About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2013 (2013), Article ID 415279, 19 pages
http://dx.doi.org/10.1155/2013/415279
Review Article

Nature and Nurture of Human Pain

Departments of Anesthesiology and Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA

Received 10 February 2013; Accepted 14 March 2013

Academic Editors: J. A. Castro and T. Shikano

Copyright © 2013 Inna Belfer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. S. Bates, “Ethnicity and pain: a biocultural model,” Social Science and Medicine, vol. 24, no. 1, pp. 47–50, 1987. View at Scopus
  2. L. Montes-Sandoval, “An analysis of the concept of pain,” Journal of Advanced Nursing, vol. 29, no. 4, pp. 935–941, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. G. B. Rollman, “Culture and pain,” in Cultural Clinical Psychology: Theory, Research, and Practice, S. S. Kazarian and D. R. Evans, Eds., pp. 267–286, Oxford University Press, New York, NY, USA, 1998.
  4. J. Streltzer, “Pain,” in Culture and Psychopathology, W. S. Tseng and J. Streltzer, Eds., pp. 87–100, Brunner/Mazel, New York, NY, USA, 1997.
  5. F. Gaston-Johansson, M. Albert, E. Fagan, and L. Zimmerman, “Similarities in pain descriptions of four different ethnic-culture groups,” Journal of Pain and Symptom Management, vol. 5, no. 2, pp. 94–100, 1990. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Moore and I. Brodsgaard, “Cross-cultural investigations of pain,” in Task Force on Epidemiology of the International Association for the Study of Pain, pp. 53–80, International Association for the Study of Pain Press, Seattle, Wash, USA, 1999.
  7. S. Nayak, S. C. Shiflett, S. Eshun, and F. M. Levine, “Culture and gender effects in pain beliefs and the prediction of pain tolerance,” Cross-Cultural Research, vol. 34, no. 2, pp. 135–151, 2000. View at Scopus
  8. I. Khalaf and L. C. Callister, “Cultural meanings of childbirth: muslim women living in Jordan,” Journal of Holistic Nursing, vol. 15, no. 4, pp. 373–388, 1997. View at Scopus
  9. L. C. Callister, “Cultural influences on pain perceptions and behaviors,” Home Health Care Management & Practice, vol. 15, no. 3, pp. 207–211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. D. C. Turk, Ed., Psychological Approaches to Pain Management: A Practitioner's Handbook, Guilford Press, New York, NY, USA, 1996.
  11. D. F. Zatzick and J. E. Dimsdale, “Cultural variations in response to painful stimuli,” Psychosomatic Medicine, vol. 52, no. 5, pp. 544–557, 1990. View at Scopus
  12. W. P. Chapman and C. M. Jones, “Variations in cutaneous and visceral pain sensitivity in normal subjects,” The Journal of Clinical Investigation, vol. 23, no. 1, pp. 81–91, 1944. View at Publisher · View at Google Scholar
  13. R. R. Edwards and R. B. Fillingim, “Ethnic differences in thermal pain responses,” Psychosomatic Medicine, vol. 61, pp. 346–354, 1999.
  14. D. Sheffield, P. L. Biles, H. Orom, W. Maixner, and D. S. Sheps, “Race and sex differences in cutaneous pain perception,” Psychosomatic Medicine, vol. 62, no. 4, pp. 517–523, 2000. View at Scopus
  15. N. E. Walsh, L. Schoenfeld, S. Ramamurthy, and J. Hoffman, “Normative model for cold pressor test,” American Journal of Physical Medicine and Rehabilitation, vol. 68, no. 1, pp. 6–11, 1989. View at Scopus
  16. K. M. Woodrow, G. D. Friedman, A. B. Siegelaub, and M. F. Collen, “Pain tolerance: differences according to age, sex and race,” Psychosomatic Medicine, vol. 34, no. 6, pp. 548–556, 1972. View at Scopus
  17. R. R. Edwards, D. M. Doleys, R. B. Fillingim, and D. Lowery, “Ethnic differences in pain tolerance: clinical implications in a chronic pain population,” Psychosomatic Medicine, vol. 63, no. 2, pp. 316–323, 2001. View at Scopus
  18. J. Faucett, N. Gordon, and J. Levine, “Differences in postoperative pain severity among four ethnic groups,” Journal of Pain and Symptom Management, vol. 9, no. 6, pp. 383–389, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. S. F. White, M. A. Asher, S. M. Lai, and D. C. Burton, “Patients' perceptions of overall function, pain, and appearance after primary posterior instrumentation and fusion for idiopathic scoliosis,” Spine, vol. 24, no. 16, pp. 1693–1700, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Sheffield, D. S. Kirby, P. L. Biles, and D. S. Sheps, “Comparison of perception of angina pectoris during exercise testing in African-Americans versus caucasians,” American Journal of Cardiology, vol. 83, no. 1, pp. 106–108, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Breitbart, M. V. McDonald, B. Rosenfeld et al., “Pain in ambulatory AIDS patients. I: pain characteristics and medical correlates,” Pain, vol. 68, no. 2-3, pp. 315–321, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. M. B. Sherwood, A. Garcia-Siekavizza, M. I. Meltzer, A. Hebert, A. F. Burns, and S. McGorray, “Glaucoma's impact on quality of life and its relation to clinical indicators: a pilot study,” Ophthalmology, vol. 105, no. 3, pp. 561–566, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Creamer, M. Lethbridge-Cejku, and M. C. Hochberg, “Determinants of pain severity in knee osteoarthritis: effect of demographic and psychosocial variables using 3 pain measures,” Journal of Rheumatology, vol. 26, no. 8, pp. 1785–1792, 1999. View at Scopus
  24. A. J. Selim, G. Fincke, X. S. Ren et al., “Racial differences in the use of lumbar spine radiographs: results from the veterans health study,” Spine, vol. 26, no. 12, pp. 1364–1369, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. C. L. Edwards, R. B. Fillingim, and F. Keefe, “Race, ethnicity and pain,” Pain, vol. 94, no. 2, pp. 133–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. K. H. Todd, C. Deaton, A. P. D'Adamo, and L. Goe, “Ethnicity and analgesic practice,” Annals of Emergency Medicine, vol. 35, no. 1, pp. 11–16, 2000. View at Scopus
  27. R. Clark, N. B. Anderson, V. R. Clark, and D. R. Williams, “Racism as a Stressor for African Americans: a biopsychosocial model,” American Psychologist, vol. 54, no. 10, pp. 805–816, 1999. View at Scopus
  28. M. D. McNeilly, E. L. Robinson, N. B. Anderson et al., “Effects of racist provocation and social support on cardiovascular reactivity in african american women,” International Journal of Behavioral Medicine, vol. 2, no. 4, pp. 321–338, 1995. View at Publisher · View at Google Scholar · View at Scopus
  29. S. A. James, S. A. Hartnett, and W. D. Kalsbeek, “John henryism and blood pressure differences among black men,” Journal of Behavioral Medicine, vol. 6, no. 3, pp. 259–278, 1983. View at Scopus
  30. M. S. Bates, Biocultural Dimensions of Chronic Pain: Implications for Treatment of Multiethnic Populations, State University of New York Press, New York, NY, USA, 1996.
