About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2013 (2013), Article ID 518909, 25 pages
http://dx.doi.org/10.1155/2013/518909
Review Article

Structure and Physiological Actions of Ghrelin

Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 808 Route de Lennik, Bat G/E-CP611, 1070 Brussels, Belgium

Received 8 October 2013; Accepted 10 November 2013

Academic Editors: E. Hajduch, A. Salehi, and N. Ueno

Copyright © 2013 Christine Delporte. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Ghrelin is a gastric peptide hormone, discovered as being the endogenous ligand of growth hormone secretagogue receptor. Ghrelin is a 28 amino acid peptide presenting a unique n-octanoylation modification on its serine in position 3, catalyzed by ghrelin O-acyl transferase. Ghrelin is mainly produced by a subset of stomach cells and also by the hypothalamus, the pituitary, and other tissues. Transcriptional, translational, and posttranslational processes generate ghrelin and ghrelin-related peptides. Homo- and heterodimers of growth hormone secretagogue receptor, and as yet unidentified receptors, are assumed to mediate the biological effects of acyl ghrelin and desacyl ghrelin, respectively. Ghrelin exerts wide physiological actions throughout the body, including growth hormone secretion, appetite and food intake, gastric secretion and gastrointestinal motility, glucose homeostasis, cardiovascular functions, anti-inflammatory functions, reproductive functions, and bone formation. This review focuses on presenting the current understanding of ghrelin and growth hormone secretagogue receptor biology, as well as the main physiological effects of ghrelin.

1. Introduction

Ghrelin is a unique 28 amino acid peptide containing an n-octanoyl group on the serine in position 3 that was purified from rat stomach in 1999 [1, 2]. Ghrelin is the only known peptide hormone modified by a fatty acid. Ghrelin is synthesized by the endocrine X/A-like cells of the fundus mucosa representing about 20% of gastric mucosal cells in humans [35]. Ghrelin is the natural ligand for the growth hormone secretagogue (GHS) receptor (GHS-R) cloned in 1996 [6]. Circulating ghrelin consists of more than 90% of desacyl ghrelin and less than 10% acyl ghrelin [7]. However, the acyl group of ghrelin is essential for its binding to GHS-R and the concomitant activation of the inositol triphosphates/calcium pathway [1, 2].

In addition to the stomach [1, 8], ghrelin is expressed in many tissues such as duodenum, jejunum, ileum, colon, lung, heart, pancreas, kidney, testis, pituitary, and hypothalamus [3, 913].

The major biological functions of ghrelin include the secretion of growth hormone, the stimulation of appetite and food intake, the modulation of gastric acid secretion and motility, and the modulation of the endocrine and exocrine pancreatic secretions.

2. From Ghrelin Gene to Ghrelin-Related Peptides

2.1. Transcriptional and Translational Mechanisms

The human ghrelin gene is located on the short arm of chromosome 3 (3p25-26) and contains six exons (2 are noncoding) and 4 introns and encodes a 511 bp mRNA [1416] (Figure 1). Preproghrelin (117 AA) contains 23 AA signal peptide and a 94 AA segment corresponding to proghrelin [17] (Figure 1). Proghrelin is made of the 28 AA ghrelin peptide and a 66 AA carboxyterminal peptide called C-ghrelin [16, 18, 19] (Figure 1). C-ghrelin is further processed to a 23 AA peptide named obestatin [20] (Figure 1). Besides, alternative splicing of the human ghrelin gene generates additional transcripts coding for other peptides including des-Gln14-ghrelin [16, 21] (Figure 1). Finally, antisense transcripts (transcribed from the antisense strand), unlikely coding for proteins, may produce noncoding RNAs, possibly involved in posttranscriptional and/or posttranslational gene regulation [16].

518909.fig.001
Figure 1: From ghrelin gene to ghrelin peptide. Following the transcription of ghrelin gene containing 2 exons (black boxes) and 5 introns (white boxes), mature ghrelin mRNA is processed into preproghrelin and finally into several peptides, namely, ghrelin and obestatin.

The enzymes responsible for processing preproghrelin into ghrelin include signal peptidase cleaving at Arg23, prohormone convertase 1/3 (PC 1/3) cleaving at Arg51 (generating ghrelin 1–28) [22], and carboxypeptidase-B like enzyme cleaving at Pro50 (generating ghrelin 1–27) [23] (Figure 1). The involvement of prohormone convertase 2 (PC2) and furin in the preproghrelin processing remains controversial [22, 24, 25]. The enzymes responsible for processing preproghrelin into obestatin remain yet to be identified.

The data published so far on the human ghrelin gene structure strongly suggests a higher level of complexity than previously recognized. Additional studies will be required to address the fine-tuning regulatory mechanisms of the ghrelin gene transcription and processing that may depend upon tissue type and physiological conditions. Identification and characterization of novel transcripts as well as novel derived-peptides from the human ghrelin gene would raise challenging questions concerning their physiological and pathophysiological implications.

2.2. Posttranslational Acylation Mechanism

Nascent ghrelin peptides, derived from the human ghrelin gene transcription and translation, are subjected to a unique posttranslational modification consisting in the acylation of the hydroxyl group of the Ser3 [1]. Both ghrelin 1–28 and ghrelin 1–27 are subjected to acylation, essentially by an octanoyl group (C8:0) and more rarely by a decanoyl (C10:0) or decanoyl (C10:1) group [23]. Ingestion of either medium-chain fatty acids or medium-chain triglycerides increases ghrelin acylation [26, 27]. The enzyme responsible for ghrelin acylation is ghrelin O-acyl transferase (GOAT) belonging to the family of membrane O-acyl transferases (MBOAT) [28, 29]. Ghrelin and GOAT colocalize in gastric X/A like cells [28]. Diets enriched with C8 medium-chain or C10 medium-chain triglycerides led to a modification in the proportions of octanoyl or decanoyl ghrelin stored in the same granules in gastric X/A like cells, suggesting that GOAT is likely to use the most available substrate to perform ghrelin acylation [30]. Ghrelin acylation is believed to occur in the endoplasmic reticulum prior to the processing of proghrelin by various proteases on either the preproghrelin and/or the proghrelin precursors [22, 29, 31, 32]. GOAT acylates ghrelin with fatty acids ranging from C:7 to C:12 [28]. Presumed donors of acyl group are acyl-CoA, even though it remains unclear how acyl-CoA could get into the endoplasmic reticulum lumen [29]. In an in vitro assay of GOAT activity, GOAT was shown to possess a preference for n-hexanoyl-CoA over n-octanoyl-CoA as an acyl donor [32]. However, several lines of evidence suggest that the intracellular concentrations of n-acyl-CoA are likely to affect GOAT substrate specificity. Mutation in position 338 of GOAT, at the MBOAT-conserved histidine residue, abolishes ghrelin octanoylation [28].

The investigation of GOAT substrate specificity, using an in vitro assay for GOAT activity, indicates that Gly1, Ser3, and Phe4 surrounding Ser3 in proghrelin represent crucial amino acids for GOAT activity [33]. Pentapeptides corresponding to the first five N-terminal amino acids of ghrelin with its C-terminal end amidated and with an ester or amide (conferring a better efficiency than the ester) linkage between Ser3 and C:8 competitively inhibit GOAT activity [34]. Similar pentapeptide with Ala3 instead of Ser3 represents efficient GOAT inhibitor that can no longer be used as a substrate [34]. A peptide-based bisubstrate analog GO-CoA-Tat, a potent inhibitor of GOAT, improves glucose tolerance and reduces weight gain in wild-type mice fed with medium-chain triglycerides diet, but not in ghrelin-knockout mice [35]. Furthermore, GO-CoA-Tat decreased circulating octanoyl ghrelin levels and body weight in mice fed with high fat diet [36]. Very recently, mutations and chemical modifications of a novel fluorescent substrate peptide for GOAT allowed defining specific interactions without GOAT active site playing a role in ghrelin recognition [37]. These recent finding should allow developing more potent and specific GOAT inhibitors for evaluating the GOAT-induced ghrelin acylation pathway as a new therapeutic target.

While rat gastric GOAT mRNA levels are similar in fed and 48 h-fasted animals, they increased in response to leptin administration in fasted animals, indicating that GOAT is a leptin-regulated gene [38]. Higher GOAT mRNA levels detected in chronic restricted-nutritional conditions, such as anorexia nervosa, could account for the higher acyl ghrelin levels measured [39].

GOAT knockout mice are characterized, as expected, by a total absence of acylated ghrelin [40].

In agreement with its physiological functions, ghrelin acylation, via GOAT, is involved in eating behavior. In homeostatic eating (when food intake is driven by necessity, due to energy deficiency as perceived by the brain and body), GOAT knockout mice models can exhibit similar or contrasting phenotypes depending on the type of diet. GOAT knockout mice fed with standard chow diet demonstrated higher desacyl ghrelin than their wild-type littermates but had similar body weight, fat mass, and food intake [40, 41]. However, GOAT knockout mice fed with high fat diet displayed either similar body weight, body composition, and food intake to their wild-type littermates [41] or lower body weight, no changes in body composition, and increasing food intake [40]. GOAT knockout mice fed with high fat diet rich in medium-chain triglycerides displayed lower body weight and fat mass, despite increase food intake [40]. These discrepant phenotypes observed could result from the distinct genetic background of the mice models used. In hedonic feeding (when food intake is motivated primarily by pleasure), GOAT knockout mice phenotypes suggested that GOAT is a critical modulator in food reward. Indeed, GOAT knockout mice displayed an attenuated food motivation in an operant responding model when deprived of food for 24 h [42] and a decreased hedonic feeding response in a “dessert effect” protocol [42].

GOAT knockout in leptin-deficient ob/ob mice does not improve glucose tolerance or body adiposity, suggesting that the desacyl/acyl ghrelin ratio has no major effects on glucose homeostasis in a model of massive obesity and glucose intolerance [43].

Very recently GOAT has been detected in human plasma and its expression level was positively correlated with body mass index and negatively correlated with ghrelin level when evaluating normal subjects and subjects with either anorexia nervosa or obesity [44]. It has to be noted that in that particular study ghrelin level was the same in obese patients and normal weight subjects [44], as opposed to other previous studies showing either decreased ghrelin levels [39, 45] or increased ghrelin levels [46, 47]. Further studies using large cohorts of subjects will be required to assess if GOAT indeed counteracts the effects of ghrelin and contributes to the development or maintenance of anorexia nervosa and obesity.

Knocking out GOAT, possibly in combination with deficiency in ghrelin and/or GHSR, should allow assessing the physiological consequences of a deficiency in ghrelin acylation and/or ghrelin signaling. Moreover, GOAT represents a useful pharmacological target in the treatment of obesity and other diseases [48]. Finally, further studies should contribute to a better understanding of the role of GOAT in the control of ghrelin acylation and its subsequent effects.

Ghrelin and desacyl ghrelin can undergo another posttranslational modification: phosphorylation on Ser18 by protein kinase C [49]. Compared to nonphosphorylated ghrelin and desacyl ghrelin, both phosphorylated forms exhibited lower binding capacity to phosphatidylcholine : phosphoserine sucrose loaded vesicles [49]. However, additional studies are required to determine if ghrelin phosphorylation can occur in cells under specific conditions and if so what would be the impact of such phosphorylation on the subcellular localization and biological function of the peptide.

3. Ghrelin-Related Peptides

3.1. Sequence Homologies between Mammalian Ghrelin

Ghrelin has been purified from various mammalian species such as human [1], rat [1], and mouse [50] (Figure 2). All mammalian ghrelin sequences present a strict sequence conservation of the first 10 N-terminal AA and the acylated-Ser3. Human and rat ghrelin are identical with the exception of AA in positions 11 and 12. Ovine and bovine ghrelin sequences are made of 27 AA, rather than 28, and are lacking Gln14.

518909.fig.002
Figure 2: Sequence homologies between mammalian ghrelin. Highlighted boxes indicate amino acid homologies among ghrelin from mammalian species. The acylation of ghrelin on the third conserved serine is indicated by a*.
3.2. Structure-Activity Relationships of Ghrelin-Related Peptides

Several studies have investigated the structure-activity relationship of ghrelin peptides. The presence of acyl group on Ser3 is required for most of the observed biological activities of ghrelin [51, 52]. The position of the octanoylated Ser is important as C8:0 Ser2 conserved the activity of the peptide while C8:0 Ser6 or C8:0 Ser18 decreased it [53]. Maximal ghrelin activity, conferred by C8:0 Ser3, is maintained by C10:0 Ser3, C12:0 Ser3, and C16:0 Ser3 but drastically decreased by C4:0 Ser3 or C2:0 Ser3 [51]. While the replacement of Ser3 by Trp3 maintains the activity of ghrelin, its replacement by aliphatic AA (such as Val, Leu, or Ile) completely inhibits its activity [51]. The ester bound between C8:0 and Ser3 is not indispensable for ghrelin activity as it can be replaced, without affecting the activity, by thioether or ether bounds [51]. The N-terminal positive charge and Phe4 are necessary for ghrelin activity and recognition by GHS-R1A [54]. Systematic C-terminal truncation of ghrelin identified the N-terminal pentapeptide of ghrelin, including C8:0 Ser3, to be the minimal peptide fragment equipotent to ghrelin [52, 55]. In addition, amidation of the C-terminus increased the activity of the ghrelin fragments [52, 55], while N-acetylation drastically decreased it [54, 55]. Bound to lipids, both acyl and desacyl ghrelin adopt a short α-helix conformation, respectively, from Pro7 to Glu13 and Pro7 to Glu14, surrounded by more flexible N- and C-termini [56, 57]. The minimal active core sequence of ghrelin required for GHS-R1a activation is summarized in Figure 3.

