blind, placebo-controlled trial. European study group on interferon-β1b in secondary progressive multiple sclerosis,” Annals of Neurology, vol. 46, no. 6, pp. 850–859, 1999. View at Publisher · View at Google Scholar
  26. D. F. Mark, S. D. Lu, A. A. Creasey, R. Yamamoto, and L. S. Lin, “Site-specific mutagenesis of the human fibroblast interferon gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 18, pp. 5662–5666, 1984. View at Publisher · View at Google Scholar
  27. L. Kappos, C. Polman, C. Pozzilli, A. Thompson, and F. Dahlke, “Placebo-controlled multicentrerandomised trial of interferon β-1b in treatment of secondary progressive multiple sclerosis,” The Lancet, vol. 352, no. 9139, pp. 1491–1497, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Ebers, A. Traboulsee, D. Langdon, D. Goodin, A. Konicezny, and The Betaseron/Betaseron LTF Study Group, “The interferon β-1b 16-year long-term follow-up study: the results,” in Proceedings of the 58th Annual Meeting of the American Academy of Neurology, pp. 01–079, San Diego, Calif, USA, 2006.
  29. D. S. Goodin, A. T. Reder, G. C. Ebers et al., “Survival in MS: a randomized cohort study 21 years after the start of the pivotal IFNβ-1b trial,” Neurology, vol. 78, no. 17, pp. 1315–1322, 2012. View at Publisher · View at Google Scholar
  30. H. Panitch, D. S. Goodin, G. Francis et al., “Randomized, comparative study of interferon β-1a treatment regimens in MS: The evidence trial,” Neurology, vol. 59, no. 10, pp. 1496–1506, 2002. View at Scopus
  31. G. C. Ebers, G. Rice, J. Lesaux et al., “Randomised double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis,” The Lancet, vol. 352, no. 9139, pp. 1498–1504, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. L. D. Jacobs, D. L. Cookfair, R. A. Rudick et al., “Intramuscular interferon β-1a for disease progression in relapsing multiple sclerosis,” Annals of Neurology, vol. 39, no. 3, pp. 285–294, 1996. View at Publisher · View at Google Scholar · View at Scopus
  33. R. A. Rudick, D. E. Goodkin, L. D. Jacobs et al., et al., “Impact of interferon β-1a on neurologic disability in relapsing multiple sclerosis,” Neurology, vol. 49, no. 2, pp. 358–363, 1997. View at Scopus
  34. J. H. Simon, L. D. Jacobs, M. Campion et al., et al., “Magnetic resonance studies of intramuscular interferon β-1a for relapsing multiple sclerosis,” Annals of Neurology, vol. 43, no. 1, pp. 79–87, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Teitelbaum, M. Fridkis-Hareli, R. Arnon, and M. Sela, “Copolymer 1 inhibits chronic relapsing experimental allergic encephalomyelitis induced by proteolipid protein (PLP) peptides in mice and interferes with PLP-specific T cell responses,” Journal of Neuroimmunology, vol. 64, no. 2, pp. 209–217, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Teitelbaum, A. Meshorer, T. Hirshfeld, R. Arnon, and M. Sela, “Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide.,” European Journal of Immunology, vol. 1, no. 4, pp. 242–248, 1971. View at Scopus
  37. M. Fridkis-Hareli, D. Teitelbaum, I. Pecht, R. Arnon, and M. Sela, “Binding of copolymer 1 and myelin basic protein leads to clustering of class II MHC molecules on antigen-presenting cells,” International Immunology, vol. 9, no. 7, pp. 925–934, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. M. B. Bornstein, A. Miller, S. Slagle et al., et al., “A pilot trial of Cop 1 in exacerbating-remitting multiple sclerosis,” The New England Journal of Medicine, vol. 317, no. 7, pp. 408–414, 1987. View at Publisher · View at Google Scholar
  39. K. P. Johnson, B. R. Brooks, J. A. Cohen et al., “Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability,” Neurology, vol. 57, no. 12, supplement, pp. S46–S53, 2001. View at Scopus
  40. G. L. Mancardi, F. Sardanelli, R. C. Parodi et al., “Effect of copolymer-1 on serial gadolinium-enhanced MRI in relapsing remitting multiple sclerosis,” Neurology, vol. 50, no. 4, pp. 1127–1133, 1998. View at Scopus