  31. F. M. Levine and L. L. de Simone, “The effects of experimenter gender on pain report in male and female subjects,” Pain, vol. 44, no. 1, pp. 69–72, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Kállai, A. Barke, and U. Voss, “The effects of experimenter characteristics on pain reports in women and men,” Pain, vol. 112, no. 1-2, pp. 142–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Ruau, L. Y. Liu, J. D. Clark, M. S. Angst, and A. J. Butte, “Sex differences in reported pain across 11,000 patients captured in electronic medical records,” Journal of Pain, vol. 13, no. 3, pp. 228–234, 2012. View at Publisher · View at Google Scholar
  34. G. B. Rollman and S. Lautenbacher, “Sex differences in musculoskeletal pain,” Clinical Journal of Pain, vol. 17, no. 1, pp. 20–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. R. B. Fillingim and W. Maixner, “Gender differences in the responses to noxious stimuli,” Pain Forum, vol. 4, no. 4, pp. 209–221, 1995. View at Scopus
  36. J. L. Riley III, M. E. Robinson, E. A. Wise, C. D. Myers, and R. B. Fillingim, “Sex differences in the perception of noxious experimental stimuli: a meta-analysis,” Pain, vol. 74, no. 2-3, pp. 181–187, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. R. B. Fillingim, C. D. King, M. C. Ribeiro-Dasilva, B. Rahim-Williams, and J. L. Riley III, “Sex, gender, and pain: a review of recent clinical and experimental findings,” Journal of Pain, vol. 10, no. 5, pp. 447–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. R. B. Fillingim, M. R. Wallace, D. M. Herbstman, M. Ribeiro-Dasilva, and R. Staud, “Genetic contributions to pain: a review of findings in humans,” Oral Diseases, vol. 14, no. 8, pp. 673–682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Lund and T. Lundeberg, “Is it all about sex? Acupuncture for the treatment of pain from a biological and gender perspective,” Acupuncture in Medicine, vol. 26, no. 1, pp. 33–45, 2008. View at Scopus
  40. R. B. Fillingim, “Sex differences in analgesic responses: evidence from experimental pain models,” European Journal of Anaesthesiology, Supplement, vol. 19, no. 26, pp. 16–24, 2002. View at Scopus
  41. O. A. Alabas, O. A. Tashani, G. Tabasam, and M. I. Johnson, “Gender role affects experimental pain responses: a systematic review with meta-analysis,” European Journal of Pain, vol. 16, no. 9, pp. 1211–1223, 2012. View at Publisher · View at Google Scholar
  42. R. M. Craft, J. S. Mogil, and A. Maria Aloisi, “Sex differences in pain and analgesia: the role of gonadal hormones,” European Journal of Pain, vol. 8, no. 5, pp. 397–411, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. A. M. Aloisi and M. Bonifazi, “Sex hormones, central nervous system and pain,” Hormones and Behavior, vol. 50, no. 1, pp. 1–7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. C. A. Niven and T. Murphy-Black, “Memory for labor pain: a review of the literature,” Birth, vol. 27, pp. 244–253, 2000. View at Publisher · View at Google Scholar
  45. J. K. Zubieta, Y. R. Smith, J. A. Bueller et al., “μ-opioid receptor-mediated antinociceptive responses differ in men and women,” Journal of Neuroscience, vol. 22, no. 12, pp. 5100–5107, 2002. View at Scopus
  46. J. A. McRoberts, J. Li, H. S. Ennes, and E. A. Mayer, “Sex-dependent differences in the activity and modulation of N-methyl-d-aspartic acid receptors in rat dorsal root ganglia neurons,” Neuroscience, vol. 148, no. 4, pp. 1015–1020, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. C. D. Myers, J. L. Riley III, and M. E. Robinson, “Psychosocial contributions to sex-correlated differences in pain,” Clinical Journal of Pain, vol. 19, no. 4, pp. 225–232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Miller and S. E. Newton, “Pain perception and expression: the influence of gender, personal self-efficacy, and lifespan socialization,” Pain Management Nursing, vol. 7, no. 4, pp. 148–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. E. Robinson, J. L. Riley III, and C. D. Myers, “Psychosocial contributions to sex-related differences in pain responses,” in Sex, Gender, and Pain, R. B. Fillingim, Ed., pp. 41–68, IASP Press, Seattle, Wash, USA, 2000.
  50. S. J. Gibson and R. D. Helme, “Age-related differences in pain perception and report,” Clinics in Geriatric Medicine, vol. 17, no. 3, pp. 433–456, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. A. R. Moore and D. Clinch, “Underlying mechanisms of impaired visceral pain perception in older people,” Journal of the American Geriatrics Society, vol. 52, no. 1, pp. 132–136, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Fecho, N. R. Miller, S. A. Merritt, N. Klauber-Demore, C. S. Hultman, and W. S. Blau, “Acute and persistent postoperative pain after breast surgery,” Pain Medicine, vol. 10, no. 4, pp. 708–715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Alves Nogueira Fabro, A. Bergmann, B. do Amaral e Silva et al., “Post-mastectomy pain syndrome: incidence and risks,” Breast, vol. 21, no. 3, pp. 321–325, 2012. View at Publisher · View at Google Scholar
  54. U. Jakobsson, R. Klevsgård, A. Westergren, and I. R. Hallberg, “Old people in pain: a comparative study,” Journal of Pain and Symptom Management, vol. 26, no. 1, pp. 625–636, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Miaskowski, “The impact of age on a patient's perception of pain and ways it can be managed,” Pain Management Nursing, vol. 1, supplement 1, no. 3, pp. 2–7, 2000. View at Scopus
  56. A. D. Kaye, A. Baluch, and J. T. Scott, “Pain management in the elderly population: a review,” Ochsner Journal, vol. 10, no. 3, pp. 179–187, 2010. View at Scopus
  57. M. Hanks-Bell, K. Halvey, and J. A. Paice, “Pain assessment and management in aging,” Online Journal of Issues in Nursing, vol. 9, no. 3, article 8, 2004. View at Scopus
  58. W. Pentland, M. McColl, and C. Rosenthal, “The effect of aging and duration of disability on long term health outcomes following spinal cord injury,” Paraplegia, vol. 33, no. 7, pp. 367–373, 1995. View at Scopus
  59. K. F. Koltyn, “Analgesia following exercise: a review,” Sports Medicine, vol. 29, no. 2, pp. 85–98, 2000. View at Scopus
  60. C. A. Ray and J. R. Carter, “Central modulation of exercise-induced muscle pain in humans,” Journal of Physiology, vol. 585, no. 1, pp. 287–294, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Nijs, E. Kosek, J. van Oosterwijck, and M. Meeus, “Dysfunctional endogenous analgesia during exercise in patients with chronic pain: to exercise or not to exercise?” Pain Physician, vol. 15, supplement 3, pp. ES205–ES213, 2012.