518909.fig.003
Figure 3: Minimal active core sequence of ghrelin required for GHS-R1A activation. The highlighted box indicates the minimal active N-terminal pentapeptide core of ghrelin sequence required for GHS-R1A activation.
3.3. Circulating Ghrelin

In human, circulating ghrelin consists of desacyl ghrelin (>90%), acyl ghrelin, and C-ghrelin [7, 18, 58]. Circulating C-ghrelin is decreased by about 80% in rat [59] and in humans [8, 60] following surgical gastric mucosa removal. It presently remains unknown if ghrelin and desacyl ghrelin are both secreted into the bloodstream via similar or distinct secretory pathway(s). In rats, gastric ghrelin is degraded by deacylation and N-terminal proteolysis [61], and deacylation is performed by lysophospholipase I [62]. The high desacyl/acyl ghrelin ratio in the circulation can be explained by the shorter half life of ghrelin compared to desacyl ghrelin [63] and plasma ghrelin deacylation [58, 61]. Butyrylcholinesterase and other esterase(s), such as platelet-activating factor acetylhydrolase, are responsible for ghrelin deacylation in human serum, while carboxylesterase accounts for ghrelin deacylation in rat serum [61, 64]. Interestingly, butyrylcholinesterase knockout mice fed with standard chow diet (5% fat) displayed normal body weight, while those fed with high fat diet (11% fat) became obese [65]. As increased ghrelin levels cannot explain obesity, butyrylcholinesterase could play a role in fat utilization [65]. Paraoxonase was also suggested to participate in ghrelin deacylation in human serum [66]. However, this hypothesis was refuted as EDTA had no effect on ghrelin deacylation and there was a negative correlation between desacyl ghrelin levels and paraoxonase activity [61]. Desacyl ghrelin mostly circulates as a free peptide, while acyl ghrelin circulates bound to lipoproteins [64, 66]. The acyl group is required for ghrelin interaction with triglyceride-rich lipoproteins and low-density lipoprotein, while N- and C-terminal ends of ghrelin are required for its binding to high-density lipoproteins and very high-density lipoproteins. It is therefore hypothesized that triglyceride-rich lipoproteins mostly transport acyl ghrelin, while high-density and very high-density lipoproteins transport both acyl and desacyl ghrelin [64].

Due to the rapid degradation of ghrelin into the circulation, it is necessary to collect blood samples under appropriate optimal conditions warranting the intact conservation of the peptide. Several studies have evaluated the effect of blood collection and storage conditions on the measurement of ghrelin levels [6771]. To ensure ghrelin stability, it is now strongly recommended to collect blood samples with EDTA-aprotinin (or other proteases inhibitors) under cooled conditions and proceed to the sample acidification and dilution prior to ghrelin measurement [69, 70]. Despite the obvious involvement of esterases in ghrelin degradation, the use of esterases inhibitors has not been recommended during blood sample collection. This is quite surprising considering that the addition of PMSF (an inhibitor of serine esterase) and eserine salicylate (an inhibitor of butyrylcholinesterase) has been shown to increase the recovery of acyl ghrelin in blood samples [64]. Additional studies should be performed to assess the usefulness of combining esterases inhibitors to the recommended guidelines to further improve ghrelin stability.

A very recent study attempted to evaluate the pharmacokinetic parameters of infused acyl ghrelin, desacyl ghrelin, or both combined in healthy human subjects with normal liver and kidney functions [72]. Following acyl ghrelin infusion, mean half life of acyl ghrelin was in the range of 9–11 min, while that of total ghrelin (acyl + desacyl ghrelin) was in the range of 35 min [72], in agreement with previous studies [63, 73, 74]. The clearance time of acyl ghrelin was about three times higher than the one for acyl ghrelin [72]. Data from this study revealed that acyl and desacyl ghrelin have different metabolic rates in the circulation with different rates of clearance [72]. Infusion of desacyl ghrelin increased desacyl concentrations without affecting acyl ghrelin levels [72, 74]. Combined acyl and desacyl infusion led to increased acyl and desacyl ghrelin concentrations, to the same extent as that observed with individual infusion [72]. Moreover, the data indicated that acyl ghrelin was actively deacylated in the plasma [72]. The relatively constant acyl ghrelin/desacyl ghrelin ratio, measured at baseline and during infusion, suggests that both desacyl ghrelin production (due to acyl ghrelin deacylation) and desacyl ghrelin elimination were increased in similar proportions [72]. Determination of pharmacokinetic parameters of acyl ghrelin and total ghrelin is of prime importance for conducting appropriate clinical research. Furthermore, the modification of pharmacokinetic parameters in diseased subjects is likely to influence clinical research data and conclusions.

Other important considerations should be taken into account for proper ghrelin level assessment such as the nutritional status of the individuals, the time point at which blood samples are collected [75], and the efficiency of peptide extraction as well as the limitations of the methods used to assay ghrelin levels (acyl, desacyl, and/or total ghrelin) [7679].

In the light of the rapid degradation of ghrelin in the circulation, investigators need to pay greater attention to the conditions of collection and conservation of blood samples to ensure optimal ghrelin stability. Furthermore, the nutritional status of individuals and the time point of blood sample collection should also be carefully controlled. Finally, pharmacokinetic parameters of ghrelin should be taken into account when designing clinical research. Ruling out these important issues would definitively impact the accuracy of acyl ghrelin levels determination and, consequently, and most importantly, on the assessment of its physiological and pathophysiological roles. Furthermore, a large number of studies evaluating ghrelin levels do not distinguish between total ghrelin, acyl ghrelin, and desacyl ghrelin levels. Investigators should therefore choose the best available method for ghrelin levels determination and be aware and discuss the limitations of the method used. All together, these elements are likely to contribute to the possible contradictory data published in the literature concerning the physiological and pathophysiological role of ghrelin. In conclusion, only combined controlled steps will ensure accurate ghrelin level determination and proper interpretation under physiological and pathophysiological conditions (Figure 4).

518909.fig.004
Figure 4: Proposed controlled steps necessary to allow accurate ghrelin levels determination. : temperature.
3.4. Tissue Distribution of Ghrelin

Ghrelin is predominantly expressed in the digestive system, with highest expression levels in the gastric mucosa [1, 8]. Gastric mucosa is composed of five endocrine cell types: enterochromaffin cells (EC), enterochromaffin-like cells (ECL), D cells, G cells, and X/A-like cells which, respectively, secrete serotonin, histamine, somatostatin, gastrin, GABA, and ghrelin. Human versus rat gastric mucosa are, respectively, composed of 30%/60–70% ECL cells, 20%/20% X/A-like cells, 22%/2.5% D cells, and 7%/0–2% of EC and G cells [5, 80]. X/A-like cells secreting ghrelin are ovoid cells located into the gastric fundus [3, 4, 81]. In the gastrointestinal tract, ghrelin expression gradually decreases from the duodenum to the colon [3, 9, 10]. Circulating ghrelin originates in vast majority from gastric mucosa and gastrointestinal tract [8, 82]. In pancreas, ghrelin immunoreactivity colocalized with glucagon-producing cells ( cells) [83, 84], insulin-producing cells ( cells) [85], a new type of endocrine cell called cells [8688], and acinar cells [89].

Ghrelin is expressed in low amounts in the central nervous system [9]. Neurons from the arcuate nucleus of the hypothalamus, a region involved in the control of food intake, express ghrelin [1, 90]. Pituitary also contains ghrelin [11, 91].

Furthermore, ghrelin is present in other tissues such as kidneys, adrenal glands, thyroid, breast, ovary, placenta, testis, prostate, liver, gallbladder, lung, skeletal muscles, myocardium, skin, and bone [12, 13].

4. Ghrelin Receptors

4.1. GHS-R Gene and GHS-R Protein Isoforms

The ghrelin receptor, termed GHS-R, belongs to G-protein coupled receptors (GPCR) superfamily, characterized by seven transmembrane spanning helix domains [6]. Human GHS-R gene is located on chromosome 3 (3q26.2) and composed of 2 exons and 1 intron. Exon 1 codes for the GHS-R region from the extracellular N-terminal end to the 5th transmembrane helix, while exon 2 codes for the rest of the receptor [92]. Two spliced variants of GHS-R have been identified: GHS-R1A and GHS-R1B. GHS-R1A is a 366 AA protein containing 7 transmembrane helix domains, while GHS-R1B is a 289 AA protein containing only 5 transmembrane helix domains [92]. GHS-R1A and GHS-R1B possess 100% sequence homology in the nucleotide sequence coding for the first 265 AA, then the nucleotide sequence of GHS-R1B is distinct from GHS-R1A as it codes for only 24 additional AA due to the presence of a stop codon [92].

GHS-R1A belongs to the class A G-protein coupled receptors subfamily but is not closely related to the other known members. Nevertheless, GHS-R1A is often included in the class A receptors subfamily for small polypeptides comprising the motilin receptor (52% homology), neurotensin-1 and neurotensin-2 receptors (±35% homology), neuromedin-1 and neuromedin-2 receptors (±30% homology), and GPR39 (±30% homology) [92, 93].

4.2. GHS-R1A Signaling

Coupling of GHS-R1A to G-protein involves the 3rd intracellular loop. The lack of a 3rd intracellular loop in GHS-R1B prohibits it from coupling to G-proteins. GHS-R1A activation leads to the subsequent activation of phospholipase C, inositols triphosphates, and intracellular calcium pathways [94]. At physiological concentrations, only acyl ghrelin binds to GHS-R1A, while at supraphysiological concentrations (1 μM) desacyl ghrelin appears to bind to the receptor as well [95, 96]. The cell membrane has been suggested to act as “catalyst” for ghrelin binding to its receptor. Indeed, acyl ghrelin and desacyl ghrelin are electrostatically attracted to membranes by their basic residues, but acyl ghrelin penetrates deeper due to its acyl group [96]. The acyl group of ghrelin is assumed to favor ghrelin partitioning into the lipids to increase the local concentration of ghrelin in the vicinity of the receptor, to bring ghrelin to the membrane where its binding pocket is present, and to optimize the conformation of ghrelin for improving its docking to GHS-R1A [96]. Noteworthy is that GHS-R1A possesses constitutive level activity [97] that appears to be conferred by the presence of 3 aromatic AA located in the 6th and 7th transmembrane helix domains. The proposed model supposes that these AA ensure proper docking of the extracellular end of the 7th transmembrane helix domain into the 6th transmembrane helix domain, thereby mimicking agonist activation and stabilizing the receptor in its active conformation [97]. The high basal signaling of GHS-R1A has also been demonstrated in vivo in the hypothalamus [98].

Several studies have been designed to develop GHS-R1A peptide and nonpeptide agonists, inverse agonists, and antagonists and to map the site of interactions of these molecules with GHS-R1A using mutational, molecular modeling and computational analyses. Despite the necessity to understand the molecular bases leading to the development of drugs modulating ghrelin signaling, the studies addressing these issues will not be detailed here as they are extremely too focused in light of the scope of this review.

The monomeric existence and functioning of GHS-R1A have been established [99]. However, growing evidence now supports the notion that GHS-R1A, similarly to other GPCRs [100, 101], may form dimers [102116]. GHS-R1A can dimerize into homo- or heterodimers and therefore potentially affect downstream signaling. GHS-R1A was shown to function as homodimer [103, 107].

But, it has now been also shown that GHS-R1A forms heterodimers with members of the prostanoid receptor family such as vasodilatator prostacyclin receptor (IP), the vasoconstrictor prostaglandin E2 receptor subtype EP3-I (EP3-I), and thromboxane A2 (TPα) [108]. The consequences of such heterodimer formation include decreased GHS-R1A expression, increased intracellular GHS-R1A localization, and decreased constitutive GHS-R1A activity [108]. Though, another consequence of receptor heterodimerization may be ligand specificity switching, this has not be explored or shown for GHS-R1A.

GHS-R1A interacts with the somatostatin receptor 5 (SST5), leading to a coupling to Gαi/o instead of Gαq11, allowing ghrelin (rather than somatostatin) to suppress glucose-stimulated insulin secretion [113]. Moreover, the high ratio of ghrelin to somatostatin affects the formation of GHS-R1A/SST5 heterodimers [113].

The formation of heterodimers between GHS-R1A and melanocortin 3 receptor leads to a mutual signaling interference and consequently to alteration in the homeostatic control of food intake and energy balance [110, 111].

The formation between GHS-R1A and dopamine D1 (D1) and D2 (D2) receptors impacts the role of ghrelin in the regulation of rewarding and motivational eating behavior [104, 112, 114]. The formation of GHS-R1A/D1 heterodimers leads to the attenuation of GHS-R1A signaling, suggesting a switch in GHS-R1A coupling from G q11 to G s [104]. GHS-R1A/D2 heterodimers alter the G i/o-induced signaling of D2 by inducing calcium mobilization upon dopamine stimulation that was independent of GHS-R1A-G q11 mediated signaling or GHS-R1A constitutive activity [112]. Furthermore, GHS-R1A/D2 heterodimers attenuates food intake [112].