  41. G. Comi, M. Filippi, and J. S. Wolinsky, “European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis,” Annals of Neurology, vol. 49, no. 3, pp. 290–297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. H. Lenk, U. Müller, and S. Tanneberger, “Mitoxantrone: mechanism of action, antitumor activity, pharmacokinetics, efficacy in the treatment of solid tumors and lymphomas, and toxicity,” Anticancer Research, vol. 7, no. 6, pp. 1257–1264, 1987. View at Scopus
  43. L. S. Rosenberg, M. J. Carvlin, and T. R. Krugh, “The antitumor agent mitoxantrone binds cooperatively to DNA: evidence for heterogeneity in DNA conformation,” Biochemistry, vol. 25, no. 5, pp. 1002–1008, 1986. View at Scopus
  44. J. M. Fidler, S. Q. DeJoy, and J. J. Gibbons Jr., “Selective immunomodulation by the antineoplastic agent mitoxantrone. I. Suppression of B lymphocyte function,” Journal of Immunology, vol. 137, no. 2, pp. 727–732, 1986. View at Scopus
  45. B. Bellosillo, D. Colomer, G. Pons, and J. Gil, “Mitoxantrone, a topoisomerase II inhibitor, induces apoptosis of B-chronic lymphocytic leukaemia cells,” British Journal of Haematology, vol. 100, no. 1, pp. 142–146, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. H. P. Hartung, R. Gonsette, N. König et al., “Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial,” The Lancet, vol. 360, no. 9350, pp. 2018–2025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. R. J. Crossley, “Clinical safety and tolerance of mitoxantrone,” Seminars in Oncology, vol. 11, no. 3, supplement 1, pp. 54–58, 1984. View at Scopus
  48. V. Martinelli, M. Radaelli, L. Straffi, M. Rodegher, and G. Comi, “Mitoxantrone: benefits and risks in multiple sclerosis patients,” Neurological Sciences, vol. 30, supplement 2, pp. S167–S170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. R. G. Ghalie, G. Edan, M. Laurent et al., “Cardiac adverse effects associated with mitoxantrone (Novantrone) therapy in patients with MS,” Neurology, vol. 59, no. 6, pp. 909–913, 2002. View at Scopus
  50. C. Cattaneo, C. Almici, E. Borlenghi, M. Motta, and G. Rossi, “A case of acute promyelocytic leukaemia following mitoxantrone treatment of multiple sclerosis,” Leukemia, vol. 17, no. 5, pp. 985–986, 2003. View at Scopus
  51. C. Heesen, M. Bruegmann, J. Gbdamosi, E. Koch, A. Mönch, and C. Buhmann, “Therapy-related acute myelogenous leukaemia (t-AML) in a patient with multiple sclerosis treated with mitoxantrone,” Multiple Sclerosis, vol. 9, no. 2, pp. 213–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Bines, D. M. Oleske, and M. A. Cobleigh, “Ovarian function in premenopausal women treated with adjuvant chemotherapy for breast cancer,” Journal of Clinical Oncology, vol. 14, no. 5, pp. 1718–1729, 1996. View at Scopus
  53. D. H. Miller, O. A. Khan, W. A. Sheremata et al., “A controlled trial of natalizumab for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 348, no. 1, pp. 15–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. W. A. Sheremata, A. Minagar, J. S. Alexander, and T. Vollmer, “The role of α-4 integrin in the aetiology of multiple sclerosis: current knowledge and therapeutic implications,” CNS Drugs, vol. 19, no. 11, pp. 909–922, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Ghosh, E. Goldin, F. H. Gordon et al., “Natalizumab for active Crohn's disease,” The New England Journal of Medicine, vol. 348, no. 1, pp. 24–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Engelhardt and L. Kappos, “Natalizumab: targeting α4-integrins in multiple sclerosis,” Neurodegenerative Diseases, vol. 5, no. 1, pp. 16–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. T. A. Yednock, C. Cannon, L. C. Fritz, F. Sanchez-Madrid, L. Steinmann, and N. Karin, “Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin,” Nature, vol. 356, no. 6364, pp. 63–66, 1992. View at Publisher · View at Google Scholar · View at Scopus
  58. N. Tubridy, P. O. Behan, R. Capildeo et al., “The effect of anti-α4 integrin antibody on brain lesion activity in MS,” Neurology, vol. 53, no. 3, pp. 466–472, 1999. View at Scopus