  62. L. Brosseau, G. A. Wells, P. Tugwell et al., “Ottawa panel evidence-based clinical practice guidelines for aerobic fitness exercises in the management of fibromyalgia: part 1,” Physical Therapy, vol. 88, no. 7, pp. 857–871, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. J. Stewart, C. G. Maher, K. M. Refshauge, R. D. Herbert, N. Bogduk, and M. Nicholas, “Randomized controlled trial of exercise for chronic whiplash-associated disorders,” Pain, vol. 128, no. 1-2, pp. 59–68, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. M. J. Jansen, W. Viechtbauer, A. F. Lenssen, E. J. M. Hendriks, and A. A. de Bie Rob, “Strength training alone, exercise therapy alone, and exercise therapy with passive manual mobilisation each reduce pain and disability in people with knee osteoarthritis: a systematic review,” Journal of Physiotherapy, vol. 57, no. 1, pp. 11–20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. M. van Middelkoop, S. M. Rubinstein, A. P. Verhagen, R. W. Ostelo, B. W. Koes, and M. W. van Tulder, “Exercise therapy for chronic nonspecific low-back pain,” Best Practice and Research: Clinical Rheumatology, vol. 24, no. 2, pp. 193–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Shi, T. N. Weingarten, C. B. Mantilla, W. M. Hooten, and D. O. Warner, “Smoking and pain: pathophysiology and clinical implications,” Anesthesiology, vol. 113, no. 4, pp. 977–992, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. R. B. Kanarek and C. Carrington, “Sucrose consumption enhances the analgesic effects of cigarette smoking in male and female smokers,” Psychopharmacology, vol. 173, no. 1, pp. 57–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. K. A. Perkins, J. E. Grobe, R. L. Stiller et al., “Effects of nicotine on thermal pain detection in humans,” Experimental and Clinical Psychopharmacology, vol. 2, no. 1, pp. 95–106, 1994. View at Scopus
  69. K. M. Woodrow and L. G. Eltherington, “Feeling no pain: alcohol as an analgesic,” Pain, vol. 32, no. 2, pp. 159–163, 1988. View at Scopus
  70. H. I. Andersson, G. Ejlertsson, and I. Leden, “Widespread musculoskeletal chronic pain associated with smoking. An epidemiological study in a general rural population,” Scandinavian Journal of Rehabilitation Medicine, vol. 30, no. 3, pp. 185–191, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. P. H. Ferreira, M. B. Pinheiro, G. C. Machado, and M. L. Ferreira, “Is alcohol intake associated with low back pain? A systematic review of observational studies,” Manual Therapy, 2012. View at Publisher · View at Google Scholar
  72. U. John, M. Hanke, C. Meyer, H. Völzke, S. E. Baumeister, and D. Alte, “Tobacco smoking in relation to pain in a national general population survey,” Preventive Medicine, vol. 43, pp. 477–481, 2006. View at Publisher · View at Google Scholar
  73. K. B. Thelin Bronner, P. Wennberg, H. Källmén, and M. L. Schult, “Alcohol habits in patients with long-term musculoskeletal pain: comparison with a matched control group from the general population,” International Journal of Rehabilitation Research, vol. 35, no. 2, pp. 130–137, 2012. View at Publisher · View at Google Scholar
  74. L. Hestbaek, C. Leboeuf-Yde, and K. O. Kyvik, “Are lifestyle-factors in adolescence predictors for adult low back pain? A cross-sectional and prospective study of young twins,” BMC Musculoskeletal Disorders, vol. 7, article 27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. J. L. Sullivan, B. Thorn, J. A. Haythornthwaite et al., “Theoretical perspectives on the relation between catastrophizing and pain,” Clinical Journal of Pain, vol. 17, no. 1, pp. 52–64, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. R. R. Edwards, G. Mensing, C. Cahalan et al., “Alteration in pain modulation in women with persistent pain after lumpectomy: influence of catastrophizing,” Journal of Pain and Symptom Management, 2012. View at Publisher · View at Google Scholar
  77. H. Ö. Sertel Berk, “The biopsychosocial factors that serve as predictors of the outcome of surgical modalities for chronic pain,” Agri, vol. 22, no. 3, pp. 93–97, 2010. View at Scopus
  78. D. A. Fishbain, J. E. Lewis, J. Gao, B. Cole, and R. Steele Rosomoff, “Is chronic pain associated with somatization/hypochondriasis? An evidence-based structured review,” Pain Practice, vol. 9, no. 6, pp. 449–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. G. D. Slade, L. Diatchenko, K. Bhalang et al., “Influence of psychological factors on risk of temporomandibular disorders,” Journal of Dental Research, vol. 86, no. 11, pp. 1120–1125, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. K. L. Schreiber, M. O. Martel, H. Shnol et al., “Persistent pain in postmastectomy patients: comparison of psychophysical, medical, surgical, and psychosocial characteristics between patients with and without pain,” Pain, 2012. View at Publisher · View at Google Scholar
  81. M. T. Smith and J. A. Haythornthwaite, “How do sleep disturbance and chronic pain inter-relate? Insights from the longitudinal and cognitive-behavioral clinical trials literature,” Sleep Medicine Reviews, vol. 8, no. 2, pp. 119–132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. R. R. Edwards, D. M. Almeida, B. Klick, J. A. Haythornthwaite, and M. T. Smith, “Duration of sleep contributes to next-day pain report in the general population,” Pain, vol. 137, no. 1, pp. 202–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. M. T. Smith, E. M. Wickwire, E. G. Grace et al., “Sleep disorders and their association with laboratory pain sensitivity in temporomandibular joint disorder,” Sleep, vol. 32, no. 6, pp. 779–790, 2009. View at Scopus
  84. Y. C. Lee, B. Lu, R. R. Edwards et al., “The role of sleep problems in central pain processing in rheumatoid arthritis,” Arthritis & Rheumatism, vol. 65, no. 1, pp. 59–68, 2013. View at Publisher · View at Google Scholar
  85. L. F. Buenaver, P. J. Quartana, E. G. Grace et al., “Evidence for indirect effects of pain catastrophizing on clinical pain among myofascial temporomandibular disorder participants: the mediating role of sleep disturbance,” Pain, vol. 153, no. 6, pp. 1159–1166, 2012.
  86. MTUS, “Chronic Pain Medical Treatment Guidelines,” pp. 1–127, 2009.
  87. K. G. Andersen and H. Kehlet, “Persistent pain after breast cancer treatment: a critical review of risk factors and strategies for prevention,” Journal of Pain, vol. 12, no. 7, pp. 725–746, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Hunter, B. Smith, and M. Gribbin, “Demographic variables and chronic pain,” Clinical Journal of Pain, vol. 17, supplement 4, pp. S14–S19, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. R. R. Edwards, J. A. Haythornthwaite, M. J. Sullivan, and R. B. Fillingim, “Catastrophizing as a mediator of sex differences in pain: differential effects for daily pain versus laboratory-induced pain,” Pain, vol. 111, no. 3, pp. 335–341, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. M. T. Smith, R. R. Edwards, U. D. McCann, and J. A. Haythomthwaite, “The effects of sleep deprivation on pain inhibition and spontaneous pain in women,” Sleep, vol. 30, no. 4, pp. 494–505, 2007. View at Scopus
  91. I. Belfer, H. Shnol, and P. Finelli, “Molecular genetics of variability in human pain,” in eLS, John Wiley & Sons, Chichester, UK, 2013. View at Publisher · View at Google Scholar
  92. H. Manev and N. Dimitrijevic, “Drosophila model for in vivo pharmacological analgesia research,” European Journal of Pharmacology, vol. 491, no. 2-3, pp. 207–208, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. W. D. Tracey Jr., R. I. Wilson, G. Laurent, and S. Benzer, “Painless, a Drosophila gene essential for nociception,” Cell, vol. 113, no. 2, pp. 261–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Y. Xu, C. L. Cang, X. F. Liu et al., “Thermal nociception in adult Drosophila: behavioral characterization and the role of the painless gene,” Genes, Brain and Behavior, vol. 5, no. 8, pp. 602–613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. G. G. Neely, A. Hess, M. Costigan et al., “A genome-wide Drosophila screen for heat nociception identifies α2δ3 as an evolutionarily conserved pain gene,” Cell, vol. 143, no. 4, pp. 628–638, 2010.
