About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2013 (2013), Article ID 305763, 14 pages
http://dx.doi.org/10.1155/2013/305763
Review Article

Brown Adipose Tissue Growth and Development

Early Life Nutrition Research Unit, Academic Division of Child Health, School of Clinical Sciences, University Hospital, The University of Nottingham, Nottingham NG7 2UH, UK

Received 4 February 2013; Accepted 28 February 2013

Academic Editors: Y. Chagnon and G. Lopaschuk

Copyright © 2013 Michael E. Symonds. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Cannon and J. Nedergaard, “Brown adipose tissue: function and physiological significance,” Physiological Reviews, vol. 84, no. 1, pp. 277–359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. R. E. Smith and B. A. Horwitz, “Brown fat and thermogenesis,” Physiological Reviews, vol. 49, no. 2, pp. 330–425, 1969. View at Scopus
  3. G. G. Power, “Biology of temperature: the mammalian fetus,” Journal of Developmental Physiology, vol. 12, no. 6, pp. 295–304, 1989. View at Scopus
  4. G. M. Heaton and D. G. Nicholls, “The structural specificity of the nucleotide-binding site and the reversible nature of the inhibition of proton conductance induced by bound nucleotides in brown-adipose-tissue mitochondria,” Biochemical Society Transactions, vol. 5, no. 1, pp. 210–212, 1977. View at Scopus
  5. D. G. Nicholls and R. M. Locke, “Thermogenic mechanisms in brown fat,” Physiological Reviews, vol. 64, no. 1, pp. 1–64, 1984. View at Scopus
  6. P. Trayhurn, M. Ashwell, G. Jennings, D. Richard, and D. M. Stirling, “Effect of warm or cold exposure on GDP binding and uncoupling protein in rat brown fat,” American Journal of Physiology, vol. 252, no. 2, pp. E237–E243, 1987. View at Scopus
  7. L. P. Kozak and R. A. Koza, “The genetics of brown adipose tissue,” Progress in Molecular Biology and Translational Science, vol. 94, pp. 75–123, 2010. View at Scopus
  8. M. E. Symonds, M. Pope, D. Sharkey, and H. Budge, “Adipose tissue and fetal programming,” Diabetologia, vol. 55, pp. 1597–1606, 2012.
  9. J. Nedergaard, T. Bengtsson, and B. Cannon, “Unexpected evidence for active brown adipose tissue in adult humans,” American Journal of Physiology, vol. 293, no. 2, pp. E444–E452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Ravussin and J. E. Galgani, “The implication of brown adipose tissue for humans,” Annual Review of Nutrition, vol. 31, pp. 33–47, 2011.
  11. A. Bartelt and J. Heeren, “The holy grail of metabolic disease: brown adipose tissue,” Current Opinion in Lipidology, vol. 23, pp. 190–195, 2012.
  12. M. E. Symonds, S. P. Sebert, and H. Budge, “Nutritional regulation of fetal growth and implications for productive life in ruminants,” Animal, vol. 4, no. 7, pp. 1075–1083, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. E. Symonds and H. Budge, “How promising is thermal imaging in the quest to combat obesity?” Imaging in Medicine, vol. 4, pp. 589–591, 2012.
  14. D. J. Mellor and F. Cockburn, “A comparison of energy metabolism in the new-born infant, piglet and lamb,” Quarterly Journal of Experimental Physiology, vol. 71, no. 3, pp. 361–379, 1986. View at Scopus
  15. K. A. Virtanen, M. E. Lidell, J. Orava et al., “Functional brown adipose tissue in healthy adults,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1518–1525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Hamann, J. S. Flier, and B. B. Lowell, “Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia,” Endocrinology, vol. 137, no. 1, pp. 21–29, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. G. H. Vijgen, N. D. Bouvy, G. J. Teule et al., “Increase in brown adipose tissue activity after weight loss in morbidly obese subjects,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, pp. 1229–1233, 2012.
  18. G. H. E. J. Vijgen, N. D. Bouvy, G. J. J. Teule, B. Brans, P. Schrauwen, and W. D. van Marken Lichtenbelt, “Brown adipose tissue in morbidly obese subjects,” PLoS ONE, vol. 6, no. 2, Article ID e17247, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Ouellet, S. M. Labbe, D. P. Blondin, et al., “Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans,” The Journal of Clinical Investigation, vol. 122, pp. 545–552, 2012.
  20. W. Parks Brian, E. Nam, E. Org, et al., “Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice,” Cell Metabolism, vol. 17, pp. 141–152, 2013.