  59. C. H. Polman, P. W. O'Connor, E. Havrdova et al., “A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 354, no. 9, pp. 899–910, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. R. A. Rudick, W. H. Stuart, P. A. Calabresi et al., “Natalizumab plus interferon β-1a for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 354, no. 9, pp. 911–923, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. R. A. Rudick and A. Sandrock, “Natalizumab: α4-integrin antagonist selective adhesion molecule inhibitors for MS,” Expert Review of Neurotherapeutics, vol. 4, no. 4, pp. 571–580, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. Sahraian, E. W. Radue, A. Eshaghi, S. Besliu, and A. Minagar, “Progressive multifocal leukoencephalopathy: a review of the neuroimaging features and differential diagnosis,” European Journal of Neurology, vol. 19, no. 8, pp. 1060–1069, 2012. View at Publisher · View at Google Scholar
  63. P. S. Sørensen, A. Bertolotto, G. Edan et al., “Risk stratification for progressive multifocal leukoencephalopathy in patients treated with natalizumab,” Multiple Sclerosis, vol. 18, no. 2, pp. 143–152, 2012. View at Publisher · View at Google Scholar
  64. M. Matloubian, C. G. Lo, G. Cinamon et al., “Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1,” Nature, vol. 427, no. 6972, pp. 355–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Chiba, “FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors,” Pharmacology and Therapeutics, vol. 108, no. 3, pp. 308–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Kappos, J. Antel, G. Comi et al., “Oral fingolimod (FTY720) for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 355, no. 11, pp. 1124–1140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. P. O'Connor, G. Comi, X. Montalban et al., “Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study,” Neurology, vol. 72, no. 1, pp. 73–79, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. A. Cohen, F. Barkhof, G. Comi et al., “Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 362, no. 5, pp. 402–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Minagar, J. S. Alexander, M. A. Sahraian, and R. Zivadinov, “Alemtuzumab and multiple sclerosis: therapeutic application,” Expert Opinion on Biological Therapy, vol. 10, no. 3, pp. 421–429, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Jones, J. M. Anderson, C. L. Phuah et al., “Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity,” Brain, vol. 133, no. 8, pp. 2232–2247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Moreau, J. Thorpe, D. Miller et al., “Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis,” The Lancet, vol. 344, no. 8918, pp. 298–301, 1994. View at Publisher · View at Google Scholar · View at Scopus
  72. A. J. Coles, D. A. S. Compston, K. W. Selmaj et al., “Alemtuzumab vs. interferon β-1a in early multiple sclerosis,” The New England Journal of Medicine, vol. 359, no. 17, pp. 1786–1801, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. A. J. Coles, E. Fox, A. Vladic et al., “Alemtuzumab versus interferon β-1a in early relapsing-remitting multiple sclerosis: post-hoc and subset analyses of clinical efficacy outcomes,” The Lancet Neurology, vol. 10, no. 4, pp. 338–348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. J. A. Cohen, A. J. Coles, D. L. Arnold et al., “Alemtuzumab versus interferon β 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial,” The Lancet, vol. 380, no. 9856, pp. 1819–1828, 2012. View at Publisher · View at Google Scholar
  75. D. H. Lee, R. A. Linker, and R. Gold, “Spotlight on fumarates,” International MS Journal, vol. 15, no. 1, pp. 12–18, 2008. View at Scopus
  76. D. Moharregh-Khiabani, R. A. Linker, R. Gold, and M. Stangel, “Fumaric acid and its esters: an emerging treatment for multiple sclerosis,” Current Neuropharmacology, vol. 7, no. 1, pp. 60–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. R. Gold, L. Kappos, A. Bar-Or, et al., “Clinical efficacy of BG-12, an oral therapy, in relapsing-remitting multiple sclerosis: data from the phase 3 DEFINE trial,” in Proceedings of the 5th Joint Teriannial Congress of European and Americas Committees for Treatment and Research in Multiple Sclerosis (ECTRIMS/ACTRIMS), Amsterdam, The Netherlands, October 2011.