  96. W. A. Catterall, “Structure and regulation of voltage-gated Ca2+ channels,” Annual Review of Cell and Developmental Biology, vol. 16, pp. 521–555, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. C. V. Ly, C. K. Yao, P. Verstreken, T. Ohyama, and H. J. Bellen, “straightjacket is required for the synaptic stabilization of cacophony, a voltage-gated calcium channel α1 subunit,” Journal of Cell Biology, vol. 181, no. 1, pp. 157–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. G. G. Neely, S. Rao, M. Costigan et al., “Construction of a global pain systems network highlights phospholipid signaling as a regulator of heat nociception,” PLOS Genetics, vol. 8, no. 12, Article ID e1003071, 2012.
  99. M. J. Field, P. J. Cox, E. Stott et al., “Identification of the α2-δ-1 subunit of voltage-calcium calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17537–17542, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. R. H. Dworkin, A. B. O'Connor, M. Backonja et al., “Pharmacologic management of neuropathic pain: evidence-based recommendations,” Pain, vol. 132, no. 3, pp. 237–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. J. D. Rose, R. Arlinghaus, S. J. Cooke et al., “Can fish really feel pain?” Fish and Fisheries, 2013. View at Publisher · View at Google Scholar
  102. R. W. Elwood, “Pain and suffering in invertebrates?” Institute of Laboratory Animal Resources Journal, vol. 52, no. 2, pp. 175–184, 2011.
  103. W. R. Lariviere and J. S. Mogil, “The genetics of pain and analgesia in laboratory animals,” Methods in Molecular Biology, vol. 617, pp. 261–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. P. A. Miller, “Thing or Two About Twins National Geographic,” January 2012.
  105. F. Galton, “The history of twins, as a criterion of the relative powers of nature and nurture (1,2),” International Journal of Epidemiology, vol. 41, no. 4, pp. 905–911, 2012. View at Publisher · View at Google Scholar
  106. T. A. Norbury, A. J. MacGregor, J. Urwin, T. D. Spector, and S. B. McMahon, “Heritability of responses to painful stimuli in women: a classical twin study,” Brain, vol. 130, no. 11, pp. 3041–3049, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. C. S. Nielsen, G. P. Knudsen, and Ó. A. Steingrímsdóttir, “Twin studies of pain,” Clinical Genetics, vol. 82, no. 4, pp. 331–340, 2012. View at Publisher · View at Google Scholar
  108. M. B. Max and W. F. Stewart, “The molecular epidemiology of pain: a new discipline for drug discovery,” Nature Reviews Drug Discovery, vol. 7, pp. 647–658, 2008. View at Publisher · View at Google Scholar
  109. F. Reimanna, J. J. Cox, I. Belfer et al., “Pain perception is altered by a nucleotide polymorphism in SCN9A,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5148–5153, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. P. Goldberg, J. Macfarlane, M. L. Macdonald et al., “Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations,” Clinical Genetics, vol. 71, no. 4, pp. 311–319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. S. G. Waxman and S. Dib-Hajj, “Erythermalgia: molecular basis for an inherited pain syndrome,” Trends in Molecular Medicine, vol. 11, no. 12, pp. 555–562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. J. P. H. Drenth and S. G. Waxman, “Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders,” Journal of Clinical Investigation, vol. 117, no. 12, pp. 3603–3609, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. C. Han, S. D. Dib-Hajj, Z. Lin et al., “Early- and late-onset inherited erythromelalgia: genotypephenotype correlation,” Brain, vol. 132, no. 7, pp. 1711–1722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. N. Skeik, T. W. Rooke, M. D. Davis et al., “Severe case and iterature review of primary erythromelalgia: novel SCN9Agene mutation,” Vascular Medicine, vol. 17, no. 1, pp. 44–49, 2012. View at Publisher · View at Google Scholar
  115. J. P. H. Drenth, R. H. M. te Morsche, G. Guillet, A. Taieb, R. L. Kirby, and J. B. M. J. Jansen, “SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels,” Journal of Investigative Dermatology, vol. 124, no. 6, pp. 1333–1338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. Y. Yang, Y. Wang, S. Li et al., “Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia,” Journal of Medical Genetics, vol. 41, no. 3, pp. 171–174, 2004. View at Scopus
  117. J. S. Choi, F. Boralevi, O. Brissaud et al., “Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons,” Nature Reviews Neurology, vol. 7, no. 1, pp. 51–55, 2011. View at Publisher · View at Google Scholar
  118. A. Lampert, A. O. O'Reilly, P. Reeh, and A. Leffler, “Sodium channelopathies and pain,” Pflugers Archiv, vol. 460, no. 2, pp. 249–263, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. C. R. Fertleman, M. D. Baker, K. A. Parker et al., “SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes,” Neuron, vol. 52, no. 5, pp. 767–774, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. J. J. Cox, F. Reimann, A. K. Nicholas et al., “An SCN9A channelopathy causes congenital inability to experience pain,” Nature, vol. 444, no. 7121, pp. 894–898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Auer-Grumbach, P. de Jonghe, K. Verhoeven et al., “Autosomal dominant inherited neuropathies with prominent sensory loss and mutilations: a review,” Archives of Neurology, vol. 60, no. 3, pp. 329–334, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. K. Verhoeven, K. Coen, E. de Vriendt et al., “SPTLC1 mutation in twin sisters with hereditary sensory neuropathy type I,” Neurology, vol. 62, no. 6, pp. 1001–1002, 2004. View at Scopus
  123. R. G. Lafrenière, M. L. E. MacDonald, M. P. Dubé et al., “Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the study of Canadian genetic isolates,” American Journal of Human Genetics, vol. 74, no. 5, pp. 1064–1073, 2004. View at Publisher · View at Google Scholar · View at Scopus
  124. S. L. Anderson, R. Coli, I. W. Daly et al., “Familial dysautonomia is caused by mutations of the IKAP gene,” American Journal of Human Genetics, vol. 68, no. 3, pp. 753–758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. S. Rosemberg, S. K. Nagahashi Marie, and S. Kliemann, “Congenital insensitivity to pain with anhidrosis (hereditary sensory and autonomic neuropathy type IV),” Pediatric Neurology, vol. 11, no. 1, pp. 50–56, 1994. View at Publisher · View at Google Scholar · View at Scopus
  126. E. Einarsdottir, A. Carlsson, J. Minde et al., “A mutation in the nerve growth factor beta gene (NGFB) causes loss of pain perception,” Human Molecular Genetics, vol. 13, no. 8, pp. 799–805, 2004. View at Publisher · View at Google Scholar · View at Scopus
  127. J. Minde, G. Toolanen, T. Andersson et al., “Familial insensitivity to pain (HSAN V) and a mutation in the NGFB gene. A neurophysiological and pathological study,” Muscle and Nerve, vol. 30, no. 6, pp. 752–760, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. H. Houlden, R. H. M. King, A. Hashemi-Nejad et al., “A novel TRK A (NTRK1) mutation associated with hereditary sensory and autonomic neuropathy type V,” Annals of Neurology, vol. 49, no. 4, pp. 521–525, 2001. View at Publisher · View at Google Scholar · View at Scopus
  129. Y. Miura, S. Mardy, Y. Awaya et al., “Mutation and polymorphism analysis of the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor in congenital insensitivity to pain with anhidrosis (CIPA) families,” Human Genetics, vol. 106, no. 1, pp. 116–124, 2000. View at Publisher · View at Google Scholar · View at Scopus
  130. “Headache Classification Committee of the International Headache Society The international classification of headache disorders, 2nd edition,” Cephalalgia, vol. 24, pp. 1–160, 2004.