  21. T. Fromme and M. Klingenspor, “Uncoupling protein 1 expression and high-fat diets,” American Journal of Physiology, vol. 300, no. 1, pp. R1–R8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. Whittle, S. Carobbio, L. Martins, et al., “BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions,” Cell, vol. 149, pp. 871–885, 2012.
  23. T. D. Muller, S. J. Lee, M. Jastroch, et al., “P62 Links beta-adrenergic input to mitochondrial function and thermogenesis,” The Journal of Clinical Investigation, vol. 123, pp. 469–478, 2013.
  24. J. Sanchez-Gurmaches, C. M. Hung, C. A. Sparks, Y. Tang, H. Li, and D. A. Guertin, “PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors,” Cell Metabolism, vol. 16, pp. 348–362, 2012.
  25. C. W. Liew, J. Boucher, J. K. Cheong, et al., “Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance,” Nature Medicine, vol. 19, pp. 217–226, 2013.
  26. F. W. Kiefer, C. Vernochet, P. O'Brien, et al., “Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue,” Nature Medicine, vol. 18, pp. 918–925, 2012.
  27. M. E. Symonds, H. Budge, A. C. Perkins, and M. A. Lomax, “Adipose tissue development—impact of the early life environment,” Progress in Biophysics and Molecular Biology, vol. 106, no. 1, pp. 300–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. E. Symonds, S. Sebert, and H. Budge, “The obesity epidemic: from the environment to epigenetics—not simply a response to dietary manipulation in a thermoneutral environment,” Frontiers in Epigenomics, vol. 2, article 24, 2011. View at Publisher · View at Google Scholar
  29. S. H. Jacobson, D. M. King, and R. Yuan, “A note on the relationship between obesity and driving,” Transport Policy, vol. 18, no. 5, pp. 772–776, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Blessing, M. Mohammed, and Y. Ootsuka, “Heating and eating: brown adipose tissue thermogenesis precedes food ingestion as part of the ultradian basic rest-activity cycle in rats,” Physiology & Behavior, vol. 105, pp. 966–974, 2012.
  31. T. F. Hany, E. Gharehpapagh, E. M. Kamel, A. Buck, J. Himms-Hagen, and G. K. von Schulthess, “Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region,” European Journal of Nuclear Medicine, vol. 29, no. 10, pp. 1393–1398, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Cohade, M. Osman, H. K. Pannu, and R. L. Wahl, “Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT,” Journal of Nuclear Medicine, vol. 44, no. 2, pp. 170–176, 2003. View at Scopus
  33. H. W. D. Yeung, R. K. Grewal, M. Gonen, H. Schöder, and S. M. Larson, “Patterns of 18F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET,” Journal of Nuclear Medicine, vol. 44, no. 11, pp. 1789–1796, 2003. View at Scopus
  34. W. D. van Marken Lichtenbelt, J. W. Vanhommerig, N. M. Smulders et al., “Cold-activated brown adipose tissue in healthy men,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1500–1508, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Orava, P. Nuutila, M. E. Lidell et al., “Different metabolic responses of human brown adipose tissue to activation by cold and insulin,” Cell Metabolism, vol. 14, no. 2, pp. 272–279, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. I. T. H. Au-Yong, N. Thorn, R. Ganatra, A. C. Perkins, and M. E. Symonds, “Brown adipose tissue and seasonal variation in humans,” Diabetes, vol. 58, no. 11, pp. 2583–2587, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. M. Cypess, S. Lehman, G. Williams et al., “Identification and importance of brown adipose tissue in adult humans,” The New England Journal of Medicine, vol. 360, no. 15, pp. 1509–1517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. P. Lee, J. R. Greenfield, K. K. Y. Ho, and M. J. Fulham, “A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans,” American Journal of Physiology, vol. 299, no. 4, pp. E601–E606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. C. Perkins, D. S. Mshelia, M. E. Symonds, and M. Sathekge, “Prevalence and pattern of brown adipose tissue distribution of 18F-FDG in patients undergoing PET-CT in a sub-tropical climatic zone,” Nuclear Medicine Communications, vol. 34, no. 2, pp. 168–174, 2013.
  40. Y. C. Huang, C. C. Hsu, P. Huang et al., “The changes in brain metabolism in people with activated brown adipose tissue: a PET study,” NeuroImage, vol. 54, no. 1, pp. 142–147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Nedergaard, T. Bengtsson, and B. Cannon, “Three years with adult human brown adipose tissue,” Annals of the New York Academy of Sciences, vol. 1212, pp. E20–E36, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Saito, Y. Okamatsu-Ogura, M. Matsushita et al., “High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity,” Diabetes, vol. 58, no. 7, pp. 1526–1531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. T. Yoneshiro, S. Aita, M. Matsushita, et al., “Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans,” Obesity, vol. 19, pp. 1755–1760, 2011.