GHS-R1A forms heterodimers with serotonin 2C receptor (5- ) and leads to the attenuation of ghrelin-induced calcium signaling [115]. GHS-R1A/5- heterodimers induce the attenuation of ghrelin’s orexigenic effects [116]. These data are in favor of a role of GHS-R1A/5- heterodimers in homeostatic appetite signaling.

Heterodimerization definitively represents a novel mechanism for fine-tuning of GHS-R1A-mediated signaling, and introduced another level of regulatory complexity. However, the physiological relevance of such mechanism remains to be further investigated. Nevertheless, GHS-R1A dimerization with other receptors offers novel pharmacological targets and therapeutic perspectives.

4.3. GHS-R1B Signaling

GHS-R1B is unable to bind acyl or desacyl ghrelin [6]. GHS-R1B, considered in the past to be functionally inactive, is now believed to act as an important modulator in ghrelin-induced GHS-R1A signaling. Indeed, GHS-R1B is able to heterodimerize with GHS-R1A and to decrease the constitutive activity of GHS-R1A [102, 106, 107, 109]. GHS-R1B exerts a dominant negative effect via a conformational restriction of the GHS-R1A that becomes unable to subsequently activate G protein and recruit -arrestin [117]. Furthermore, GHS-R1B can form heterodimers with neurotensin receptor 1 (NTS1) and function as a receptor for neuromedin U, thereby affecting the growth of lung cancer cells through the transactivation of its downstream signals [105].

Further studies are needed to further investigate the physiological role of GHS-R1B.

4.4. Desacyl Ghrelin Receptors

Despite its lack of binding to GHS-R1A at physiological concentrations, desacyl ghrelin has been shown to have numerous biological effects, suggesting that it may act via a yet unidentified receptor. Desacyl ghrelin could modulate food intake as in [118] even thought GOAT knockout mice displayed suppressed fat mass despite increase in desacyl ghrelin levels [40]. In addition, desacyl ghrelin modulates cell proliferation [76, 119123], cell apoptosis [124127], cell metabolism [126, 128, 129], glucose homeostasis [130132], and body temperature [133].

Consequently, further investigations will be required to identify potential desacyl ghrelin receptor(s). The identification of desacyl ghrelin receptors would lead to a better understanding of the mechanisms and sites of action of this peptide.

5. Physiological Functions

Figure 5 summarizes the main physiological functions of ghrelin.

518909.fig.005
Figure 5: Main physiological functions of ghrelin.

It is necessary to keep in mind that future studies are required to determine if homo- or hetero-GHS-R1A dimers are involved in the physiological actions of acyl ghrelin. Furthermore, for the desacyl ghrelin-mediated physiological effects, further studies will be necessary to identify the as yet unidentified receptor(s) involved. Finally, as it is possible that the acyl ghrelin/desacyl ghrelin ratio modulates several physiological effects, studies should be performed to analyze the impact of such parameters on the investigated biological function.

5.1. Growth Hormone Secretion

Via its binding to GHS-R1A, present on pituitary somatotropic cells, ghrelin is a potent stimulator of growth hormone (GH) secretion [134137]. GH secretion is induced by both ghrelin-induced cyclic GMP/nitric oxide signaling pathway [138]. Hypothalamus also appears to be involved in the ghrelin-induced GH secretion [139]. Vagus nerve is also required for maximal ghrelin-induced GH secretion [140, 141]. Besides, ghrelin acts in synergy with GH-releasing hormone (GHRH) on GH secretion [135, 142]. However, clinical studies have led to contradictory data concerning the relationship between GH and ghrelin circulating levels [143148]. Most of these studies measured total ghrelin levels rather than acyl ghrelin levels and did not necessarily design protocols taken into account the pulsatility of both ghrelin and GH secretion. Natural mutation in GHS-R1A resulting in loss of constitutive activity lead to impaired GH release and short stature [149, 150]. Therefore, while ghrelin is capable of stimulating GH release, its physiological involvement in GH release remains a subject of controversy. Additional studies might therefore still be valuable to further study the physiological involvement of ghrelin in GH release. Nevertheless, the potential beneficial effects of ghrelin analogs for the treatment of GH-deficiency disorders have been investigated [151].

Desacyl ghrelin is also able to induce GH secretion, possibly by modulating the GH-insulin growth factor axis [152].

Ghrelin is also able to stimulate the pituitary secretion of adrenocorticotropic hormone (ACTH), cortisol, and prolactin (PRL) [153].

5.2. Appetite and Food Intake

Both central and peripheral administration of ghrelin to rats induces food intake stimulation and energy expenditure reduction accounting for body weight increase [154158]. Ghrelin administrated intravenously to human also leads to appetite increase and food intake stimulation [159].

Ghrelin is secreted in a pulsated manner as its level increases before the onset of meal, during fasting, and decreases after feeding [160, 161]. This pulsatile secretion of ghrelin suggested that ghrelin may act as a signal for meal initiation. However, it appears that peaks of ghrelin concentrations are related to meal patterns and may rise in anticipation of eating rather than elicit feeding [162].

Orexigenic and anorexigenic peptides control appetite. Among orexigenic peptides (neuropeptides Y (NPY), agouti-related peptide (AGRP), orexins, melanin-concentrating hormone (MCH), and galanin), ghrelin is the only one acting peripherally to stimulate appetite, while all other orexigenic peptides are acting centrally. Among anorexigenic peptides, some are synthesized by the hypothalamus (melanocortin ( -MSH), cocaine- and amphetamine- regulated transcript (CART), and corticotrophin-releasing hormone (CRH)), endocrine cells from the gastrointestinal tract (cholecystokinin (CCK), gastrin-related peptide (GRP), glucagon-like peptides 1 and 2 (GLP1, GLP2), pancreatic polypeptide (PP), and peptide YY (PYY)), and adipose tissue (leptin). Furthermore, in the hypothalamus, cannabinoids induce food intake via the cannabinoid receptor type 1 (CB1) [163, 164] (Figure 6).

518909.fig.006
Figure 6: Main hypothalamic pathways involved in ghrelin-induced food intake. Arrows and lines indicate stimulation and inhibition, respectively. AGRP: agouti-related protein; ARC: arcuate nucleus; CART: cocaine- and amphetamine-regulated transcript; CRF: corticotrophin-releasing factor; LHA: lateral hypothalamic area; NPY: neuropeptide Y; POMC: proopiomelanocortin; and PVN: paraventricular nucleus.

Ghrelin stimulates appetite by central and peripheral pathways and via the vagus nerve. Indeed, ghrelin is locally synthesized in the hypothalamus [165], ghrelin secreted by the stomach reaches the brain by crossing the blood-brain barrier [166], and ghrelin also transmits its signal through the vagal nerve [167]. In hypothalamus, ghrelin activates the arcuate nucleus (ARC), paraventricular nucleus (PVN), dorsomedial region, central nucleus of amygdala, and the nucleus of solitary tract [168, 169]. Neurons expressing ghrelin send efferents to ARC neurons producing NPY, AGRP, POMC, and CRH [165]. By stimulating the activity of NPY/AGRP neurons and decreasing the activity of POMC and CART neurons, ghrelin increases appetite and food intake [165, 170, 171]. Ghrelin can directly inhibit PVN neurons [172] or activate NPY/AGRP neurons and inhibit POMC neurons that are in contact with PVN. Hypothalamic 5′ AMP-activated protein kinase (AMPK) has been proposed to play a pivotal role in ghrelin’s effects on appetite and food intake [172, 173]. AMPK is a serine/threonine protein kinase sensing the energy status of the cells and regulates fuel availability by stimulating ATP producing pathways and inhibiting ATP consuming pathways [174]. Following ATP depletion, AMP rises and induces the activation of AMPK through its phosphorylation [175]. Activated AMPK induces the phosphorylation of acetyl-CoA carboxylase (ACC), leading to the inhibition of ACC activity and the decrease in malonyl-CoA levels and finally resulting in increased fatty acid oxidation via the activation of carnitine-palmitoyl transferase 1 (CPT1) [176, 177]. Following increased fatty acid -oxidation, reactive oxygen species are generated and stimulate uncoupling protein-2 (UCP2) which promotes ROS scavenging and stimulates NPY/AGRP transcription [170]. The activation of the hypothalamic AMPK signaling cascade results in an increase of appetite and food intake (Figure 7).

518909.fig.007
Figure 7: Molecular mechanisms leading to ghrelin-induced food intake in the hypothalamus. Intracellular signaling pathways and mitochondrial metabolism resulting in NPY/AGRP secretion consecutive to ghrelin receptor activation are schematized. ACC: acetyl coenzyme A carboxylase; AGRP: agouti-related protein; AMPK: 5′ adenosine monophosphate-activated protein kinase; BSX: brain-specific homeobox transcription factor; CaMKK2: calmodulin kinase-kinase 2; CB1: cannabinoid receptor type 1; CPT1: carnitine-palmitoyltransferase-1; CREB: cyclic adenosine 3′,5′ monophosphate response element-binding protein; FAS: fatty acid synthase; FoxO1: forkhead box protein O1; GHS-R1a: growth hormone secretagogue receptor type 1a; Gq: Gq protein; LCFA: long chain fatty acid; LCFA-CoA: long chain fatty acyl coenzyme A; mTOR: mammalian target of rapamycin; NPY: neuropeptides Y; p: phosphorylated state; ROS: reactive oxygen species; SIRT1: sirtuin 1; and UCP2: uncoupling protein-2.

Ghrelin has been shown to stimulate AMPK by phosphorylation via calmodulin kinase-kinase 2 (CaMKK2) activated in response to rise in intracellular calcium concentration induced by GHS-R1A signaling [165, 178, 179]. However, a recent study demonstrated that the effect of ghrelin on AMPK signaling pathway occurs independently from GHS-R1A, thereby suggesting that the AMPK signaling pathway does not play a major role in the orexigenic effect of ghrelin [180].

Ghrelin has also been shown to activate hypothalamic Sirtuin 1 (SIRT1)/p53 [181] and mammalian target of rapamycin (mTOR) [182, 183]. SIRT1 is a deacetylase activated in response to calorie restriction that acts through the tumor suppressor p53. SIRT1 and p53 are required for ghrelin-induced AMPK activation and consequent orexigenic action [181]. mTOR is a ser/threonine kinase acting as a cellular sensor of energy balance changes, growth factors, nutrients, and oxygen [184188]. mTOR is regulated by the cellular AMP/ATP ratio; mTOR activity decreases when AMP/ATP increases (low energy), and conversely, mTOR activity increases when AMP/ATP ratio decreases (high energy) [189]. Hypothalamic mTOR signaling is involved in food intake [189, 190]. mTOR can be either inhibited [191, 192] or activated [193] by AMPK. In the arcuate nucleus of the hypothalamus, it appears that mTOR is activated by AMPK [193]. Activated mTOR phosphorylates S6-kinase-1 (S6K1), S6 ribosomal protein (S6), and initiation factor 4E-binding protein (4E-BP1) [184, 194]. In the hypothalamus, mTOR and S6K1 are only located on the NPY/AGRP and POMC neurons within the ARC. It has been shown that hypothalamic mTOR signaling mediates the orexigenic action of ghrelin [182, 193, 195]. Indeed, ghrelin-mediated mTOR activation induces the increase of CREB-pCREB, FoxO-pFoxO1, and BSX transcription factors which in turn activate NPY and AGRP synthesis, leading to food intake [182, 196] (Figure 7). These data appear to be opposed to those showing that activation of mTOR signaling promotes anorexia [190, 192].

Several studies have highlighted the relevance of cellular sensors, AMPK and mTOR, in the control of ghrelin-induced food intake. It is possible that the orexigenic effects of ghrelin mediated by AMPK, and mTOR occur in distinct part of the hypothalamus. Additional studies will be necessary to investigate this hypothesis, to further assess the interaction between AMPK and mTOR in response to ghrelin, and to better understand why ghrelin is able to activate both AMPK and mTOR signaling pathways.

The intact cannabinoids signaling pathway is required for the effect of ghrelin on appetite and AMPK [172, 197, 198]. Furthermore, control of AMPK signaling pathway by cannabinoids requires an intact ghrelin signaling pathway [199]. All together, these data suggest an interaction between GHS-R1A and CB1, possibly in the form of heterodimers as already shown for GHS-R1A and other GPCRs (see Section 4.2).

Both in GHSR and ghrelin knockout mice, food intake is similar to littermate wild-type mice [200, 201].

In light of the complexity of the hypothalamic ghrelin-signaling pathways, more studies are required to investigate more profoundly their relative importance in food intake and also investigate their possible activation in certain regions of the hypothalamus. Furthermore, additional studies will be required to better understand the interactions between ghrelin and cannabinoids signaling and their implication in the control of food intake.

Ghrelin also stimulates appetite via the vagus nerve. Human nodose ganglion from the vagus nerve expressing GHS-R1A are likely to be involved in the ghrelin-induced signal transmission from the stomach to the brain [202, 203]. Indeed, rats submitted to vagotomy or perivagal application of an afferent neurotoxin [140] or patients with vagotomy and esophageal or gastric surgery are responding to the appetite stimulatory effect of ghrelin [204, 205]. Thus, through the activation of GHS-R on vagal afferent to the stomach, the signal induced by ghrelin may reach the nucleus of tractus solitarius, which communicates with the hypothalamus to increase food intake. However, intraperitoneal injection of ghrelin stimulates eating in rats with subdiaphragmatic vagal deafferentation, suggesting that the ghrelin signal does not involve vagal afferents [206].