  78. L. Kappos, R. Gold, D. H. Miller et al., “Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study,” The Lancet, vol. 372, no. 9648, pp. 1463–1472, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. R. J. Fox, D. H. Miller, J. T. Phillips et al., “Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis,” The New England Journal of Medicine, vol. 367, no. 12, pp. 1087–1097, 2012. View at Publisher · View at Google Scholar
  80. R. Gold, L. Kappos, D. L. Arnold et al., “Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 367, no. 12, pp. 1098–1107, 2012. View at Publisher · View at Google Scholar
  81. A. M. Palmer, “Teriflunomide, an inhibitor of dihydroorotate dehydrogenase for the potential oral treatment of multiple sclerosis,” Current Opinion in Investigational Drugs, vol. 11, no. 11, pp. 1313–1323, 2010. View at Scopus
  82. J. Killestein, R. A. Rudick, and C. H. Polman, “Oral treatment for multiple sclerosis,” The Lancet Neurology, vol. 10, no. 11, pp. 1026–1034, 2011. View at Publisher · View at Google Scholar
  83. M. C. Claussen and T. Korn, “Immune mechanisms of new therapeutic strategies in MS—teriflunomide,” Clinical Immunology, vol. 142, no. 1, pp. 49–56, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. P. W. O'Connor, D. Li, M. S. Freedman et al., “A phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses,” Neurology, vol. 66, no. 6, pp. 894–900, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. P. O'Connor, J. S. Wolinsky, C. Confavreux et al., “Randomized trial of oral teriflunomide for relapsing multiple sclerosis,” The New England Journal of Medicine, vol. 365, no. 14, pp. 1293–1303, 2011. View at Publisher · View at Google Scholar
  86. P. S. Giacomini and A. Bar-Or, “Laquinimod in multiple sclerosis,” Clinical Immunology, vol. 142, no. 1, pp. 38–43, 2012. View at Publisher · View at Google Scholar
  87. W. Brück and S. S. Zamvil, “Laquinimod, a once-daily oral drug in development for the treatment of relapsing-remitting multiple sclerosis,” Expert Review of Clinical Pharmacology, vol. 5, no. 3, pp. 245–256, 2012. View at Publisher · View at Google Scholar
  88. W. Brück and C. Wegner, “Insight into the mechanism of laquinimod action,” Journal of the Neurological Sciences, vol. 306, no. 1-2, pp. 173–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Wegner, C. Stadelmann, R. Pförtner et al., “Laquinimod interferes with migratory capacity of T cells and reduces IL-17 levels, inflammatory demyelination and acute axonal damage in mice with experimental autoimmune encephalomyelitis,” Journal of Neuroimmunology, vol. 227, no. 1-2, pp. 133–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. G. Comi, O. Abramsky, T. Arbizu et al., “Oral laquinimod in patients with relapsing-remitting multiple sclerosis: 36-week double-blind active extension of the multi-centre, randomized, double-blind, parallel-group placebo-controlled study,” Multiple Sclerosis, vol. 16, no. 11, pp. 1360–1366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. D. G. Maloney, “Anti-CD20 antibody therapy for B-cell lymphomas,” The New England Journal of Medicine, vol. 366, no. 21, pp. 2008–2016, 2012. View at Publisher · View at Google Scholar
  92. D. K. Kitsos, S. Tsiodras, E. Stamboulis, and K. I. Voumvourakis, “Rituximab and multiple sclerosis,” Clinical Neuropharmacology, vol. 35, no. 2, pp. 90–96, 2012. View at Publisher · View at Google Scholar
  93. M. S. Weber, T. Menge, K. Lehmann-Horn et al., “Current treatment strategies for multiple sclerosis—efficacy versus neurological adverse effects,” Current Pharmaceutical Design, vol. 18, no. 2, pp. 209–219, 2012. View at Publisher · View at Google Scholar
  94. S. L. Hauser, E. Waubant, D. L. Arnold et al., “B-cell depletion with rituximab in relapsing-remitting multiple sclerosis,” The New England Journal of Medicine, vol. 358, no. 7, pp. 676–688, 2008. View at Publisher · View at Google Scholar
  95. T. R. Malek, “The biology of interleukin-2,” Annual Review of Immunology, vol. 26, pp. 453–479, 2008. View at Publisher · View at Google Scholar
  96. H. Gensicke, D. Leppert, O. Yaldizli et al., “Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis,” CNS Drugs, vol. 26, no. 1, pp. 11–37, 2012. View at Publisher · View at Google Scholar
  97. R. Martin, “Humanized anti-CD25 antibody treatment with daclizumab in multiple sclerosis,” Neurodegenerative Diseases, vol. 5, no. 1, pp. 23–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Cuppoletti, F. Perez-Villa, I. Vallejos, and E. Roig, “Experience with single-dose daclizumab in the prevention of acute rejection in heart transplantation,” Transplantation Proceedings, vol. 37, no. 9, pp. 4036–4038, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. B. Bielekova, M. Catalfamo, S. Reichert-Scrivner et al., “Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 5941–5946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. G. Giovannoni, R. Gold, K. Selmaj, et al., “A randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of daclizumab HYP monotherapy in relapsing-remitting multiple sclerosis: primary results of the SELECT trial,” Multiple Sclerosis, vol. 17, no. 10, pp. S507–S524, 2011. View at Publisher · View at Google Scholar
  101. D. Wynn, M. Kaufman, X. Montalban et al., “Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon β,” The Lancet Neurology, vol. 9, no. 4, pp. 381–390, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Gasperini and S. Ruggieri, “Emerging oral drugs for relapsing-remitting multiple sclerosis,” Expert Opinion on Emerging Drugs, vol. 16, no. 4, pp. 697–712, 2011. View at Publisher · View at Google Scholar