  44. M. E. Symonds, K. Henderson, L. Elvidge et al., “Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children,” Journal of Pediatrics, vol. 161, pp. 892–898, 2012.
  45. W. D. van Marken Lichtenbelt and P. Schrauwen, “Implications of nonshivering thermogenesis for energy balance regulation in humans,” American Journal of Physiology, vol. 301, no. 2, pp. R285–R296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Cannon and J. Nedergaard, “Cell biology: neither brown nor white,” Nature, vol. 488, pp. 286–287, 2012.
  47. P. Seale, B. Bjork, W. Yang et al., “PRDM16 controls a brown fat/skeletal muscle switch,” Nature, vol. 454, no. 7207, pp. 961–967, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Wu, P. Bostrom, L. M. Sparks, et al., “Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human,” Cell, vol. 150, pp. 366–376, 2012.
  49. T. B. Walden, I. R. Hansen, J. A. Timmons, B. Cannon, and J. Nedergaard, “Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues,” American Journal of Physiology, vol. 302, pp. E19–E31, 2012.
  50. A. Frontini and S. Cinti, “Distribution and development of brown adipocytes in the murine and human adipose organ,” Cell Metabolism, vol. 11, no. 4, pp. 253–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Xue, J. S. Rim, J. C. Hogan, A. A. Coulter, R. A. Koza, and L. P. Kozak, “Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat,” Journal of Lipid Research, vol. 48, no. 1, pp. 41–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Nedergaard and B. Cannon, “UCP1 mRNA does not produce heat,” Biochimica et Biophysica Acta, no. 13, pp. 27–29, 2013. View at Publisher · View at Google Scholar
  53. J. Wu, P. Cohen, and B. M. Spiegelman, “Adaptive thermogenesis in adipocytes: Is beige the new brown?” Genes & Development, vol. 27, pp. 234–250, 2013.
  54. M. E. Symonds, J. A. Bird, L. Clarke, J. J. Gate, and M. A. Lomax, “Nutrition, temperature and homeostasis during perinatal development,” Experimental Physiology, vol. 80, no. 6, pp. 907–940, 1995. View at Scopus
  55. W. Aherne and D. Hull, “Brown adipose tissue and heat production in the newborn infant,” The Journal of Pathology and Bacteriology, vol. 91, no. 1, pp. 223–234, 1966. View at Scopus
  56. G. Alexander and A. W. Bell, “Quantity and calculated oxygen consumption during summit metabolism of brown adipose tissue in newborn lambs,” Biology of the Neonate, vol. 26, no. 3-4, pp. 214–220, 1975. View at Scopus
  57. D. Hull and M. M. Segall, “Heat production in the new-born rabbit and the fat content of the brown adipose tissue,” Journal of Physiology, vol. 181, no. 3, pp. 468–477, 1965. View at Scopus
  58. L. Clarke, L. Heasman, K. Firth, and M. E. Symonds, “Influence of route of delivery and ambient temperature on thermoregulation in newborn lambs,” American Journal of Physiology, vol. 272, no. 6, pp. R1931–R1939, 1997. View at Scopus
  59. E. M. Widdowson, “Chemical composition of newly born mammals,” Nature, vol. 166, no. 4224, pp. 626–628, 1950. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Budge and M. E. Symonds, “Fetal and neonatal nutrition—lipid and carbohydrate requirements and adaptations to altered supply at birth,” in Textbook of Perinatal MEdicine, A. Kurjak and F. A. Chrervenak, Eds., pp. 1007–1016, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2006.
  61. B. Cannon, E. Connoley, M.-J. Obregon, and J. Nedergaard, “Perinatal activation of brown adipose tissue,” in The Endocrine Control of the Fetus, W. Kunzel and A. Jesen, Eds., pp. 306–320, Springer, Berlin, Germany, 1988.
  62. M. E. Symonds, T. Stephenson, D. S. Gardner, and H. Budge, “Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows,” Reproduction, Fertility and Development, vol. 19, no. 1, pp. 53–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. M. E. Symonds and M. A. Lomax, “Maternal and environmental influences on thermoregulation in the neonate,” Proceedings of the Nutrition Society, vol. 51, no. 2, pp. 165–172, 1992. View at Scopus
  64. M. Giralt, I. Martin, R. Iglesias, O. Vinas, F. Villarroya, and T. Mampel, “Ontogeny and perinatal modulation of gene expression in rat brown adipose tissue. Unaltered iodothyronine 5′-deiodinase activity is necessary for the response to environmental temperature at birth,” European Journal of Biochemistry, vol. 193, no. 1, pp. 297–302, 1990. View at Scopus
  65. M. S. Blumberg and G. Sokoloff, “Thermoregulatory competence and behavioral expression in the young of altricial species—revisited,” Developmental Psychobiology, vol. 33, pp. 107–123, 1998.