The clinical applications of ghrelin have been investigated in both eating disorders and muscle wasting conditions, including obesity, anorexia nervosa, cachexia, and sarcopenia (for a review see [151]).

5.3. Energy Homeostasis

Ghrelin is involved in long-term body weight regulation. Plasma ghrelin levels are negatively correlated with body weight in anorexia nervosa, cachexia, and obesity and fluctuate in a compensatory manner to body weight modifications [39]. Indeed, ghrelin levels decrease with weight gain resulting from different conditions such as overfeeding [207], pregnancy [208], olanzapine treatment [209], or high fat diet [210]. Conversely, ghrelin levels increase with weight loss resulting from conditions such as food restriction [211], long-term chronic exercise but not acute exercise [212], cachectic states induced by anorexia nervosa [39], severe congestive heart failure [213], lung cancer [214], and breast and colon cancers [215]. Data on ghrelin levels after weight loss induced by gastric bypass surgery remain controversial as some studies found a decrease [216219], no change [220222] or an increase of ghrelin levels [223225]. However variations in surgical procedures and patient treatment may account for the discrepancies.

In vivo, chronic ghrelin administration induces adiposity [157, 226]. In addition to stimulate food intake, ghrelin reduces energy expenditure, consequently decreasing utilization and oxidation of fat while increasing utilization of carbohydrates [227]. In vitro, ghrelin stimulates differentiation of preadipocytes [129], adipogenesis [228], inhibits adipocyte apoptosis [229], and antagonizes lipolysis [230, 231]. Furthermore, ghrelin shifts food preference towards high fat diets [232].

GHSR and ghrelin knockout mice have been useful in determining the role of ghrelin in energy homeostasis. GHSR knockout mice, with C56Bl6J background, fed on normal diet displayed slight decrease in body weight, with no modification of food intake, as compared to wild-type mice [200]. However, GHSR knockout mice, with C56Bl6J:129sv background, fed on normal diet displayed normal body weight, but exhibited resistance to diet-induced obesity and lower fat mass when fed on high fat diet, compared to wild-type mice [233]. These latter observations are likely to result from the effect of the genetic background as C56Bl6J:129sv mice are inherently more resistant to diet-induced obesity compared to C56Bl6J knockout mice. Ghrelin knockout mice displayed normal food intake, body weight, and body composition when compared to wild-type littermates [201, 234]. Furthermore, ghrelin knockout mice presented intact hypothalamic regulatory feeding centers [234]. Ghrelin knockout mice fed with high fat diet were resistant to diet-induced obesity [201, 227, 234]. Very recently, it was shown that congenic adult ghrelin knockout mice submitted to either a positive (high-fat diet) or negative (caloric restriction) energy balance displayed similar body weight as wild-type littermates [235]. These contradictory data could be explained by differences in the mouse genetic backgrounds and/or the moment at which the high-fat diet was given to the animals. However, interpretation of ghrelin knockout mice should be taken with caution as proghrelin yields several other peptides besides ghrelin that may play roles in the overall metabolism linked to ghrelin itself. Further studies are required to determine if ghrelin plays a role in the development of obesity.

In patients with Prader-Willi syndrome (PWS), a genetic disorder characterized by mental retardation and hyperphagia leading to severe obesity, plasma ghrelin levels are higher than in healthy subjects and do not decrease after a meal [236, 237]. Other studies showed that ghrelin levels decreased postprandially in adult patients with PWS, but to a lesser extent than in obese and lean subjects [238, 239]. This lesser postprandial ghrelin suppression may be due to a blunted postprandial response of PYY, an anorexigenic peptide that decreases postprandial ghrelin levels. The low PYY levels could partially explain the high ghrelin levels observed in PWS [238]. Interestingly, children (5 years of age and younger) with PWS have normal ghrelin levels. Since these children have not yet developed hyperphagia or excessive obesity; it suggests that ghrelin levels increase with the onset of hyperphagia [240, 241]. In opposition with these data, plasma ghrelin levels in children with PWS were elevated at any age, including the first years of life, thus preceding the development of obesity [242]. Thus, ghrelin may be responsible, at least partially, for the insatiable appetite and the obesity of these patients.

In the liver, ghrelin inhibits AMPK activity [164] and increases the expression and activity of key enzymes involved in fat metabolism such as stearoyl-CoA desaturase 1 (SCD1), acetyl CoA carboxylase (ACC), and fatty acid synthase (FAS) [243, 244]. In adipose tissue, ghrelin also inhibits AMPK activity and increases the expression of peroxisome proliferators-activated receptor γ (PPARγ) and sterol-regulatory element binding protein-1 (SREBP1) (two transcription factors involved in promoting adipogenesis) as well as ACC, FAS, lipoprotein lipase, and perilipin [231, 244]. These peripheral actions of ghrelin require p53 [245] and cannabinoid receptor type 1 (CB1) [198].

5.4. Gastric Secretion and Gastrointestinal Motility

Ghrelin, administrated peripherally, dose-dependently increases gastric acid secretion [246, 247], by a mechanism involving the vagus nerve [140, 247] and histamine synthesis and release [248]. Furthermore, ghrelin acts in synergy with gastrin to stimulate gastric acid secretion [249, 250]. Ghrelin, administrated centrally, either induces [251] or inhibits [252, 253] gastric acid secretion and possibly involves the vagus nerve. Furthermore, gastric acid secretion induced by ghrelin involves nitric oxide pathway [254, 255].

In vitro, ghrelin dose-dependently enhances the after-contraction of gastric smooth muscle cells elicited during electrical field stimulation [256258]. Furthermore, ghrelin acts on cholinergic and tachykinergic neurotransmission [257259]. Ghrelin has no effect in vitro on the contractility of human and rodent colon muscle strips [256, 260262].

In vivo, several studies have shown a dose-dependent effect of ghrelin on gastric emptying and intestinal transit following peripheral or central administration of ghrelin in rodents [247, 257, 263267]. The vagus nerve is involved in the prokinetic action of ghrelin [246, 247, 263].

Ghrelin also activates the migrating motor complex in rodent stomach and small intestine [268270] by a mechanism involving the vagus nerve [268]. However, a contradictory study showed no effect of ghrelin on the migrating motor complex in mice [271].

In agreement with in vitro studies on colonic contractility [256, 261], peripheral administration of ghrelin has no effect on colonic transit in rodents [266, 272]. However, central administration of ghrelin stimulates colonic motility [273, 274]. The poor capacity of ghrelin to cross the blood-brain barrier could account for the lack of peripheral administration of ghrelin on colonic motility.

In humans, peripheral administration of ghrelin induces accelerated gastric emptying [275] with no modification of orocecal and colonic transit [276]. Besides, ghrelin stimulates the human migrating motor complex [277].

Furthermore, ghrelin has been shown to have a series of important therapeutic potentials for the treatment of gastrointestinal motility disorders [151, 255]. Therefore, future studies are needed to study the beneficial effects of novel ghrelin receptor agonists in gastrointestinal motility disorders.

5.5. Glucose Homeostasis

Numerous studies support a role for ghrelin in blood glucose homeostasis [130, 278, 279]. Glucose homeostasis is regulated by insulin secreted by pancreatic β cells and the insulin responsiveness of peripheral tissues. Both the effects of ghrelin on insulin secretion and vice versa have been described. The inverse relationship between blood ghrelin levels and insulin levels has suggested the existence of an inhibitory feedback between ghrelin and insulin [8, 280, 281]. Ghrelin was first demonstrated to negatively affect insulin secretion in human [282]. However, depending on experimental conditions, ghrelin either stimulates [283, 284] or inhibits insulin secretion [282, 285]. Indeed, ghrelin might have an inhibitory effect on insulin secretion at low concentrations and a stimulatory effect at high concentration [286]. The mechanisms involved in the inhibitory effect of ghrelin on glucose-induced insulin secretion include an increase expression of the insulinoma-associated protein 2 (IA-2 ) [287] and the activation of the AMPK-uncoupling protein 2 (UCP2) pathway [288, 289].

In human, ghrelin was shown to decrease insulin sensitivity depending on the acyl ghrelin/desacyl ghrelin ratio as acyl ghrelin promotes insulin desensitization, while desacyl ghrelin neutralizes the insulin desensitizing effects of acyl ghrelin [132, 290, 291].

Insulin decreases ghrelin levels independently of glucose concentrations [278, 292294]. However, contradictory data showed no negative effect of insulin on ghrelin concentrations [295, 296]. These discrepancies could be due to different experimental settings.

Maintenance of glucose homeostasis includes the ability of the central nervous system to sense changes in glucose levels. Increased ghrelin levels during preprandial and fasting periods [161, 297, 298] and hypothalamic GHSR expression [299] suggest the involvement of a central mechanism whereby the ghrelin system can sense decreasing glucose concentrations [300]. Indeed, AGRP and NPY expressing neurons from the hypothalamic arcuate nucleus are modulated by glucose [301]. Besides, glucose responding neurons are also present in hypothalamic ventromedial nucleus, lateral hypothalamic area, and the parvocellular area of the paraventricular nucleus. These regions represent important targets for the orexigenic and energy homeostatic effects of ghrelin [165, 302], and glucose sensing neurons respond to ghrelin [303]. Moreover, GHSR is expressed adjacent to these hypothalamic regions [303, 304]. Activation of neurons from the nucleus of solitary tract by insulin-induced hypoglycemia triggers an orexigenic response involving neurons containing ghrelin [305, 306]. Future studies are warranted to determine how ghrelin leads to insulin counter-regulatory effects and central control of glucose homeostasis.

Ghrelin stimulates liver glycogenolysis and neoglucogenesis and prevents suppression of glucose production by insulin, and thereby participate to increased blood glucose concentrations [307310]. However, desacyl ghrelin dose-dependently inhibits liver glucose production [307]. A better understanding of the modulation of hepatic glucose production by acyl ghrelin/desacyl ghrelin ratio, and its influence on glucose homeostasis, requires additional studies, especially to unravel the mechanism of action of desacyl ghrelin.

GOAT could be involved in glucose homeostasis as well. Indeed GOAT knockout mice present improved glucose-induced insulin secretion and glucose tolerance [41]. Besides, GOAT knockout mice submitted to severe caloric restriction displayed severe hypoglycemia that can result into death [41]. However, those data have not been confirmed in another study using GOAT knockout mice submitted to caloric restriction [311]. Distinct genetic background of the mouse strains uses and experimental conditions could account for these discrepancies. It remains to be proven, by future studies, if GOAT indeed plays a role in the control of glucose homeostasis.

In summary, the role of ghrelin and GOAT in the control of glucose homeostasis remains controversial and mechanistically poorly understood. However, due to the crucial role of glucose homeostasis, certainly further studies are required to address these issues. Nevertheless, due to the possible involvement of ghrelin in the control of glucose homeostasis, ghrelin receptor already represents a therapeutic target for the treatment of type 1 and type 2 diabetes [151, 279].

5.6. Cardiovascular Functions

Ghrelin has been shown to have diverse cardiovascular functions [312314]. Ghrelin decreases mean arterial pressure without altering the heart rate in healthy subjects [315]. In animal models with heart failure, ghrelin improved cardiac output and contractility and attenuated left ventricular remodeling and development of cachexia [316]. In patients with chronic heart failure, ghrelin improved left ventricular function, increased cardiac output and cardiac index, decreased systemic vascular resistance, and increased muscle strength [317]. Ghrelin improved cardiac contractility and left ventricular function in chronic heart failure and reduced infarct size [318]. The mechanisms responsible for the hypotensive effects of ghrelin include the suppression of sympathetic activity [319] or direct vasodilatory action [320322]. Ghrelin dilates human artery in an endothelium-independent manner [320, 323]. In rats with myocardial infarction, chronic ghrelin treatment suppressed cardiac sympathetic activity and prevented early left ventricular remodeling [324], while acute ghrelin treatment improved survival by preventing the increase of frequency of ventricular arrhythmias [325]. Furthermore, the vasodilatory action of ghrelin involves activation of PI3 kinase, AKT, and endothelial nitric oxide synthase [321, 322]. Interestingly, desacyl ghrelin is as potent as acyl ghrelin in exerting cardioprotective effects, probably by acting on an as yet unidentified receptor distinct from GHS-R1A [326]. Besides, desacyl ghrelin improves vascular neovascularisation and, namely, in diabetic patients. Ghrelin is able to block the rennin-angiotensin system in humans and thereby improve hypertension and cardiovascular disorders as well as conditions associated with increased risk of developing cardiovascular disease such as disorders of glucose metabolism, dyslipidemia, and inflammatory states [327]. Ghrelin protects the heart against ischemia/reperfusion injury [328].

Ghrelin inhibits apoptosis of cardiomyocytes and endothelial cells possibly through the activation of extracellular signal-regulated kinase 1/2 and Akt serine kinases [124].

Ghrelin plays multiple beneficial cardiovascular functions, thereby improving cardiovascular disease. Additional investigations are required for a thorough understanding of the detailed functions of ghrelin in the cardiovascular system in normal and pathological conditions. Surely, the usefulness of ghrelin analogs for the treatment of cardiovascular disease remains to be fully addressed and proven by adequate clinical studies.