  131. P. Montagna, “Molecular genetics of migraine headaches: a review,” Cephalalgia, vol. 20, no. 1, pp. 3–14, 2000. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Di Cristofori, L. Fusi, A. Gomitoni, et al., “R583Q CACNA1A variant in SHM1 and ataxia: case report and literature update,” The Journal of Headache and Pain, vol. 13, no. 5, pp. 419–423, 2012. View at Publisher · View at Google Scholar
  133. Y. P. Goldberg, S. N. Pimstone, R. Namdari et al., “Human Mendelian pain disorders: a key to discovery and validation of novel analgesics,” Clinical Genetics, vol. 82, no. 4, pp. 367–373, 2012. View at Publisher · View at Google Scholar
  134. L. Diatchenko, A. G. Nackley, I. E. Tchivileva, S. A. Shabalina, and W. Maixner, “Genetic architecture of human pain perception,” Trends in Genetics, vol. 23, no. 12, pp. 605–613, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. L. Diatchenko, A. G. Nackley, G. D. Slade, R. B. Fillingim, and W. Maixner, “Idiopathic pain disorders—pathways of vulnerability,” Pain, vol. 123, no. 3, pp. 226–230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. E. E. Young, W. R. Lariviere, and I. Belfer, “Genetic basis of pain variability: recent advances,” Journal of Medical Genetics, vol. 49, no. 1, pp. 1–9, 2012. View at Publisher · View at Google Scholar
  137. I. Tegeder, M. Costigan, R. S. Griffin et al., “GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence,” Nature Medicine, vol. 12, no. 11, pp. 1269–1277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Lötsch, P. Klepstad, A. Doehring, and O. Dale, “A GTP cyclohydrolase 1 genetic variant delays cancer pain,” Pain, vol. 148, no. 1, pp. 103–106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. D. H. Kim, F. Dai, I. Belfer et al., “Polymorphic variation of the guanosine triphosphate cyclohydrolase 1 gene predicts outcome in patients undergoing surgical treatment for lumbar degenerative disc disease,” Spine, vol. 35, no. 21, pp. 1909–1914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. M. Costigan, I. Belfer, R. S. Griffin et al., “Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1,” Brain, vol. 133, no. 9, pp. 2519–2527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. J. N. Ablin, H. Cohen, and D. Buskila, “Mechanisms of disease: genetics of fibromyalgia,” Nature Clinical Practice. Rheumatology, vol. 2, pp. 671–678, 2006. View at Publisher · View at Google Scholar
  142. M. Narita, N. Nishigami, N. Narita et al., “Association between serotonin transporter gene polymorphism and chronic fatigue syndrome,” Biochemical and Biophysical Research Communications, vol. 311, no. 2, pp. 264–266, 2003. View at Publisher · View at Google Scholar · View at Scopus
  143. B. de Vries, J. Haan, R. R. Frants, A. M. J. M. van den Maagdenberg, and M. D. Ferrari, “Genetic biomarkers for migraine,” Headache, vol. 46, no. 7, pp. 1059–1068, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. H. Herken, E. Erdal, N. Mutlu et al., “Possible association of temporomandibular joint pain and dysfunction with a polymorphism in the serotonin transporter gene,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 120, no. 3, pp. 308–313, 2001. View at Publisher · View at Google Scholar · View at Scopus
  145. I. Belfer and S. Segall, “COMT genetic variants and pain,” Drugs of Today, vol. 47, no. 6, pp. 457–467, 2011. View at Publisher · View at Google Scholar
  146. T. Lotta, J. Vidgren, C. Tilgmann et al., “Kinetics of human soluble and membrane-bound catechol O- methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme,” Biochemistry, vol. 34, no. 13, pp. 4202–4210, 1995. View at Publisher · View at Google Scholar · View at Scopus
  147. J. Chen, B. K. Lipska, N. Halim et al., “Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mrna, protein, and enzyme activity in postmortem human brain,” American Journal of Human Genetics, vol. 75, no. 5, pp. 807–821, 2004. View at Publisher · View at Google Scholar · View at Scopus
  148. A. G. Nackley, S. A. Shabalina, I. E. Tchivileva et al., “Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure,” Science, vol. 314, no. 5807, pp. 1930–1933, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. P. Voelker, B. E. Sheese, M. K. Rothbart, and M. I. Posner, “Variations in catechol-O-methyltransferase gene interact with parenting to influence attention in early development,” Neuroscience, vol. 164, no. 1, pp. 121–130, 2009. View at Scopus
  150. H. Cohen, L. Neumann, Y. Glazer, R. P. Ebstein, and D. Buskila, “The relationship between a common catechol-O-methyltransferase (COMT) polymorphism val158Met and fibromyalgia,” Clinical and Experimental Rheumatology, vol. 27, supplement 56, no. 5, pp. S51–S56, 2009. View at Scopus
  151. F. R. Barbosa, J. B. Matsuda, M. Mazucato et al., “Influence of catechol-O-methyltransferase (COMT) gene polymorphisms in pain sensibility of Brazilian fibromialgia patients,” Rheumatology International, vol. 32, no. 2, pp. 427–430, 2012. View at Publisher · View at Google Scholar · View at Scopus
  152. G. Vargas-Alarcón, J. M. Fragoso, D. Cruz-Robles et al., “Catechol-O-methyltransferase gene haplotypes in Mexican and Spanish patients with fibromyalgia,” Arthritis Research and Therapy, vol. 9, no. 5, article R110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  153. M. Emin Erdal, H. Herken, M. Yilmaz, and Y. A. Bayazit, “Significance of the catechol-O-methyltransferase gene polymorphism in migraine,” Molecular Brain Research, vol. 94, no. 1-2, pp. 193–196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  154. K. Hagen, E. Pettersen, L. J. Stovner, F. Skorpen, and J. A. Zwart, “The association between headache and Val158Met polymorphism in the catechol-O-methyltransferase gene: the HUNT Study,” Journal of Headache and Pain, vol. 7, no. 2, pp. 70–74, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. S. Cevoli, M. Mochi, C. Scapoli et al., “A genetic association study of dopamine metabolism-related genes and chronic headache with drug abuse,” European Journal of Neurology, vol. 13, no. 9, pp. 1009–1013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. L. Diatchenko, G. D. Slade, A. G. Nackley et al., “Genetic basis for individual variations in pain perception and the development of a chronic pain condition,” Human Molecular Genetics, vol. 14, no. 1, pp. 135–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  157. K. T. Hall, A. J. Lembo, I. Kirsch et al., “Catechol-O-methyltransferase val158met polymorphism predicts placebo effect in irritable bowel syndrome,” PLoS One, vol. 7, no. 10, Article ID e48135, 2012.