  66. M. E. Symonds, A. Mostyn, and T. Stephenson, “Cytokines and cytokine receptors in fetal growth and development,” Biochemical Society Transactions, vol. 29, no. 2, pp. 33–37, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Clarke, J. A. Bird, M. A. Lomax, and M. E. Symonds, “Effect of β3-adrenergic agonist (Zeneca D7114) on thermoregulation in near-term lambs delivered by cesarean section,” Pediatric Research, vol. 40, no. 2, pp. 330–336, 1996. View at Scopus
  68. P. Trayhurn, N. J. Temple, and J. Van Aerde, “Evidence from immunoblotting studies on uncoupling protein that brown adipose tissue is not present in the domestic pig,” Canadian Journal of Physiology and Pharmacology, vol. 67, no. 12, pp. 1480–1485, 1989. View at Scopus
  69. F. Berg, U. Gustafson, and L. Andersson, “The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets,” PLoS Genetics, vol. 2, no. 8, article e129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Pope, H. Budge, and M. E. Symonds, “The developmental transition of ovine adipose tissue through early life,” Acta Physiologica Scandinavica, 2013. View at Publisher · View at Google Scholar
  71. L. Clarke, M. J. Bryant, M. A. Lomax, and M. E. Symonds, “Maternal manipulation of brown adipose tissue and liver development in the ovine fetus during late gestation,” British Journal of Nutrition, vol. 77, no. 6, pp. 871–883, 1997. View at Publisher · View at Google Scholar · View at Scopus
  72. R. T. Gemmell, A. W. Bell, and G. Alexander, “Morphology of adipose cells in lambs at birth and during subsequent transition of brown to white adipose tissue in cold and in warm conditons,” American Journal of Anatomy, vol. 133, no. 2, pp. 143–164, 1972. View at Scopus
  73. R. T. Gemmell and G. Alexander, “Ultrastructural development of adipose tissue in foetal sheep,” Australian Journal of Biological Sciences, vol. 31, no. 5, pp. 505–515, 1978. View at Scopus
  74. T. Scholzen and J. Gerdes, “The Ki-67 protein: from the known and the unknown,” Journal of Cellular Physiology, vol. 182, pp. 311–322, 2000.
  75. Y. H. Tseng, E. Kokkotou, T. J. Schulz et al., “New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure,” Nature, vol. 454, pp. 1000–1004, 2008.
  76. S. Kajimura, P. Seale, K. Kubota et al., “Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-β transcriptional complex,” Nature, vol. 460, no. 7259, pp. 1154–1158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. J. A. Bird, J. A. D. Spencer, T. Mould, and M. E. Symonds, “Endocrine and metabolic adaptation following caesarean section or vaginal delivery,” Archives of Disease in Childhood, vol. 74, no. 2, pp. F132–F134, 1996. View at Scopus
  78. S. Viengchareun, N. Servel, B. Fève, M. Freemark, M. Lombès, and N. Binart, “Prolactin receptor signaling is essential for perinatal brown adipocyte function: a role for insulin-like growth factor-2,” PLoS ONE, vol. 3, no. 2, Article ID e1535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Pearce, H. Budge, A. Mostyn et al., “Prolactin, the prolactin receptor and uncoupling protein abundance and function in adipose tissue during development in young sheep,” Journal of Endocrinology, vol. 184, no. 2, pp. 351–359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. M. O. Ribeiro, S. D. C. Bianco, M. Kaneshige et al., “Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-β isoform specific and required for adaptive thermogenesis,” Endocrinology, vol. 151, no. 1, pp. 432–440, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. J. A. Hall, S. Ribich, M. A. Christoffolete et al., “Absence of thyroid hormone activation during development underlies a permanent defect in adaptive thermogenesis,” Endocrinology, vol. 151, no. 9, pp. 4573–4582, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Uldry, W. Yang, J. St-Pierre, J. Lin, P. Seale, and B. M. Spiegelman, “Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation,” Cell Metabolism, vol. 3, no. 5, pp. 333–341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. M. A. Lomax, F. Sadiq, G. Karamanlidis, A. Karamitri, P. Trayhurn, and D. G. Hazlerigg, “Ontogenic loss of brown adipose tissue sensitivity to β-adrenergic stimulation in the ovine,” Endocrinology, vol. 148, no. 1, pp. 461–468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. P. J. Fernandez-Marcos and J. Auwerx, “Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis,” The American Journal of Clinical Nutrition, vol. 93, no. 4, pp. 884S–890S, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. J. M. Bassett and M. E. Symonds, “β2-agonist ritodrine, unlike natural catecholamines, activates thermogenesis prematurely in fetal sheep,” American Journal of Physiology, vol. 275, no. 1, pp. R112–R119, 1998. View at Scopus