5.7. Anti-Inflammatory Functions

Several studies have reported that ghrelin is able to exert anti-inflammatory actions by inhibiting the production of proinflammatory cytokines [329332]. Indeed, ghrelin exerts anti-inflammatory actions in inflammatory bowel disease, pancreatitis, sepsis, arthritis, and diabetic nephropathy [333341].

Despite limited clinical value, ghrelin administration prior to the development of experimental pancreatitis improved pancreatic blood flow, reduced IL1 levels, and stimulated pancreatic cell proliferation [333]. In sepsis, ghrelin, via an upregulation of MAPK phosphatase 1, reduced norepinephrine and TNF levels known to cause hepatocellular dysfunction and upregulation of proinflammatory cytokines [342]. Furthermore, organ blood flow is improved by ghrelin via an inhibition of NF-kB [343] and HMGB1 production by activated macrophages is inhibited by ghrelin [335]. Ghrelin reduced IL6 levels and symptoms of arthritis in an animal model [334]. IL6 and IL8 levels induced by insoluble fibrillary -amyloid protein deposition in mouse microglia are decreased by desacyl ghrelin but not by acyl ghrelin probably by a mechanism involving, as already eluded to, an unidentified receptor distinct from GHS-R1A [344]. Antihyperalgesic and anti-inflammatory effects of both acyl ghrelin and desacyl ghrelin have been shown in rats [340]. Development of experimental diabetic nephropathy in mice can be prevented by acyl ghrelin acting on GHS-R1A [341]. Inflammatory bowel disease, in particular Crohn’s disease, was improved by ghrelin administration [336].

Further studies are definitively required to evaluate the potential benefit of ghrelin treatment for inflammatory-related conditions.

5.8. Reproductive Functions

Ghrelin controls several aspects of female and male reproductive physiology and pathology through endocrine and autocrine/paracrine pathways [345349]. Ghrelin affects the hypothalamic-pituitary gonadal axis as well as female and male reproduction systems.

Systemic actions of ghrelin on the hypothalamic-pituitary gonadal axis include inhibition of hypothalamic gonadotropin-releasing hormone (GnRH) and of both LH and FSH secretion [350352] and stimulation of prolactin [353]. Identification of the precise mechanisms accounting for the effects of ghrelin on the hypothalamic-pituitary gonadal axis will require further experimentation.

In the female reproduction system, both ghrelin and GHS-R are present in ovary [354358]. Depending on species, ghrelin exerts an inhibitory or stimulatory effect on steroidogenesis (progesterone and estradiol production) [359361]. Ghrelin promotes proliferation and inhibits apoptosis of ovarian cells [358, 362]. Both ghrelin and GHS-R have been detected in oocytes and different stages of embryo development [363]. The effects of ghrelin on embryo development remain controversial [347, 348]. Both ghrelin and GHS-R have been detected in placenta from several species [364, 365]. Ghrelin stimulates the proliferation, inhibits the apoptosis, decreased progesterone secretion, and did not modify human chorionic gonadotropin (hCG) secretion of human placental JEG-3 cells [366].

In the male reproduction system, both ghrelin and GHS-R are localized in testis, mainly in Leydig and Sertoli cells, but their localization varies depending on species [347349]. Ghrelin regulates testicular stem cell factor and impairs Leydig cell proliferation [367]. Ghrelin also inhibits hCG- and cAMP-stimulated testosterone release by Leydig cells [368370]. It has been suggested that elevated ghrelin levels could contribute to male reproductive alterations, especially in situations of energy deficiency [371].

Further studies are required to gain insights into the understanding of the detailed mechanism of action of ghrelin in the female and male reproductive systems.

5.9. Bone Formation

Bone formation is induced by ghrelin that stimulates osteoblastic cell proliferation and differentiation, inhibits cell apoptosis, and increases bone mineral density [372375].

In several species, ghrelin stimulates osteoblast proliferation and differentiation but inhibits apoptosis [376, 377]. PI3K and MAPK pathways are likely to be involved in the ghrelin-induced proliferation of osteoblasts [378]. The effects of ghrelin on osteoblast could either result from endocrine [379] or autocrine/paracrine effects [374, 378]. The absence of GHS-R1A expression and the presence of GHS-R1b expression [13, 378] on osteoblasts suggest that ghrelin-mediated effects are mediated by an as yet unidentified mechanism.

The role of ghrelin on osteoclast function remains poorly understood as it has been shown to either enhance osteoclast resorption [380] or inhibit osteoclast differentiation [381].

Ghrelin modulates chondrocyte function likely by an autocrine/paracrine pathway independent of GHS-R1A [382].

Chronic central ghrelin administration increases rat bone mass through a mechanism independent of appetite regulation [383]. Per os ghrelin administration induces new bone formation and stimulates intramembranous bone repair of calvarial bone defects in rats [384]. In human, blood ghrelin level was positively correlated with bone mineral density in perimenopausal, postmenopausal, and premenopausal women, while it was significantly decreased in perimenopausal and postmenopausal women as compared to premenopausal women [385]. In elderly women, but not in men, ghrelin levels were associated with trabecular bone mass density but not with total or cortical bone mass density [386]. In obese adolescent girls, ghrelin is a negative predictor for bone mineral density and content [387]. In a randomised, double-blind, placebo-controlled study, ghrelin infusion had no acute effect on markers of bone turnover in healthy controls and postgastrectomy subjects but was inversely correlated with bone resorption [388].

Further studies are needed to precise the molecular mechanisms involved in ghrelin-mediated effects on the different bone cell types and on bone formation, and to investigate its potential use to treat elderly patients suffering from osteoporosis or at risk.

6. Conclusions

Ghrelin is peptide hormone that is essentially secreted by the stomach into the blood stream, but other tissues have been shown to also synthesize it. Ghrelin can exert its effects through systemic or autocrine/paracrine actions. GHS-R1A receptor binds acyl ghrelin and is supposed to mediate its biological effects. However, it is recognized that both GHS-R1A homo- or heterodimers could be involved in the ghrelin-mediated actions. The formation of homo- and heterodimers is adding another level of complexity in the understanding of the actions of ghrelin. Growing bodies of evidence support an increased number of functions for desacyl ghrelin. However the exact mechanisms and a potential specific receptor have thus far eluded determination. Much work remains to be done to determine if this additional level of complexity is indeed accounting for the biological effects of ghrelin. Numerous and varied physiological effects of ghrelin, as reviewed in this paper, have been reported. However, it appears important to perform further studies to better understand the fine underlying mechanisms accounting for these pleiotropic ghrelin actions. Furthermore, current understanding of ghrelin biology and biological functions has led to the development of pharmacological tools modulating ghrelin actions and the evaluation of their clinical applications.

Acknowledgments

This work was supported by Grant 3.4502.09 from the Fund for Medical Scientific Research (FRSM, Belgium). The author thanks Jason Perret for his help and comments in revising this paper.