  158. P. Karling, Å. Danielsson, M. Wikgren et al., “The relationship between the Val158Met catechol-O-methyltransferase (COMT) polymorphism and irritable bowel syndrome,” PLoS ONE, vol. 6, no. 3, Article ID e18035, 2011. View at Publisher · View at Google Scholar · View at Scopus
  159. S. A. McLean, L. Diatchenko, Y. M. Lee et al., “Catechol O-methyltransferase haplotype predicts immediate musculoskeletal neck pain and psychological symptoms after motor vehicle collision,” Journal of Pain, vol. 12, no. 1, pp. 101–107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. J. E. Reeder, T. K. Byler, D. C. Foster et al., “Polymorphism in the SCN9A voltage-gated sodium channel gene associated with interstitial cystitis/bladder pain syndrome,” Urology, vol. 81, no. 1, pp. 210.e1–210.e4, 2013. View at Publisher · View at Google Scholar
  161. D. C. Foster, T. M. Sazenski, and C. J. Stodgell, “Impact of genetic variation in interleukin-1 receptor antagonist and melanocortin-1 receptor genes on vulvar vestibulitis syndrome,” Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 49, no. 7, pp. 503–509, 2004. View at Scopus
  162. E. Barkhordari, N. Rezaei, B. Ansaripour et al., “Proinflammatory cytokine gene polymorphisms in irritable bowel syndrome,” Journal of Clinical Immunology, vol. 30, no. 1, pp. 74–79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. H. Kim, H. Lee, J. Rowan, J. Brahim, and R. A. Dionne, “Genetic polymorphisms in monoamine neurotransmitter systems show only weak association with acute post-surgical pain in humans,” Molecular Pain, vol. 2, article 24, 2006. View at Publisher · View at Google Scholar · View at Scopus
  164. F. Dai, I. Belfer, C. E. Schwartz et al., “Association of catechol-O-methyltransferase genetic variants with outcome in patients undergoing surgical treatment for lumbar degenerative disc disease,” Spine Journal, vol. 10, no. 11, pp. 949–957, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. D. H. Kim and C. E. Schwartz, “The genetics of pain: implications for evaluation and treatment of spinal disease,” Spine Journal, vol. 10, no. 9, pp. 827–840, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. L. Ala-Kokko, “Genetic risk factors for lumbar disc disease,” Annals of Medicine, vol. 34, no. 1, pp. 42–47, 2002. View at Publisher · View at Google Scholar · View at Scopus
  167. S. K. Ballas, K. Gupta, and P. Adams-Graves, “Sickle cell pain: a critical reappraisal,” Blood, vol. 120, no. 18, pp. 3647–3656, 2012. View at Publisher · View at Google Scholar
  168. G. Lettre, V. G. Sankaran, M. A. C. Bezerra et al., “DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 33, pp. 11869–11874, 2008. View at Publisher · View at Google Scholar · View at Scopus
  169. A. M. Al-Subaie, N. A. Fawaz, N. Mahdi et al., “Human platelet alloantigens (HPA) 1, HPA2, HPA3, HPA4, and HPA5 polymorphisms in sickle cell anemia patients with vaso-occlusive crisis,” European Journal of Haematology, vol. 83, no. 6, pp. 579–585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  170. H. H. Al-Habboubi, N. Mahdi, T. M. Abu-Hijleh, F. M. Abu-Hijleh, M. S. Sater, and W. Y. Almawi, “The relation of vascular endothelial growth factor (VEGF) gene polymorphisms on VEGF levels and the risk of vasoocclusive crisis in sickle cell disease,” European Journal of Haematology, vol. 89, no. 5, pp. 403–409, 2012. View at Publisher · View at Google Scholar
  171. I. I. Gottesman and T. D. Gould, “The endophenotype concept in psychiatry: etymology and strategic intentions,” American Journal of Psychiatry, vol. 160, no. 4, pp. 636–645, 2003. View at Publisher · View at Google Scholar · View at Scopus
  172. T. D. Cannon and M. C. Keller, “Endophenotypes in the genetic analyses of mental disorders,” Annual Review of Clinical Psychology, vol. 2, pp. 267–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  173. G. Pavlakovic and F. Petzke, “The role of quantitative sensory testing in the evaluation of musculoskeletal pain conditions,” Current Rheumatology Reports, vol. 2, pp. 455–461, 2010.
  174. A. K. Suokas, D. A. Walsh, D. F. McWilliams et al., “Quantitative sensory testing in painful osteoarthritis: a systematic review and meta-analysis,” Osteoarthritis Cartilage, vol. 20, no. 10, pp. 1075–1085, 2012. View at Publisher · View at Google Scholar
  175. D. B. Pfau, C. Geber, F. Birklein, and R. D. Treede, “Quantitative sensory testing of neuropathic pain patients: potential mechanistic and therapeutic implications,” Current Pain and Headache Reports, vol. 16, no. 3, pp. 199–206, 2012. View at Publisher · View at Google Scholar
  176. J. D. Greenspan, “Quantitative assessment of neuropathic pain,” Current Pain and Headache Reports, vol. 5, no. 2, pp. 107–113, 2001. View at Scopus
  177. L. Diatchenko, A. G. Nackley, G. D. Slade et al., “Catechol-O-methyltransferase gene polymorphisms are associated with multiple pain-evoking stimuli,” Pain, vol. 125, no. 3, pp. 216–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  178. F. Lindstedt, J. Berrebi, E. Greayer et al., “Conditioned pain modulation is associated with common Polymorphisms in the serotonin transporter gene,” PLoS ONE, vol. 6, no. 3, Article ID e18252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  179. D. D. McKemy, W. M. Neuhausser, and D. Julius, “Identification of a cold receptor reveals a general role for TRP channels in thermosensation,” Nature, vol. 416, no. 6876, pp. 52–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  180. E. B. Liem, T. V. Joiner, K. Tsueda, and D. I. Sessler, “Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads,” Anesthesiology, vol. 102, no. 3, pp. 509–514, 2005. View at Publisher · View at Google Scholar · View at Scopus
  181. M. Martínez-Jauand, C. Sitges, V. Rodríguez et al., “Pain sensitivity in fibromyalgia is associated with catechol-O-methyltransferase (COMT) gene,” European Journal of Pain, vol. 17, no. 1, pp. 16–27, 2013. View at Publisher · View at Google Scholar
  182. A. Binder, D. May, R. Baron et al., “Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients,” PLoS ONE, vol. 6, no. 3, Article ID e17387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  183. U. Klotz, “The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications,” Clinical Pharmacokinetics, vol. 46, no. 4, pp. 271–279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  184. U. M. Stamer and F. Stüber, “The pharmacogenetics of analgesia,” Expert Opinion on Pharmacotherapy, vol. 8, no. 14, pp. 2235–2245, 2007. View at Publisher · View at Google Scholar
  185. B. G. Oertel, R. Schmidt, A. Schneider, G. Geisslinger, and J. Lötsch, “The μ-opioid receptor gene polymorphism 118A>G depletes alfentanil-induced analgesia and protects against respiratory depression in homozygous carriers,” Pharmacogenetics and Genomics, vol. 16, no. 9, pp. 625–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  186. C. Walter and J. Lötsch, “Meta-analysis of the relevance of the OPRM1 118A>G genetic variant for pain treatment,” Pain, vol. 146, no. 3, pp. 270–275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  187. W. Zhang, J. J. Yuan, Q. C. Kan, L. R. Zhang, Y. Z. Chang, and Z. Y. Wang, “Study of the OPRM1 A118G genetic polymorphism associated with postoperative nausea and vomiting induced by fentanyl intravenous analgesia,” Minerva Anestesiologica, vol. 77, no. 1, pp. 33–39, 2011. View at Scopus
  188. Q. Liao, D. J. Chen, F. Zhang et al., “Effect of CYP3A418B polymorphisms and interactions with OPRM1 A118G on postoperative fentanyl requirements in patients undergoing radical gastrectomy,” Molecular Medicine Reports, vol. 7, no. 3, pp. 901–908, 2013.