  86. P. Seale, “Transcriptional control of brown adipocyte development and thermogenesis,” International Journal of Obesity, vol. 34, supplement 1, pp. S17–S22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. F. M. Gregoire, C. M. Smas, and H. S. Sul, “Understanding adipocyte differentiation,” Physiological Reviews, vol. 78, no. 3, pp. 783–809, 1998. View at Scopus
  88. P. Li, “Cidea, brown fat and obesity,” Mechanisms of Ageing and Development, vol. 125, no. 4, pp. 337–338, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. F. Forner, C. Kumar, C. A. Luber, T. Fromme, M. Klingenspor, and M. Mann, “Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions,” Cell Metabolism, vol. 10, no. 4, pp. 324–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Pilegaard, G. A. Ordway, B. Saltin, and P. D. Neufer, “Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise,” American Journal of Physiology, vol. 279, no. 4, pp. E806–E814, 2000. View at Scopus
  91. L. Clarke, D. S. Buss, D. T. Juniper, M. A. Lomax, and M. E. Symonds, “Adipose tissue development during early postnatal life in ewe-reared lambs,” Experimental Physiology, vol. 82, no. 6, pp. 1015–1027, 1997. View at Scopus
  92. M. Hallberg, D. L. Morganstein, E. Kiskinis et al., “A functional interaction between RIP140 and PGC-1α regulates the expression of the lipid droplet protein CIDEA,” Molecular and Cellular Biology, vol. 28, no. 22, pp. 6785–6795, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. D. Pan, M. Fujimoto, A. Lopes, and Y. X. Wang, “Twist-1 is a PPARdelta-inducible, negative-feedback regulator of PGC-1alpha in brown fat metabolism,” Cell, vol. 137, no. 1, pp. 73–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. T. J. Schulz and Y. H. Tseng, “Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism,” Cytokine and Growth Factor Reviews, vol. 20, no. 5-6, pp. 523–531, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Mostyn, S. Pearce, H. Budge et al., “Influence of cortisol on adipose tissue development in the fetal sheep during late gestation,” Journal of Endocrinology, vol. 176, no. 1, pp. 23–30, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. M. G. Gnanalingham, A. Mostyn, M. E. Symonds, and T. Stephenson, “Ontogeny and nutritional programming of adiposity in sheep: potential role of glucocorticoid action and uncoupling protein-2,” American Journal of Physiology, vol. 289, no. 5, pp. R1407–R1415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. M. E. Symonds, A. Mostyn, S. Pearce, H. Budge, and T. Stephenson, “Endocrine and nutritional regulation of fetal adipose tissue development,” Journal of Endocrinology, vol. 179, no. 3, pp. 293–299, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. M. E. Symonds, “Pregnancy, parturition and neonatal development—interactions between nutrition and thyroid hormones,” Proceedings of the Nutrition Society, vol. 54, no. 2, pp. 329–343, 1995. View at Scopus
  99. M. E. Symonds, J. A. Bird, C. Sullivan, V. Wilson, L. Clarke, and T. Stephenson, “Effect of delivery temperature on endocrine stimulation of thermoregulation in lambs born by cesarean section,” Journal of Applied Physiology, vol. 88, no. 1, pp. 47–53, 2000. View at Scopus
  100. L. Heasman, L. Clarke, and M. E. Symonds, “Influence of thyrotropin-releasing hormone administration at birth on thermoregulation in lambs delivered by cesarean,” American Journal of Obstetrics and Gynecology, vol. 183, no. 5, pp. 1257–1262, 2000. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Clarke, L. Heasman, and M. E. Symonds, “Influence of maternal dexamethasone administration on thermoregulation in lambs delivered by caesarean section,” Journal of Endocrinology, vol. 156, no. 2, pp. 307–314, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Mostyn, J. Bispham, S. Pearce et al., “Differential effects of leptin on thermoregulation and uncoupling protein abundance in the neonatal lamb,” The FASEB Journal, vol. 16, no. 11, pp. 1438–1440, 2002. View at Scopus
  103. J. Bispham, H. Budge, A. Mostyn et al., “Ambient temperature, maternal dexamethasone, and postnatal ontogeny of leptin in the neonatal lamb,” Pediatric Research, vol. 52, no. 1, pp. 85–90, 2002. View at Scopus
  104. M. E. Symonds, D. C. Andrews, and P. Johnson, “The control of thermoregulation in the developing lamb during slow wave sleep,” Journal of Developmental Physiology, vol. 11, no. 5, pp. 289–298, 1989. View at Scopus