References

  1. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, and K. Kangawa, “Ghrelin is a growth-hormone-releasing acylated peptide from stomach,” Nature, vol. 402, no. 6762, pp. 656–660, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Kojima, H. Hosoda, and K. Kangawa, “Purification and distribution of ghrelin: the natural endogenous ligand for the growth hormone secretagogue receptor,” Hormone Research, vol. 56, supplement 1, pp. 93–97, 2001. View at Scopus
  3. Y. Date, M. Kojima, H. Hosoda et al., “Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans,” Endocrinology, vol. 141, no. 11, pp. 4255–4261, 2000. View at Scopus
  4. G. Rindi, V. Necchi, A. Savio et al., “Characterisation of gastric ghrelin cells in man and other mammals: studies in adult and fetal tissues,” Histochemistry and Cell Biology, vol. 117, no. 6, pp. 511–519, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Solcia, G. Rindi, R. Buffa, R. Fiocca, and C. Capella, “Gastric endocrine cells: types, function and growth,” Regulatory Peptides, vol. 93, no. 1–3, pp. 31–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. A. D. Howard, S. D. Feighner, D. F. Cully et al., “A receptor in pituitary and hypothalamus that functions in growth hormone release,” Science, vol. 273, no. 5277, pp. 974–977, 1996. View at Scopus
  7. M. Patterson, K. G. Murphy, C. W. le Roux, M. A. Ghatei, and S. R. Bloom, “Characterization of ghrelin-like immunoreactivity in human plasma,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 4, pp. 2205–2211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Ariyasu, K. Takaya, T. Tagami et al., “Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 10, pp. 4753–4758, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Hosoda, M. Kojima, H. Matsuo, and K. Kangawa, “Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue,” Biochemical and Biophysical Research Communications, vol. 279, no. 3, pp. 909–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Sakata, K. Nakamura, M. Yamazaki et al., “Ghrelin-producing cells exist as two types of cells, closed- and opened-type cells, in the rat gastrointestinal tract,” Peptides, vol. 23, no. 3, pp. 531–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Korbonits, S. A. Bustin, M. Kojima et al., “The expression of the growth hormone secretagogue receptor ligand ghrelin in normal and abnormal human pituitary and other neuroendocrine tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 2, pp. 881–887, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Ghelardoni, V. Carnicelli, S. Frascarelli, S. Ronca-Testoni, and R. Zucchi, “Ghrelin tissue distribution: comparison between gene and protein expression,” Journal of Endocrinological Investigation, vol. 29, no. 2, pp. 115–121, 2006. View at Scopus
  13. S. Gnanapavan, B. Kola, S. A. Bustin et al., “The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 6, pp. 2988–2991, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Kanamoto, T. Akamizu, T. Tagami et al., “Genomic structure and characterization of the 5′-flanking region of the human ghrelin gene,” Endocrinology, vol. 145, no. 9, pp. 4144–4153, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Nakai, M. Kaneko, N. Nakao et al., “Identification of promoter region of ghrelin gene in human medullary thyroid carcinoma cell line,” Life Sciences, vol. 75, no. 18, pp. 2193–2201, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Seim, C. Collet, A. C. Herington, and L. K. Chopin, “Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts,” BMC Genomics, vol. 8, article 298, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Korbonits, A. P. Goldstone, M. Gueorguiev, and A. B. Grossman, “Ghrelin—a hormone with multiple functions,” Frontiers in Neuroendocrinology, vol. 25, no. 1, pp. 27–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Pemberton, P. Wimalasena, T. Yandle, S. Soule, and M. Richards, “C-terminal pro-ghrelin peptides are present in the human circulation,” Biochemical and Biophysical Research Communications, vol. 310, no. 2, pp. 567–573, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. S. Bang, S. G. Soule, T. G. Yandle, A. M. Richards, and C. J. Pemberton, “Characterisation of proghrelin peptides in mammalian tissue and plasma,” Journal of Endocrinology, vol. 192, no. 2, pp. 313–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. V. Zhang, P.-G. Ren, O. Avsian-Kretchmer et al., “Medicine: obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin's effects on food intake,” Science, vol. 310, no. 5750, pp. 996–999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Hosoda, M. Kojima, H. Matsuo, and K. Kangawa, “Purification and characterization of rat des-Gln14-ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor,” The Journal of Biological Chemistry, vol. 275, no. 29, pp. 21995–22000, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Zhu, Y. Cao, K. Voogd, and D. F. Steiner, “On the processing of proghrelin to ghrelin,” The Journal of Biological Chemistry, vol. 281, pp. 38867–38870, 2006.
  23. H. Hosoda, M. Kojima, T. Mizushima, S. Shimizu, and K. Kangawa, “Structural divergence of human ghrelin: identification of multiple ghrelin-derived molecules produced by post-translational processing,” The Journal of Biological Chemistry, vol. 278, no. 1, pp. 64–70, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Takahashi, T. Ida, T. Sato et al., “Production of n-octanoyl-modified ghrelin in cultured cells requires prohormone processing protease and ghrelin O-acyltransferase, as well as n-octanoic acid,” Journal of Biochemistry, vol. 146, no. 5, pp. 675–682, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Walia, A. Asadi, T. J. Kieffer, J. D. Johnson, and J.-P. Chanoine, “Ontogeny of ghrelin, obestatin, preproghrelin, and prohormone convertases in rat pancreas and stomach,” Pediatric Research, vol. 65, no. 1, pp. 39–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Nishi, H. Hiejima, H. Hosoda et al., “Ingested medium-chain fatty acids are directly utilized for the acyl modification of ghrelin,” Endocrinology, vol. 146, no. 5, pp. 2255–2264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Nishi, H. Mifune, and M. Kojima, “Ghrelin acylation by ingestion of medium-chain fatty acids,” Methods in Enzymology, vol. 514, pp. 303–315, 2012.
  28. J. A. Gutierrez, P. J. Solenberg, D. R. Perkins et al., “Ghrelin octanoylation mediated by an orphan lipid transferase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6320–6325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Yang, M. S. Brown, G. Liang, N. V. Grishin, and J. L. Goldstein, “Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone,” Cell, vol. 132, no. 3, pp. 387–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Nishi, H. Mifune, A. Yabuki et al., “Changes in subcellular distribution of n-octanoyl or n-decanoyl ghrelin in ghrelin-producing cells,” Frontiers in Endocrinology, vol. 4, article 84, 2013.
  31. M. Kojima and K. Kangawa, “Ghrelin: from gene to physiological function,” Results and Problems in Cell Differentiation, vol. 50, pp. 185–205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Ohgusu, K. Shirouzu, Y. Nakamura et al., “Ghrelin O-acyltransferase (GOAT) has a preference for n-hexanoyl-CoA over n-octanoyl-CoA as an acyl donor,” Biochemical and Biophysical Research Communications, vol. 386, no. 1, pp. 153–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Kojima and K. Kangawa, “Structure and function of ghrelin,” Results and Problems in Cell Differentiation, vol. 46, pp. 89–115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Yang, T.-J. Zhao, J. L. Goldstein, and M. S. Brown, “Inhibition of ghrelin O-acyltransferase (GOAT) by octanoylated pentapeptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 31, pp. 10750–10755, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. B. P. Barnett, Y. Hwang, M. S. Taylor et al., “Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor,” Science, vol. 330, no. 6011, pp. 1689–1692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. B. J. Teubner, J. T. Garretson, Y. Hwang, P. A. Cole, and T. J. Bartness, “Inhibition of ghrelin O-acyltransferase attenuates food deprivation-induced increases in ingestive behavior,” Hormones and Behavior, vol. 63, pp. 667–673, 2013.
  37. J. E. Darling, E. P. Prybolsky, M. Sieburg, and J. L. Hougland, “A fluorescent peptide substrate facilitates investigation of ghrelin recognition and acylation by ghrelin O-acyltransferase,” Analytical Biochemistry, vol. 437, pp. 68–76, 2013.
  38. C. R. González, M. J. Vázquez, M. López, and C. Diéguez, “Influence of chronic undernutrition and leptin on GOAT mRNA levels in rat stomach mucosa,” Journal of Molecular Endocrinology, vol. 41, pp. 415–421, 2008.
  39. L. Soriano-Guillén, V. Barrios, Á. Campos-Barros, and J. Argente, “Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation,” Journal of Pediatrics, vol. 144, no. 1, pp. 36–42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Kirchner, J. A. Gutierrez, P. J. Solenberg et al., “GOAT links dietary lipids with the endocrine control of energy balance,” Nature Medicine, vol. 15, pp. 741–745, 2009.
  41. T.-J. Zhao, G. Liang, R. L. Li et al., “Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7467–7472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. F. Davis, M. Perello, D. L. Choi et al., “GOAT induced ghrelin acylation regulates hedonic feeding,” Hormones and Behavior, vol. 62, pp. 598–604, 2012.
  43. H. Kirchner, K. M. Heppner, J. Holland, D. Kabra, M. H. Tschöp, and P. T. Pfluger, “Ablation of ghrelin O-acyltransferase does not improve glucose intolerance or body adiposity in mice on a leptin-deficient ob/ob background,” PLoS ONE, vol. 8, Article ID e61822, 2013.
  44. M. Goebel-Stengel, T. Hofmann, U. Elbelt et al., “The ghrelin activating enzyme ghrelin-O-acyltransferase (GOAT) is present in human plasma and expressed dependent on body mass index,” Peptides, vol. 43, pp. 13–19, 2013.
  45. M. Tschöp, C. Weyer, P. A. Tataranni, V. Devanarayan, E. Ravussin, and M. L. Heiman, “Circulating ghrelin levels are decreased in human obesity,” Diabetes, vol. 50, no. 4, pp. 707–709, 2001. View at Scopus
  46. N. Zhang, C. Yuan, Z. Li et al., “Meta-analysis of the relationship between obestatin and ghrelin levels and the ghrelin/obestatin ratio with respect to obesity,” American Journal of the Medical Sciences, vol. 341, no. 1, pp. 48–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Wadden, F. Cahill, P. Amini et al., “Serum acylated ghrelin concentrations in response to short-term overfeeding in normal weight, overweight, and obese men,” PLoS ONE, vol. 7, Article ID e45748, 2012.
  48. O. Gualillo, F. Lago, and C. Dieguez, “Introducing GOAT: a target for obesity and anti-diabetic drugs?” Trends in Pharmacological Sciences, vol. 29, no. 8, pp. 398–401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Dehlin, J. Liu, S. H. Yun et al., “Regulation of ghrelin structure and membrane binding by phosphorylation,” Peptides, vol. 29, no. 6, pp. 904–911, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Tanaka, Y. Hayashida, T. Iguchi, N. Nakao, N. Nakai, and K. Nakashima, “Organization of the mouse ghrelin gene and promoter: occurrence of a short noncoding first exon,” Endocrinology, vol. 142, no. 8, pp. 3697–3700, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Matsumoto, H. Hosoda, Y. Kitajima et al., “Structure-activity relationship of ghrelin: pharmacological study of ghrelin peptides,” Biochemical and Biophysical Research Communications, vol. 287, no. 1, pp. 142–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. M. A. Bednarek, S. D. Feighner, S.-S. Pong et al., “Structure—function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a,” Journal of Medicinal Chemistry, vol. 43, no. 23, pp. 4370–4376, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Chollet, K. Meyer, and A. G. Beck-Sickinger, “Ghrelin—a novel generation of anti-obesity drug: design, pharmacomodulation and biological activity of ghrelin analogues,” Journal of Peptide Science, vol. 15, no. 11, pp. 711–730, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. van Craenenbroeck, F. Gregoire, P. de Neef, P. Robberecht, and J. Perret, “Ala-scan of ghrelin (1-14): interaction with the recombinant human ghrelin receptor,” Peptides, vol. 25, no. 6, pp. 959–965, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Matsumoto, Y. Kitajima, T. Iwanami et al., “Structural similarity of ghrelin derivatives to peptidyl growth hormone secretagogues,” Biochemical and Biophysical Research Communications, vol. 284, no. 3, pp. 655–659, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. A. J. Beevers and A. Kukol, “Conformational flexibility of the peptide hormone ghrelin in solution and lipid membrane bound: a molecular dynamics study,” Journal of Biomolecular Structure and Dynamics, vol. 23, no. 4, pp. 357–363, 2006. View at Scopus
  57. R. De Ricco, D. Valensin, E. Gaggelli, and G. Valensin, “Conformation propensities of des-acyl-ghrelin as probed by CD and NMR,” Peptides, vol. 43, pp. 62–67, 2013.
  58. H. Hosoda, K. Doi, N. Nagaya et al., “Optimum collection and storage conditions for ghrelin measurements: octanoyl modification of ghrelin is rapidly hydrolyzed to desacyl ghrelin in blood samples,” Clinical Chemistry, vol. 50, no. 6, pp. 1077–1080, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Dornonville de la Cour, M. Björkqvist, A. K. Sandvik et al., “A-like cells in the rat stomach contain ghrelin and do not operate under gastrin control,” Regulatory Peptides, vol. 99, no. 2-3, pp. 141–150, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Y. Jeon, S. Lee, H. H. Kim et al., “Changes in plasma ghrelin concentration immediately after gastrectomy in patients with early gastric cancer,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 11, pp. 5392–5396, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. C. De Vriese, F. Gregoire, R. Lema-Kisoka, M. Waelbroeck, P. Robberecht, and C. Delporte, “Ghrelin degradation by serum and tissue homogenates: identification of the cleavage sites,” Endocrinology, vol. 145, no. 11, pp. 4997–5005, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Shanado, M. Kometani, H. Uchiyama, S. Koizumi, and N. Teno, “Lysophospholipase I identified as a ghrelin deacylation enzyme in rat stomach,” Biochemical and Biophysical Research Communications, vol. 325, no. 4, pp. 1487–1494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Akamizu, T. Shinomiya, T. Irako et al., “Separate measurement of plasma levels of acylated and desacyl ghrelin in healthy subjects using a new direct ELISA assay,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 1, pp. 6–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. C. De Vriese, M. Hacquebard, F. Gregoire, Y. Carpentier, and C. Delporte, “Ghrelin interacts with human plasma lipoproteins,” Endocrinology, vol. 148, no. 5, pp. 2355–2362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. B. Li, E. G. Duysen, and O. Lockridge, “The butyrylcholinesterase knockout mouse is obese on a high-fat diet,” Chemico-Biological Interactions, vol. 175, no. 1–3, pp. 88–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. N. J. Beaumont, V. O. Skinner, T. M.-M. Tan et al., “Ghrelin can bind to a species of high density lipoprotein associated with paraoxonase,” The Journal of Biological Chemistry, vol. 278, no. 11, pp. 8877–8880, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Gröschl, R. Wagner, J. Dötsch, W. Rascher, and M. Rauh, “Preanalytical influences on the measurement of ghrelin,” Clinical Chemistry, vol. 48, pp. 1114–1116, 2002.
  68. U. Espelund, T. K. Hansen, H. Ørskov, and J. Frystyk, “Assessment of ghrelin,” APMIS, Supplement, vol. 111, no. 109, pp. 140–145, 2003. View at Scopus
  69. A. Stengel, D. Keire, M. Goebel et al., “The RAPID method for blood processing yields new insight in plasma concentrations and molecular forms of circulating gut peptides,” Endocrinology, vol. 150, no. 11, pp. 5113–5118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. H. Hosoda and K. Kangawa, “Standard sample collections for blood ghrelin measurements,” Methods in Enzymology, vol. 514, pp. 113–126, 2012.