  189. Y. Kolesnikov, B. Gabovits, A. Levin, E. Voiko, and A. Veske, “Combined catechol-O-methyltransferase and μ-opioid receptor gene polymorphisms affect morphine postoperative analgesia and central side effects,” Anesthesia and Analgesia, vol. 112, no. 2, pp. 448–453, 2011. View at Publisher · View at Google Scholar · View at Scopus
  190. J. Lötsch, C. Skarke, S. Grösch, J. Darimont, H. Schmidt, and G. Geisslinger, “The polymorphism A118G of the human mu-opioid receptor gene decreases the pupil constrictory effect of morphine-6-glucuronide but not that of morphine,” Pharmacogenetics, vol. 12, no. 1, pp. 3–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  191. T. T. Rakvåg, P. Klepstad, C. Baar et al., “The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients,” Pain, vol. 116, no. 1-2, pp. 73–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  192. T. T. Rakvåg, J. R. Ross, H. Sato, F. Skorpen, S. Kaasa, and P. Klepstad, “Genetic variation in the catechol-O-methyltransferase (COMT) gene and morphine requirements in cancer patients with pain,” Molecular Pain, vol. 4, pp. 64–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  193. J. Lötsch, R. Schmidt, G. Vetter et al., “Increased CNS uptake and enhanced antinociception of morphine-6-glucuronide in rats after inhibition of P-glycoprotein,” Journal of Neurochemistry, vol. 83, no. 2, pp. 241–248, 2002. View at Publisher · View at Google Scholar · View at Scopus
  194. L. Coulbault, M. Beaussier, C. Verstuyft et al., “Environmental and genetic factors associated with morphine response in the postoperative period,” Clinical Pharmacology & Therapeutics, vol. 79, no. 4, pp. 316–324, 2006. View at Publisher · View at Google Scholar · View at Scopus
  195. D. Campa, A. Gioia, A. Tomei, P. Poli, and R. Barale, “Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief,” Clinical Pharmacology & Therapeutics, vol. 83, no. 4, pp. 559–566, 2008. View at Publisher · View at Google Scholar · View at Scopus
  196. H. J. Park, H. K. Shinn, S. H. Ryu, H. S. Lee, C. S. Park, and J. H. Kang, “Genetic polymorphisms in the ABCB1 gene and the effects of fentanyl in Koreans,” Clinical Pharmacology & Therapeutics, vol. 81, no. 4, pp. 539–546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  197. J. Kirchheiner, H. Schmidt, M. Tzvetkov et al., “Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication,” Pharmacogenomics Journal, vol. 7, no. 4, pp. 257–265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  198. L. Bertilsson, M. L. Dahl, F. Sjoqvist et al., “Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine,” The Lancet, vol. 341, no. 8836, p. 63, 1993. View at Scopus
  199. J. S. Mogil, J. Ritchie, S. B. Smith et al., “Melanocortin-1 receptor gene variants affect pain and μ-opioid analgesia in mice and humans,” Journal of Medical Genetics, vol. 42, no. 7, pp. 583–587, 2005. View at Publisher · View at Google Scholar · View at Scopus
  200. J. S. Mogil, S. G. Wilson, E. J. Chesler et al., “The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4867–4872, 2003. View at Publisher · View at Google Scholar · View at Scopus
  201. A. Muralidharan and M. T. Smith, “Pain, analgesia and genetics,” Journal of Pharmacy and Pharmacology, vol. 63, no. 11, pp. 1387–1400, 2011. View at Publisher · View at Google Scholar
  202. T. Foulkes and J. N. Wood, “Pain genes,” PLoS Genetics, vol. 4, no. 7, Article ID e1000086, 2008. View at Publisher · View at Google Scholar · View at Scopus
  203. M. L. LaCroix-Fralish, J. B. Ledoux, and J. S. Mogil, “The Pain Genes Database: an interactive web browser of pain-related transgenic knockout studies,” Pain, vol. 131, no. 1-2, pp. 3.e1–3.e4, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. J. S. Mogil, “Pain genetics: past, present and future,” Trends in Genetics, vol. 28, no. 6, pp. 258–266, 2012. View at Publisher · View at Google Scholar
  205. M. Schürks, “Genetics of migraine in the age of genome-wide association studies,” The Journal of Headache and Pain, vol. 13, no. 1, pp. 1–9, 2012.
  206. H. Kim, E. Ramsay, H. Lee, S. Wahl, and R. A. Dionne, “Genome-wide association study of acute post-surgical pain in humans,” Pharmacogenomics, vol. 10, no. 2, pp. 171–179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. A. G. Day-Williams, L. Southam, K. Panoutsopoulou et al., “A variant in MCF2L is associated with osteoarthritis,” The American Journal of Human Genetics, vol. 89, no. 3, pp. 446–450, 2011. View at Publisher · View at Google Scholar
  208. J. N. Painter, C. A. Anderson, D. R. Nyholt et al., “Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis,” Nature Genetics, vol. 43, no. 1, pp. 51–54, 2011. View at Publisher · View at Google Scholar
  209. M. J. Peters, L. Broer, H. L. Willemen et al., “Genome-wide association study meta-analysis of chronic widespread pain: evidence for involvement of the 5p15. 2 region,” Annals of the Rheumatic Diseases, vol. 72, no. 3, pp. 427–436, 2013.
  210. D. Nishizawa, K. Fukuda, S. Kasai et al., “Genome-wide association study identifies a potent locus associated with human opioid sensitivity,” Molecular Psychiatry, 2012. View at Publisher · View at Google Scholar
  211. W. C. Clark, J. C. Yang, and M. N. Janal, “Altered pain and visual sensitivity in humans: the effects of acute and chronic stress,” Annals of the New York Academy of Sciences, vol. 467, pp. 116–129, 1986. View at Scopus
  212. E. B. Blanchard, J. M. Lackner, J. Jaccard et al., “The role of stress in symptom exacerbation among IBS patients,” Journal of Psychosomatic Research, vol. 64, no. 2, pp. 119–128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  213. D. Hoy, P. Brooks, F. Blyth, and R. Buchbinder, “The Epidemiology of low back pain,” Best Practice and Research: Clinical Rheumatology, vol. 24, no. 6, pp. 769–781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  214. G. Chrousos and P. Gold, “The concepts of stress and stress system disorders,” The Journal of the American Medical Association, vol. 267, pp. 1224–1252, 1992.
  215. B. S. McEwen and M. Kalia, “The role of corticosteroids and stress in chronic pain conditions,” Metabolism: Clinical and Experimental, vol. 59, supplement 1, pp. S9–S15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  216. J. S. Mogil, R. E. Sorge, M. L. LaCroix-Fralish et al., “Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction,” Nature Neuroscience, vol. 14, no. 12, pp. 1569–1573, 2011. View at Publisher · View at Google Scholar
  217. M. Schmelz, “Translating nociceptive processing into human pain models,” Experimental Brain Research, vol. 196, no. 1, pp. 173–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  218. Y. Xiao, I. J. Russell, and Y. G. Liu, “A brain-derived neurotrophic factor polymorphism Val66Met identifies fibromyalgia syndrome subgroup with higher body mass index and C-reactive protein,” Rheumatology International, vol. 32, no. 8, pp. 2479–2485, 2012. View at Publisher · View at Google Scholar
  219. L. Lei, L. Ye, H. Liu et al., “Passive smoking, cytochrome P450 gene polymorphisms and dysmenorrhea,” European Journal of Epidemiology, vol. 23, no. 7, pp. 475–481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  220. E. Reitman, J. Conell-Price, J. Evansmith et al., “β2-adrenergic receptor genotype and other variables that contribute to labor pain and progress,” Anesthesiology, vol. 114, no. 4, pp. 927–939, 2011. View at Publisher · View at Google Scholar
  221. E. C. Tan, E. C. P. Lim, Y. Y. Teo, Y. Lim, H. Y. Law, and A. T. Sia, “Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain,” Molecular Pain, vol. 5, article 32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  222. B. A. Hastie, J. L. Riley III, L. Kaplan et al., “Ethnicity interacts with the OPRM1 gene in experimental pain sensitivity,” Pain, vol. 153, no. 8, pp. 1610–1619, 2012. View at Publisher · View at Google Scholar
  223. H. Kim, J. K. Neubert, A. San Miguel et al., “Genetic influence on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament,” Pain, vol. 109, no. 3, pp. 488–496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  224. P. H. Finan, A. J. Zautra, M. C. Davis, K. Lemery-Chalfant, J. Covault, and H. Tennen, “Genetic influences on the dynamics of pain and affect in fibromyalgia,” Health Psychology, vol. 29, no. 2, pp. 134–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  225. T. W. Lee, Y. W. Y. Yu, C. J. Hong, S. J. Tsai, H. C. Wu, and T. J. Chen, “The effects of catechol-O-methyl-transferase polymorphism Val158Met on functional connectivity in healthy young females: a resting EEG study,” Brain Research, vol. 1377, pp. 21–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  226. M. B. Olsen, L. M. Jacobsen, E. I. Schistad et al., “Pain intensity the first year after lumbar disc herniation is associated with the A118G polymorphism in the opioid receptor mu 1 gene: evidence of a sex and genotype interaction,” The Journal of Neuroscience, vol. 32, no. 29, pp. 9831–9834, 2012.