  105. L. Clarke, C. J. Darby, M. A. Lomax, and M. E. Symonds, “Effect of ambient temperature during 1st day of life on thermoregulation in lambs delivered by cesarean section,” Journal of Applied Physiology, vol. 76, no. 4, pp. 1481–1488, 1994. View at Scopus
  106. L. P. Kozak, R. A. Koza, and R. Anunciado-Koza, “Brown fat thermogenesis and body weight regulation in mice: relevance to humans,” International Journal of Obesity, vol. 34, supplement 1, pp. S23–S27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. T. R. Gunn and P. D. Gluckman, “Perinatal thermogenesis,” Early Human Development, vol. 42, no. 3, pp. 169–183, 1995. View at Publisher · View at Google Scholar · View at Scopus
  108. A. M. Rudolph, “Distribution and regulation of blood flow in the fetal and neonatal lamb,” Circulation Research, vol. 57, no. 6, pp. 811–821, 1985. View at Scopus
  109. G. Lossec, Y. Lebreton, J. C. Hulin, M. Fillaut, and P. Herpin, “Age-related changes in oxygen and nutrient uptake by hindquarters in newborn pigs during cold-induced shivering,” Experimental Physiology, vol. 83, no. 6, pp. 793–807, 1998. View at Scopus
  110. G. Alexander and D. Williams, “Shivering and non-shivering therogenesis during summit metabolism in young lambs,” Journal of Physiology, vol. 198, no. 2, pp. 251–276, 1968. View at Scopus
  111. N. C. Bal, S. K. Maurya, D. H. Sopariwala, et al., “Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals,” Nature Medicine, vol. 18, pp. 1575–1579, 2012.
  112. E. Hondares, M. Rosell, F. J. Gonzalez, M. Giralt, R. Iglesias, and F. Villarroya, “Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat,” Cell Metabolism, vol. 11, no. 3, pp. 206–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. F. M. Fisher, S. Kleiner, N. Douris, et al., “FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis,” Genes & Development, vol. 26, pp. 271–281, 2012.
  114. J. Nedergaard, A. Matthias, V. Golozoubova, A. Jacobsson, and B. Cannon, “UCP1: the original uncoupling protein—and perhaps the only one?” Journal of Bioenergetics and Biomembranes, vol. 31, no. 5, pp. 475–491, 1999. View at Publisher · View at Google Scholar · View at Scopus
  115. M. E. Symonds, D. C. Andrews, and P. Johnson, “The endocrine and metabolic response to feeding in the developing lamb,” Journal of Endocrinology, vol. 123, no. 2, pp. 295–302, 1989. View at Scopus
  116. M. E. Symonds, M. J. Bryant, L. Clarke, C. J. Darby, and M. A. Lomax, “Effect of maternal cold exposure on brown adipose tissue and thermogenesis in the neonatal lamb,” Journal of Physiology, vol. 455, pp. 487–502, 1992. View at Scopus
  117. S. J. Schermer, J. A. Bird, M. A. Lomax, D. A. L. Shepherd, and M. E. Symonds, “Effect of fetal thyroidectomy on brown adipose tissue and thermoregulation in newborn lambs,” Reproduction, Fertility and Development, vol. 8, no. 6, pp. 995–1002, 1996. View at Publisher · View at Google Scholar · View at Scopus
  118. M. E. Symonds, D. C. Andrews, D. S. Buss, L. Clarke, C. J. Darby, and M. A. Lomax, “Effect of rearing temperature on perirenal adipose tissue development and thermoregulation following methimazole treatment of postnatal lambs,” Experimental Physiology, vol. 81, no. 6, pp. 995–1006, 1996. View at Scopus
  119. C. J. Darby, L. Clarke, M. A. Lomax, and M. E. Symonds, “Brown adipose tissue and liver development during early postnatal life in hand-reared and ewe-reared lambs,” Reproduction, Fertility and Development, vol. 8, no. 1, pp. 137–145, 1996. View at Scopus
  120. A. Mostyn and M. E. Symonds, “Early programming of adipose tissue function: a large-animal perspective,” Proceedings of the Nutrition Society, vol. 68, no. 4, pp. 393–400, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. M. E. Symonds, D. C. Andrews, D. S. Buss, L. Clarke, and M. A. Lomax, “Influence of rearing temperature on lung development following methimazole treatment of postnatal lambs,” Experimental Physiology, vol. 81, no. 4, pp. 673–683, 1996. View at Scopus
  122. J. M. Heaton, “The distribution of brown adipose tissue in the human,” Journal of Anatomy, vol. 112, no. 1, pp. 35–39, 1972. View at Scopus
  123. V. Gilsanz, S. A. Chung, H. Jackson, F. J. Dorey, and H. H. Hu, “Functional brown adipose tissue is related to muscle volume in children and adolescents,” Journal of Pediatrics, vol. 158, no. 5, pp. 722–726, 2011. View at Publisher · View at Google Scholar · View at Scopus
  124. C. Zhang, C. McFarlane, S. Lokireddy, et al., “Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice,” Diabetologia, vol. 55, pp. 183–193, 2012.