  71. A. Tvarijonaviciute, S. Martínez-Subiela, and J. J. Ceron, “Influence of different storage conditions and anticoagulants on the measurement of total and acylated ghrelin in dogs: a preliminary study,” Veterinary Record, vol. 172, article 289, 2013.
  72. J. Tong, N. Dave, G. M. Mugundu et al., “The pharmacokinetics of acyl, des-acyl, and total ghrelin in healthy human subjects,” European Journal of Endocrinology, vol. 168, pp. 821–828, 2013.
  73. R. C. Paulo, R. Brundage, M. Cosma, K. L. Mielke, C. Y. Bowers, and J. D. Veldhuis, “Estrogen elevates the peak overnight production rate of acylated ghrelin,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4440–4447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. E. T. Vestergaard, T. K. Hansen, L. C. Gormsen et al., “Constant intravenous ghrelin infusion in healthy young men: clinical pharmacokinetics and metabolic effects,” American Journal of Physiology—Endocrinology and Metabolism, vol. 292, no. 6, pp. E1829–E1836, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. S. C. Danna, “Time-point measurement is critical in hormone characterization,” Critical Care, vol. 10, no. 2, article 411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. C. De Vriese, F. Grégoire, P. de Neef, P. Robberecht, and C. Delporte, “Ghrelin is produced by the human erythroleukemic HEL cell line and involved in an autocrine pathway leading to cell proliferation,” Endocrinology, vol. 146, no. 3, pp. 1514–1522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. E. Staes, E. Rozet, B. Učakar, P. Hubert, and V. Préat, “Validation of a method for the quantitation of ghrelin and unacylated ghrelin by HPLC,” Journal of Pharmaceutical and Biomedical Analysis, vol. 51, no. 3, pp. 633–639, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Prudom, J. Liu, J. Patrie et al., “Comparison of competitive radioimmunoassays and two-site sandwich assays for the measurement and interpretation of plasma ghrelin levels,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 5, pp. 2351–2358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Kosowicz, A. Baumann-Antczak, H. Zamysłowska, and J. Sowiński, “Technological difficulties in ghrelin and obestatin assays,” Endokrynologia Polska, vol. 62, no. 4, pp. 336–339, 2011.
  80. M. Simonsson, S. Eriksson, R. Hakanson et al., “Endocrine cells in the human oxyntic mucosa. A histochemical study,” Scandinavian Journal of Gastroenterology, vol. 23, no. 9, pp. 1089–1099, 1988. View at Scopus
  81. A. Stengel, M. Goebel, L. Wang, and Y. Taché, “Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: role as regulators of food intake and body weight,” Peptides, vol. 31, no. 2, pp. 357–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Krsek, M. Rosická, M. Haluzík et al., “Plasma ghrelin levels in patients with short bowel syndrome,” Endocrine Research, vol. 28, pp. 27–33, 2002.
  83. Y. Date, M. Nakazato, S. Hashiguchi et al., “Ghrelin is present in pancreatic α-cells of humans and rats and stimulates insulin secretion,” Diabetes, vol. 51, no. 1, pp. 124–129, 2002. View at Scopus
  84. H. Kageyama, H. Funahashi, M. Hirayama et al., “Morphological analysis of ghrelin and its receptor distribution in the rat pancreas,” Regulatory Peptides, vol. 126, no. 1-2, pp. 67–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Volante, E. Allìa, P. Gugliotta et al., “Expression of ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related endocrine tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 3, pp. 1300–1308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. C. L. Prado, A. E. Pugh-Bernard, L. Elghazi, B. Sosa-Pineda, and L. Sussel, “Ghrelin cells replace insulin-producing β cells in two mouse models of pancreas development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2924–2929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. N. Wierup, H. Svensson, H. Mulder, and F. Sundler, “The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas,” Regulatory Peptides, vol. 107, no. 1–3, pp. 63–69, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Wierup and F. Sundler, “Ultrastructure of islet ghrelin cells in the human fetus,” Cell and Tissue Research, vol. 319, no. 3, pp. 423–428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. K. C. Lai, C. H. K. Cheng, and P. S. Leung, “The ghrelin system in acinar cells: localization, expression, and regulation in the exocrine pancreas,” Pancreas, vol. 35, no. 3, pp. e1–e8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Lu, J.-L. Guan, Q.-P. Wang et al., “Immunocytochemical observation of ghrelin-containing neurons in the rat arcuate nucleus,” Neuroscience Letters, vol. 321, no. 3, pp. 157–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Korbonits, M. Kojima, K. Kangawa, and A. B. Grossman, “Presence of ghrelin in normal and adenomatous human pituitary,” Endocrine, vol. 14, no. 1, pp. 101–104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. K. K. McKee, O. C. Palyha, S. D. Feighner et al., “Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors,” Molecular Endocrinology, vol. 11, no. 4, pp. 415–423, 1997. View at Publisher · View at Google Scholar · View at Scopus
  93. C. P. Tan, K. K. McKee, Q. Liu et al., “Cloning and characterization of a human and murine T-cell orphan G- protein-coupled receptor similar to the growth hormone secretagogue and neurotensin receptors,” Genomics, vol. 52, no. 2, pp. 223–229, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. R. G. Smith, O. C. Palyha, S. D. Feighner et al., “Growth hormone releasing substances: types and their receptors,” Hormone Research, vol. 51, supplement 3, pp. 1–8, 1999. View at Scopus
  95. C. Gauna, B. van de Zande, A. van Kerkwijk, A. P. N. Themmen, A. J. van der Lely, and P. J. D. Delhanty, “Unacylated ghrelin is not a functional antagonist but a full agonist of the type 1a growth hormone secretagogue receptor (GHS-R),” Molecular and Cellular Endocrinology, vol. 274, no. 1-2, pp. 30–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. E. Staes, P.-A. Absil, L. Lins et al., “Acylated and unacylated ghrelin binding to membranes and to ghrelin receptor: towards a better understanding of the underlying mechanisms,” Biochimica et Biophysica Acta, vol. 1798, no. 11, pp. 2102–2113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. B. Holst, A. Cygankiewicz, T. H. Jensen, M. Ankersen, and T. W. Schwartz, “High constitutive signaling of the ghrelin receptor—identification of a potent inverse agonist,” Molecular Endocrinology, vol. 17, no. 11, pp. 2201–2210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. P. S. Petersen, D. P. D. Woldbye, A. N. Madsen et al., “In vivo characterization of high basal signaling from the ghrelin receptor,” Endocrinology, vol. 150, no. 11, pp. 4920–4930, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Damian, J. Marie, J.-P. Leyris et al., “High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs,” The Journal of Biological Chemistry, vol. 287, no. 6, pp. 3630–3641, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Herrick-Davis, “Functional significance of serotonin receptor dimerization,” Experimental Brain Research, vol. 230, pp. 375–386, 2013.
  101. R. J. Ward, T. R. Xu, and G. Milligan, “GPCR oligomerization and receptor trafficking,” Methods in Enzymology, vol. 521, pp. 69–90, 2013.
  102. C.-B. Chan and C. H. K. Cheng, “Identification and functional characterization of two alternatively spliced growth hormone secretagogue receptor transcripts from the pituitary of black seabream Acanthopagrus schlegeli,” Molecular and Cellular Endocrinology, vol. 214, no. 1-2, pp. 81–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. B. Holst, E. Brandt, A. Bach, A. Heding, and T. W. Schwartz, “Nonpeptide and peptide growth hormone secretagogues act both as ghrelin receptor agonist and as positive or negative allosteric modulators of ghrelin signaling,” Molecular Endocrinology, vol. 19, no. 9, pp. 2400–2411, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. H. Jiang, L. Betancourt, and R. G. Smith, “Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers,” Molecular Endocrinology, vol. 20, no. 8, pp. 1772–1785, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. K. Takahashi, C. Furukawa, A. Takano et al., “The neuromedin U-growth hormone secretagogue receptor 1b/neurotensin receptor 1 oncogenic signaling pathway as a therapeutic target for lung cancer,” Cancer Research, vol. 66, no. 19, pp. 9408–9419, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. K.-M. Chu, K. B. S. Chow, P.-K. Leung et al., “Over-expression of the truncated ghrelin receptor polypeptide attenuates the constitutive activation of phosphatidylinositol-specific phospholipase C by ghrelin receptors but has no effect on ghrelin-stimulated extracellular signal-regulated kinase 1/2 activity,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 4, pp. 752–764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. P.-K. Leung, K. B. S. Chow, P.-N. Lau et al., “The truncated ghrelin receptor polypeptide (GHS-R1b) acts as a dominant-negative mutant of the ghrelin receptor,” Cellular Signalling, vol. 19, no. 5, pp. 1011–1022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. K. B. S. Chow, P.-K. Leung, C. H. K. Cheng, W.-T. Cheung, and H. Wise, “The constitutive activity of ghrelin receptors is decreased by co-expression with vasoactive prostanoid receptors when over-expressed in human embryonic kidney 293 cells,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 11, pp. 2627–2637, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. K. B. S. Chow, J. Sun, K. M. Chu, W. Tai Cheung, C. H. Cheng, and H. Wise, “The truncated ghrelin receptor polypeptide (GHS-R1b) is localized in the endoplasmic reticulum where it forms heterodimers with ghrelin receptors (GHS-R1a) to attenuate their cell surface expression,” Molecular and Cellular Endocrinology, vol. 348, no. 1, pp. 247–254, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Rediger, P. Tarnow, A. Bickenbach et al., “Heterodimerization of hypothalamic g-protein-coupled receptors involved in weight regulation,” Obesity Facts, vol. 2, no. 2, pp. 80–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Rediger, C. L. Piechowski, C.-X. Yi et al., “Mutually opposite signal modulation by hypothalamic heterodimerization of ghrelin and melanocortin-3 receptors,” The Journal of Biological Chemistry, vol. 286, no. 45, pp. 39623–39631, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Kern, R. Albarran-Zeckler, H. Walsh, and R. Smith, “Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism,” Neuron, vol. 73, no. 2, pp. 317–332, 2012. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Park, H. Jiang, H. Zhang, and R. G. Smith, “Modification of ghrelin receptor signaling by somatostatin receptor-5 regulates insulin release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 19003–19008, 2012.
  114. H. Schellekens, T. G. Dinan, and J. F. Cryan, “Taking two to tango: a role for ghrelin receptor heterodimerization in stress and reward,” Frontiers in Neuroscience, vol. 7, article 148, 2013.
  115. H. Schellekens, W. E. van Oeffelen, T. G. Dinan, and J. F. Cryan, “Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling,” The Journal of Biological Chemistry, vol. 288, pp. 181–191, 2013.
  116. P. J. Currie, C. S. John, M. L. Nicholson, C. D. Chapman, and K. E. Loera, “Hypothalamic paraventricular 5-hydroxytryptamine inhibits the effects of ghrelin on eating and energy substrate utilization,” Pharmacology Biochemistry and Behavior, vol. 97, no. 1, pp. 152–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Mary, J. A. Fehrentz, M. Damian et al., “Heterodimerization with Its splice variant blocks the ghrelin receptor 1a in a non-signaling conformation: a study with a purified heterodimer assembled into lipid discs,” The Journal of Biological Chemistry, vol. 288, pp. 24656–24665, 2013.
  118. T. Inhoff, B. Wiedenmann, B. F. Klapp, H. Mönnikes, and P. Kobelt, “Is desacyl ghrelin a modulator of food intake?” Peptides, vol. 30, no. 5, pp. 991–994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. P. Cassoni, C. Ghé, T. Marrocco et al., “Expression of ghrelin and biological activity of specific receptors for ghrelin and des-acyl ghrelin in human prostate neoplasms and related cell lines,” European Journal of Endocrinology, vol. 150, no. 2, pp. 173–184, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. C. De Vriese and C. Delporte, “Influence of ghrelin on food intake and energy homeostasis,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 10, no. 5, pp. 615–619, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Inoue, K. Nakahara, K. Kangawa, and N. Murakami, “Transitional change in rat fetal cell proliferation in response to ghrelin and des-acyl ghrelin during the last stage of pregnancy,” Biochemical and Biophysical Research Communications, vol. 393, no. 3, pp. 455–460, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. P. Y. Tian and X. M. Fan, “The proliferative effects of ghrelin on human gastric cancer AGS cells,” Journal of Digestive Diseases, vol. 13, pp. 453–458, 2012.
  123. H. Yu, G. Xu, and X. Fan, “The effect of ghrelin on cell proliferation in small intestinal IEC-6 cells,” Biomedicine & Pharmacotherapy, vol. 67, pp. 235–239, 2013.
  124. G. Baldanzi, N. Filigheddu, S. Cutrupi et al., “Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT,” Journal of Cell Biology, vol. 159, no. 6, pp. 1029–1037, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Granata, F. Settanni, L. Biancone et al., “Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic β-cells and human islets: involvement of 3′,5′-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and phosphatidyl inositol 3-kinase/Akt signaling,” Endocrinology, vol. 148, no. 2, pp. 512–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. P. V. Lear, M. J. Iglesias, S. Feijóo-Bandín et al., “Des-acyl ghrelin has specific binding sites and different metabolic effects from ghrelin in cardiomyocytes,” Endocrinology, vol. 151, no. 7, pp. 3286–3298, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. R. Granata, F. Settanni, M. Julien et al., “Des-acyl ghrelin fragments and analogues promote survival of pancreatic β-cells and human pancreatic islets and prevent diabetes in streptozotocin-treated rats,” Journal of Medicinal Chemistry, vol. 55, no. 6, pp. 2585–2596, 2012. View at Publisher · View at Google Scholar · View at Scopus
  128. P. Miegueu, D. St Pierre, F. Broglio, and K. Cianflone, “Effect of desacyl ghrelin, obestatin and related peptides on triglyceride storage, metabolism and GHSR signaling in 3T3-L1 adipocytes,” Journal of Cellular Biochemistry, vol. 112, no. 2, pp. 704–714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. N. M. Thompson, D. A. S. Gill, R. Davies et al., “Ghrelin and des-octanoyl ghrelin promote adipogenesis directlyin vivo by a mechanism independent of GHS-R1a,” Endocrinology, vol. 145, no. 1, pp. 234–242, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. P. J. D. Delhanty and A. J. van der Lely, “Ghrelin and glucose homeostasis,” Peptides, vol. 32, no. 11, pp. 2309–2318, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. C. Gauna, P. J. D. Delhanty, L. J. Hofland et al., “Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 2, pp. 1055–1060, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Gauna, R. M. Kiewiet, J. A. M. J. L. Janssen et al., “Unacylated ghrelin acts as a potent insulin secretagogue in glucose-stimulated conditions,” American Journal of Physiology—Endocrinology and Metabolism, vol. 293, no. 3, pp. E697–E704, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Inoue, K. Nakahara, K. Maruyama et al., “Central and peripheral des-acyl ghrelin regulates body temperature in rats,” Biochemical and Biophysical Research Communications, vol. 430, pp. 278–283, 2013.
  134. Y. Date, N. Murakami, M. Kojima et al., “Central effects of a novel acylated peptide, ghrelin, on growth hormone release in rats,” Biochemical and Biophysical Research Communications, vol. 275, no. 2, pp. 477–480, 2000. View at Publisher · View at Google Scholar · View at Scopus