  227. R. Fejer, J. Hartvigsen, and K. O. Kyvik, “Sex differences in heritability of neck pain,” Twin Research and Human Genetics, vol. 9, no. 2, pp. 198–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  228. C. Wang, Y. Cheng, T. Liu et al., “A computational model for sex-specific genetic architecture of complex traits in humans: implications for mapping pain sensitivity,” Molecular Pain, vol. 4, article 13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  229. N. J. Manek and A. J. MacGregor, “Epidemiology of back disorders: prevalence, risk factors, and prognosis,” Current Opinion in Rheumatology, vol. 17, no. 2, pp. 134–140, 2005. View at Publisher · View at Google Scholar · View at Scopus
  230. R. J. Thompson Jr., K. M. Gil, M. R. Abrams, and G. Phillips, “Psychological adjustment of adults with sickle cell anemia: stability over 20 months, correlates, and predictors,” Journal of Clinical Psychology, vol. 52, pp. 253–266, 1996. View at Publisher · View at Google Scholar
  231. R. Fejer, J. Hartvigsen, and K. O. Kyvik, “Heritability of neck pain: a population-based study of 33 794 Danish twins,” Rheumatology, vol. 45, no. 5, pp. 589–594, 2006. View at Publisher · View at Google Scholar · View at Scopus
  232. A. Bird, “Perceptions of epigenetics,” Nature, vol. 447, no. 7143, pp. 396–398, 2007. View at Publisher · View at Google Scholar · View at Scopus
  233. E. Jablonka, “Epigenetic variations in heredity and evolution,” Clinical Pharmacology & Therapeutics, vol. 92, no. 6, pp. 683–688, 2012. View at Publisher · View at Google Scholar
  234. H. Vossen, G. Kenis, B. Rutten, J. van Os, H. Hermens, and R. Lousberg, “The genetic influence on the cortical processing of experimental pain and the moderating effect of pain status,” PLoS ONE, vol. 5, no. 10, Article ID e13641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  235. J. Vojinovic, N. Damjanov, C. D'Urzo et al., “Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis,” Arthritis and Rheumatism, vol. 63, no. 5, pp. 1452–1458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  236. K. Klein, C. Ospelt, and S. Gay, “Epigenetic contributions in the development of rheumatoid arthritis,” Arthritis Research & Therapy, vol. 14, no. 6, article 227, 2012.
  237. C. Ospelt and S. Gay, “The role of resident synovial cells in destructive arthritis,” Best Practice and Research: Clinical Rheumatology, vol. 22, no. 2, pp. 239–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  238. L. N. Reynard and J. Loughlin, “Genetics and epigenetics of osteoarthritis,” Maturitas, vol. 71, no. 3, pp. 200–204, 2012. View at Publisher · View at Google Scholar
  239. A. Hellman and A. Chess, “Extensive sequence-influenced DNA methylation polymorphism in the human genome,” Epigenetics and Chromatin, vol. 3, no. 1, article 11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  240. J. T. Bell, A. A. Pai, J. K. Pickrell et al., “DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines,” Genome Biology, vol. 12, no. 1, article R10, 2011. View at Publisher · View at Google Scholar · View at Scopus
  241. L. N. Reynard, C. Bui, E. G. Canty-Laird, D. A. Young, and J. Loughlin, “Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation,” Human Molecular Genetics, vol. 20, pp. 3450–3460, 2011. View at Publisher · View at Google Scholar
  242. F. Denk and S. B. McMahon, “Chronic pain: emerging evidence for the involvement of epigenetics,” Neuron, vol. 73, no. 3, pp. 435–444, 2012. View at Publisher · View at Google Scholar
  243. K. T. Sibille, L. Witek-Janusek, H. L. Mathews, and R. B. Fillingim, “Telomeres and epigenetics: potential relevance to chronic pain,” Pain, vol. 153, no. 9, pp. 1789–1793, 2012. View at Publisher · View at Google Scholar
  244. M. Tajerian, S. Alvarado, M. Millecamps et al., “DNA methylation of SPARC and chronic low back pain,” Molecular Pain, vol. 7, article 65, 2011.
  245. C. R. Bain and A. D. Shaw, “Genetics and epigenetics in perioperative medicine,” Current Opinion in Critical Care, vol. 18, no. 5, pp. 548–554, 2012. View at Publisher · View at Google Scholar
  246. S. M. Géranton, “Targeting epigenetic mechanisms for pain relief,” Current Opinion in Pharmacology, vol. 12, no. 1, pp. 35–41, 2012. View at Publisher · View at Google Scholar
  247. Nature, “Time for the epigenome,” Nature, vol. 463, p. 587, 2010.
  248. H. Kim, D. Clark, and R. A. Dionne, “Genetic contributions to clinical pain and analgesia: avoiding pitfalls in genetic research,” Journal of Pain, vol. 10, no. 7, pp. 663–693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  249. Q. Shi, C. S. Cleeland, P. Klepstad, et al., “Biological pathways and genetic variables involved in pain,” Quality of Life Research, vol. 19, no. 10, pp. 1407–1417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  250. M. B. Max, T. Wu, S. J. Atlas et al., “A clinical genetic method to identify mechanisms by which pain causes depression and anxiety,” Molecular Pain, vol. 2, article 14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  251. H. T. Bjornsson, M. Daniele Fallin, and A. P. Feinberg, “An integrated epigenetic and genetic approach to common human disease,” Trends in Genetics, vol. 20, no. 8, pp. 350–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  252. I. Belfer and F. Dai, “Phenotyping and genotyping neuropathic pain,” Current Pain and Headache Reports, vol. 14, no. 3, pp. 203–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  253. L. Almasy, “The role of phenotype in gene discovery in the whole genome sequencing era,” Human Genetics, vol. 131, no. 10, pp. 1533–1540, 2012. View at Publisher · View at Google Scholar
  254. L. H. Chadwick, “The NIH roadmap epigenomics program data resource,” Epigenomics, vol. 4, no. 3, pp. 317–324, 2012. View at Publisher · View at Google Scholar
  255. B. E. Bernstein, J. A. Stamatoyannopoulos, J. F. Costello et al., “The NIH roadmap epigenomics mapping consortium,” Nature Biotechnology, vol. 28, no. 10, pp. 1045–1048, 2010. View at Publisher · View at Google Scholar · View at Scopus