  125. P. Bostrom, J. Wu, M. P. Jedrychowski, et al., “A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis,” Nature, vol. 481, pp. 463–468, 2012.
  126. J. A. Timmons, K. Baar, P. K. Davidsen, and P. J. Atherton, “Is irisin a human exercise gene?” Nature, vol. 488, pp. E9–E11, 2012.
  127. D. Ricquier and F. Bouillaud, “The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP,” Biochemical Journal, vol. 345, no. 2, pp. 161–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Mostyn, J. C. Litten, K. S. Perkins et al., “Influence of genotype on the differential ontogeny of uncoupling protein 2 and 3 in subcutaneous adipose tissue and muscle in neonatal pigs,” Journal of Endocrinology, vol. 183, no. 1, pp. 121–131, 2004. View at Publisher · View at Google Scholar · View at Scopus
  129. J. C. Clapham, J. R. S. Arch, H. Chapman et al., “Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean,” Nature, vol. 406, no. 6794, pp. 415–418, 2000. View at Publisher · View at Google Scholar · View at Scopus
  130. C. E. Grueter, E. van Rooij, B. A. Johnson, et al., “A cardiac microRNA governs systemic energy homeostasis by regulation of MED13,” Cell, vol. 149, pp. 671–683, 2012.
  131. S. Ojha, L. Robinson, M. Yazdani, M. E. Symonds, and H. Budge, “Brown adipose tissue genes in pericardial adipose tissue of newborn sheep are downregulated by maternal nutrient restriction in late gestation,” Pediatric Research. In press.
  132. H. Budge, L. J. Edwards, I. C. McMillen et al., “Nutritional manipulation of fetal adipose tissue deposition and uncoupling protein 1 messenger RNA abundance in the sheep: differential effects of timing and duration,” Biology of Reproduction, vol. 71, no. 1, pp. 359–365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. H. Budge, J. Bispham, J. Dandrea et al., “Effect of maternal nutrition on brown adipose tissue and its prolactin receptor status in the fetal lamb,” Pediatric Research, vol. 47, no. 6, pp. 781–786, 2000. View at Scopus
  134. A. Mostyn, V. Wilson, J. Dandrea et al., “Ontogeny and nutritional manipulation of mitochondrial protein abundance in adipose tissue and the lungs of postnatal sheep,” British Journal of Nutrition, vol. 90, no. 2, pp. 323–328, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. P. A. Svensson, M. Jernas, K. Sjoholm, et al., “Gene expression in human brown adipose tissue,” International Journal of Molecular Medicine, vol. 27, pp. 227–232, 2011.
  136. H. S. Sacks, J. N. Fain, B. Holman et al., “Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat,” Journal of Clinical Endocrinology and Metabolism, vol. 94, no. 9, pp. 3611–3615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. J. Ding, F. C. Hsu, T. B. Harris et al., “The association of pericardial fat with incident coronary heart disease: The Multi-Ethnic Study of Atherosclerosis (MESA),” The American Journal of Clinical Nutrition, vol. 90, no. 3, pp. 499–504, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Bartelt, O. T. Bruns, R. Reimer et al., “Brown adipose tissue activity controls triglyceride clearance,” Nature Medicine, vol. 17, no. 2, pp. 200–205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. L. L. Y. Chan, S. P. Sébert, M. A. Hyatt et al., “Effect of maternal nutrient restriction from early to midgestation on cardiac function and metabolism after adolescent-onset obesity,” American Journal of Physiology, vol. 296, no. 5, pp. R1455–R1463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. A. J. Whittle and A. Vidal-Puig, “NPs—heart hormones that regulate brown fat?” The Journal of Clinical Investigation, vol. 122, pp. 804–807, 2012.
  141. M. Bordicchia, D. Liu, E. Z. Amri, et al., “Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes,” The Journal of Clinical Investigation, vol. 122, pp. 1022–1036, 2012.
  142. M. E. Symonds, M. Pope, D. Sharkey, and H. Budge, “Adipose tissue and fetal programming,” Diabetologia, vol. 55, no. 6, pp. 1597–1606, 2012.
  143. N. J. Rothwell and M. J. Stock, “Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour,” Clinical Science, vol. 64, no. 1, pp. 19–23, 1983. View at Scopus
  144. H. Sacks and M. E. Symonds, “Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes,” Diabetes. In press.
  145. M. Elqatni and D. Ghafir, “Images in clinical medicine. Hibernoma of the neck,” The New England Journal of Medicine, vol. 367, no. 17, p. 1636, 2012.
  146. G. H. Vijgen, N. D. Bouvy, M. Smidt, L. Kooreman, G. Schaart, and W. van Marken Lichtenbelt, “Hibernoma with metabolic impact?” BMJ Case Reports, 2012. View at Publisher · View at Google Scholar
  147. J. A. Bird, A. Mostyn, L. Clarke et al., “Effect of postnatal age and a β3-adrenergic agonist (Zeneca D7114) administration on uncoupling protein-1 abundance in the lamb,” Experimental Physiology, vol. 86, no. 1, pp. 65–70, 2001. View at Publisher · View at Google Scholar · View at Scopus
  148. L. P. Kozak, “Brown fat and the myth of diet-induced thermogenesis,” Cell Metabolism, vol. 11, no. 4, pp. 263–267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. B. J. Fueger, J. Czernin, I. Hildebrandt et al., “Impact of animal handling on the results of 18F-FDG PET studies in mice,” Journal of Nuclear Medicine, vol. 47, no. 6, pp. 999–1006, 2006. View at Scopus
  150. M. E. Symonds, M. Pope, and H. Budge, “Adipose tissue development during early life: novel insights into energy balance from small and large mammals,” Proceedings of the Nutrition Society, vol. 71, pp. 363–370, 2012.
  151. F. Scazzina, D. Del Rio, L. Benini, et al., “The effect of breakfasts varying in glycemic index and glycemic load on dietary induced thermogenesis and respiratory quotient,” Nutrition, Metabolism & Cardiovascular Diseases, vol. 21, pp. 121–125, 2010.
  152. K. R. Westerterp, S. A. J. Wilson, and V. Rolland, “Diet induced thermogenesis measured over 24 h in a respiration chamber: effect of diet composition,” International Journal of Obesity, vol. 23, no. 3, pp. 287–292, 1999. View at Scopus
  153. T. Yoneshiro, S. Aita, Y. Kawai, T. Iwanaga, and M. Saito, “Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans,” The American Journal of Clinical Nutrition, vol. 95, pp. 845–850, 2012.
  154. A. M. Cypess, Y. C. Chen, C. Sze, et al., “Cold but not sympathomimetics activates human brown adipose tissue in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 10001–10005, 2012.
  155. M. J. Vosselman, A. A. van der Lans, B. Brans, et al., “Systemic beta-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans,” Diabetes, vol. 61, pp. 3106–3113, 2012.
  156. E. D. Saggerson, T. W. J. McAllister, and H. S. Baht, “Lipogenesis in rat brown adipocytes. Effects of insulin and noradrenaline, contributions from glucose and lactate as precursors and comparisons with white adipocytes,” Biochemical Journal, vol. 251, no. 3, pp. 701–709, 1988. View at Scopus
  157. A. L. Carey, M. F. Formosa, B. Every, et al., “Ephedrine activates brown adipose tissue in lean but not obese humans,” Diabetologia, vol. 56, pp. 147–155, 2013.
  158. T. Yoneshiro, T. Ogawa, N. Okamoto, et al., “Impact of UCP1 and beta3AR gene polymorphisms on age-related changes in brown adipose tissue and adiposity in humans,” 2012. View at Publisher · View at Google Scholar
  159. R. H. Forrest, J. G. H. Hickford, and C. M. Frampton, “Polymorphism at the ovine β-3-adrenergic receptor locus (ADRB3) and its association with lamb mortality,” Journal of Animal Science, vol. 85, no. 11, pp. 2801–2806, 2007. View at Publisher · View at Google Scholar · View at Scopus