  135. Y. Hataya, T. Akamizu, K. Takaya et al., “A low dose of ghrelin stimulates growth hormone (GH) release synergistically with GH-releasing hormone in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4552–4555, 2001. View at Publisher · View at Google Scholar · View at Scopus
  136. M. M. Malagón, R. M. Luque, E. Ruiz-Guerrero et al., “Intracellular signaling mechanisms mediating ghrelin-stimulated growth hormone release in somatotropes,” Endocrinology, vol. 144, no. 12, pp. 5372–5380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. K. Takaya, H. Ariyasu, N. Kanamoto et al., “Ghrelin strongly stimulates growth hormone (GH) release in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 85, no. 12, pp. 4908–4911, 2000. View at Publisher · View at Google Scholar · View at Scopus
  138. A. Rodríguez, J. Gómez-Ambrosi, V. Catalán et al., “Vasodilator effect of ghrelin in the rat aorta,” Endocrinología y Nutrición, vol. 55, pp. 448–453, 2008.
  139. V. Popovic, D. Miljic, D. Micic et al., “Ghrelin main action on the regulation of growth hormone release is exerted at hypothalamic level,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 7, pp. 3450–3453, 2003. View at Publisher · View at Google Scholar · View at Scopus
  140. Y. Date, N. Murakami, K. Toshinai et al., “The role of the gastric afferent vagal nerve in Ghrelin-induced feeding and growth hormone secretion in rats,” Gastroenterology, vol. 123, no. 4, pp. 1120–1128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. D. L. Williams, H. J. Grill, D. E. Cummings, and J. M. Kaplan, “Vagotomy dissociates short- and long-term controls of circulating ghrelin,” Endocrinology, vol. 144, no. 12, pp. 5184–5187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  142. E. Arvat, M. Maccario, L. di Vito et al., “Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 3, pp. 1169–1174, 2001. View at Publisher · View at Google Scholar · View at Scopus
  143. P. Koutkia, B. Canavan, J. Breu, M. L. Johnson, and S. K. Grinspoon, “Nocturnal ghrelin pulsatility and response to growth hormone secretagogues in healthy men,” American Journal of Physiology—Endocrinology and Metabolism, vol. 287, no. 3, pp. E506–E512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. A. M. Avram, C. A. Jaffe, K. V. Symons, and A. L. Barkan, “Endogenous circulating ghrelin does not mediate growth hormone rhythmicity or response to fasting,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 5, pp. 2982–2987, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. A. F. Muller, S. W. J. Lamberts, J. A. Janssen et al., “Ghrelin drives GH secretion during fasting in man,” European Journal of Endocrinology, vol. 146, no. 2, pp. 203–207, 2002. View at Scopus
  146. D. Grouselle, E. Chaillou, A. Caraty et al., “Pulsatile cerebrospinal fluid and plasma ghrelin in relation to growth hormone secretion and food intake in the sheep,” Journal of Neuroendocrinology, vol. 20, no. 10, pp. 1138–1146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. R. Nass, B. D. Gaylinn, and M. O. Thorner, “The role of ghrelin in GH secretion and GH disorders,” Molecular and Cellular Endocrinology, vol. 340, no. 1, pp. 10–14, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. L. L. Anderson and C. G. Scanes, “Nanobiology and physiology of growth hormone secretion,” Experimental Biology and Medicine, vol. 237, no. 2, pp. 126–142, 2012. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Pantel, M. Legendre, S. Cabrol et al., “Loss of constitutive activity of the growth hormone secretagogue receptor in familial short stature,” The Journal of Clinical Investigation, vol. 116, no. 3, pp. 760–768, 2006. View at Publisher · View at Google Scholar · View at Scopus
  150. H.-J. Wang, F. Geller, A. Dempfle et al., “Ghrelin receptor gene: identification of several sequence variants in extremely obese children and adolescents, healthy normal-weight and underweight students, and children with short normal stature,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 1, pp. 157–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. C. De Vriese, J. Perret, and C. Delporte, “Current and future clinical applications of ghrelin,” in Endocrine Disease, IConcept Press Ltd, 2013.
  152. H. Ariyasu, K. Takaya, H. Iwakura et al., “Transgenic mice overexpressing des-acyl ghrelin show small phenotype,” Endocrinology, vol. 146, no. 1, pp. 355–364, 2005. View at Publisher · View at Google Scholar · View at Scopus
  153. S. R. Correa-Silva, S. O. Nascif, and A.-M. J. Lengyel, “Decreased GH secretion and enhanced ACTH and cortisol release after ghrelin administration in Cushing's disease: comparison with GH-releasing peptide-6 (GHRP-6) and GHRH,” Pituitary, vol. 9, no. 2, pp. 101–107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. J. Kamegai, H. Tamura, T. Shimizu, S. Ishii, H. Sugihara, and I. Wakabayashi, “Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats,” Diabetes, vol. 50, no. 7–12, pp. 2438–2443, 2001. View at Scopus
  155. M. Nakazato, N. Murakami, Y. Date et al., “A role for ghrelin in the central regulation of feeding,” Nature, vol. 409, no. 6817, pp. 194–198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  156. M. Shintani, Y. Ogawa, K. Ebihara et al., “Rapid publication ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway,” Diabetes, vol. 50, no. 2, pp. 227–232, 2001. View at Scopus
  157. M. Tschöp, D. L. Smiley, and M. L. Heiman, “Ghrelin induces adiposity in rodents,” Nature, vol. 407, no. 6806, pp. 908–913, 2000. View at Publisher · View at Google Scholar · View at Scopus
  158. A. M. Wren, C. J. Small, C. R. Abbott et al., “Ghrelin causes hyperphagia and obesity in rats,” Diabetes, vol. 50, no. 7–12, pp. 2540–2547, 2001. View at Scopus
  159. A. M. Wren, L. J. Seal, M. A. Cohen et al., “Ghrelin enhances appetite and increases food intake in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 12, pp. 5992–5995, 2001. View at Publisher · View at Google Scholar · View at Scopus
  160. D. E. Cummings and M. W. Schwartz, “Genetics and pathophysiology of human obesity,” Annual Review of Medicine, vol. 54, pp. 453–471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Tschöp, R. Wawarta, R. L. Riepl et al., “Post-prandial decrease of circulating human ghrelin levels,” Journal of Endocrinological Investigation, vol. 24, no. 6, pp. RC19–RC21, 2001. View at Scopus
  162. J. M. Frecka and R. D. Mattes, “Possible entrainment of ghrelin to habitual meal patterns in humans,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 294, no. 3, pp. G699–G707, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. T. C. Kirkham and S. A. Tucci, “Endocannabinoids in appetite control and the treatment of obesity,” CNS and Neurological Disorders—Drug Targets, vol. 5, no. 3, pp. 275–292, 2006. View at Publisher · View at Google Scholar · View at Scopus
  164. B. Kola, E. Hubina, S. A. Tucci et al., “Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase,” The Journal of Biological Chemistry, vol. 280, no. 26, pp. 25196–25201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  165. M. A. Cowley, R. G. Smith, S. Diano et al., “The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis,” Neuron, vol. 37, no. 4, pp. 649–661, 2003. View at Publisher · View at Google Scholar · View at Scopus
  166. K. Venkova and B. Greenwood-Van Meerveld, “Application of ghrelin to gastrointestinal diseases,” Current Opinion in Investigational Drugs, vol. 9, no. 10, pp. 1103–1107, 2008. View at Scopus
  167. Y. Date, “Ghrelin and the vagus nerve,” Methods in Enzymology, vol. 514, pp. 261–269, 2012.
  168. A. Mano-Otagiri, T. Nemoto, A. Sekino et al., “Growth hormone-releasing hormone (GHRH) neurons in the arcuate nucleus (Arc) of the hypothalamus are decreased in transgenic rats whose expression of ghrelin receptor is attenuated: evidence that ghrelin receptor is involved in the up-regulation of GHRH expression in the arc,” Endocrinology, vol. 147, no. 9, pp. 4093–4103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. P. K. Olszewski, D. Li, M. K. Grace, C. J. Billington, C. M. Kotz, and A. S. Levine, “Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus,” Peptides, vol. 24, no. 4, pp. 597–602, 2003. View at Publisher · View at Google Scholar · View at Scopus
  170. Z. B. Andrews, Z.-W. Liu, N. Walllingford et al., “UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals,” Nature, vol. 454, no. 7206, pp. 846–851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  171. H. Y. Chen, M. E. Trumbauer, A. S. Chen et al., “Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein,” Endocrinology, vol. 145, no. 6, pp. 2607–2612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  172. B. Kola, I. Farkas, M. Christ-Crain et al., “The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system,” PLoS ONE, vol. 3, no. 3, Article ID e1797, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. L. L. Anderson, S. Jeftinija, and C. G. Scanes, “Growth hormone secretion: molecular and cellular mechanisms and in vivo approaches,” Experimental Biology and Medicine, vol. 229, no. 4, pp. 291–302, 2004. View at Scopus
  174. D. G. Hardie, “AMPK: a key regulator of energy balance in the single cell and the whole organism,” International Journal of Obesity, vol. 32, supplement 4, pp. S7–S12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  175. A. Woods, K. Dickerson, R. Heath et al., “Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells,” Cell Metabolism, vol. 2, no. 1, pp. 21–33, 2005. View at Publisher · View at Google Scholar · View at Scopus
  176. U. Andersson, K. Filipsson, C. R. Abbott et al., “AMP-activated protein kinase plays a role in the control of food intake,” The Journal of Biological Chemistry, vol. 279, no. 13, pp. 12005–12008, 2004. View at Publisher · View at Google Scholar · View at Scopus
  177. Y. Minokoshi, Y.-B. Kim, O. D. Peroni et al., “Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase,” Nature, vol. 415, no. 6869, pp. 339–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  178. B. Kola and M. Korbonits, “Shedding light on the intricate puzzle of ghrelin's effects on appetite regulation,” Journal of Endocrinology, vol. 202, no. 2, pp. 191–198, 2009. View at Publisher · View at Google Scholar · View at Scopus
  179. C. T. Lim, B. Kola, and M. Korbonits, “AMPK as a mediator of hormonal signalling,” Journal of Molecular Endocrinology, vol. 44, no. 2, pp. 87–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  180. P. J. Verhulst, S. Janssen, J. Tack, and I. Depoortere, “Role of the AMP-activated protein kinase (AMPK) signaling pathway in the orexigenic effects of endogenous ghrelin,” Regulatory Peptides, vol. 173, no. 1–3, pp. 27–35, 2012. View at Publisher · View at Google Scholar · View at Scopus
  181. D. A. Velásquez, G. Martínez, A. Romero et al., “The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin,” Diabetes, vol. 60, pp. 1177–1185, 2011.
  182. L. Martins, D. Fernández-Mallo, M. G. Novelle et al., “Hypothalamic mTOR signaling mediates the orexigenic action of ghrelin,” PLoS ONE, vol. 7, Article ID e46923, 2012.
  183. W. Zhang, C. Zhang, D. Fritze, B. Chai, J. Li, and M. Mulholland, “Modulation of food intake by mTOR signaling in the dorsal motor nucleus of vagus in male rats: focus on ghrelin and nesfatin-1,” Experimental Physiology, 2013. View at Publisher · View at Google Scholar
  184. S. Wullschleger, R. Loewith, and M. N. Hall, “TOR signaling in growth and metabolism,” Cell, vol. 124, no. 3, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at Scopus
  185. L. Wang, J. C. Lawrence Jr., T. W. Sturgill, and T. E. Harris, “Mammalian target of rapamycin complex 1 (mTORC1) activity is associated with phosphorylation of raptorby mTOR,” The Journal of Biological Chemistry, vol. 284, no. 22, pp. 14693–14697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. A. K. Saha, X. J. Xu, E. Lawson et al., “Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle,” Diabetes, vol. 59, no. 10, pp. 2426–2434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. J. Roa and M. Tena-Sempere, “Energy balance and puberty onset: emerging role of central mTOR signaling,” Trends in Endocrinology and Metabolism, vol. 21, no. 9, pp. 519–528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Laplante and D. M. Sabatini, “mTOR signaling in growth control and disease,” Cell, vol. 149, no. 2, pp. 274–293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  189. S. C. Woods, R. J. Seeley, and D. Cota, “Regulation of food intake through hypothalamic signaling networks involving mTOR,” Annual Review of Nutrition, vol. 28, pp. 295–311, 2008. View at Publisher · View at Google Scholar · View at Scopus
  190. D. Cota, K. Proulx, K. A. B. Smith et al., “Hypothalamic mTOR signaling regulates food intake,” Science, vol. 312, no. 5775, pp. 927–930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  191. N. Kimura, C. Tokunaga, S. Dalal et al., “A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway,” Genes to Cells, vol. 8, no. 1, pp. 65–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  192. E. R. Ropelle, J. R. Pauli, M. F. A. Fernandes et al., “A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamyein (mTOR) in high-protein diet-induced weight loss,” Diabetes, vol. 57, no. 3, pp. 594–605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  193. E. C. Villanueva, H. Münzberg, D. Cota et al., “Complex regulation of mammalian target of rapamycin complex 1 in the basomedial hypothalamus by leptin and nutritional status,” Endocrinology, vol. 150, no. 10, pp. 4541–4551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  194. N. Hay and N. Sonenberg, “Upstream and downstream of mTOR,” Genes and Development, vol. 18, no. 16, pp. 1926–1945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  195. D. Stevanovic, V. Trajkovic, S. Müller-Lühlhoff et al., “Ghrelin-induced food intake and adiposity depend on central mTORC1/S6K1 signaling,” Molecular and Cellular Endocrinology, vol. 381, pp. 280–290, 2013.
  196. R. Lage, M. J. Vázquez, L. Varela et al., “Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender,” The FASEB Journal, vol. 24, no. 8, pp. 2670–2679, 2010. View at Publisher · View at Google Scholar · View at Scopus
  197. H. van Thuijl, B. Kola, and M. Korbonits, “Appetite and metabolic effects of ghrelin and cannabinoids: involvement of AMP-activated protein kinase,” Vitamins and Hormones, vol. 77, pp. 121–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. B. Kola, G. Wittman, I. Bodnár et al., “The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release,” The FASEB Journal, 2013. View at Publisher · View at Google Scholar
  199. C. T. Lim, B. Kola, D. Feltrin et al., “Ghrelin and cannabinoids require the ghrelin receptor to affect cellular energy metabolism,” Molecular and Cellular Endocrinology, vol. 365, pp. 303–308, 2013.
  200. Y. Sun, P. Wang, H. Zheng, and R. G. Smith, “Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4679–4684, 2004. View at Publisher · View at Google Scholar · View at Scopus
  201. Y. Sun, S. Ahmed, and R. G. Smith, “Deletion of ghrelin impairs neither growth nor appetite,” Molecular and Cellular Biology, vol. 23, no. 22, pp. 7973–7981, 2003. View at Publisher · View at Google Scholar · View at Scopus
  202. G. Burdyga, A. Varro, R. Dimaline, D. G. Thompson, and G. J. Dockray, “Ghrelin receptors in rat and human nodose ganglia: putative role in regulating CB-1 and MCH receptor abundance,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 290, no. 6, pp. G1289–G1297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  203. I. Sakata, M. Yamazaki, K. Inoue, Y. Hayashi, K. Kangawa, and T. Sakai, “Growth hormone secretagogue receptor expression in the cells of the stomach-projected afferent nerve in the rat nodose ganglion,” Neuroscience Letters, vol. 342, no. 3, pp. 183–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  204. C. W. le Roux, N. M. Neary, T. J. Halsey et al., “Ghrelin does not stimulate food intake in patients with surgical procedures involving vagotomy,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 8, pp. 4521–4524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  205. R. Takeno, Y. Okimura, G. Iguchi et al., “Intravenous administration of ghrelin stimulates growth hormone secretion in vagotomized patients as well as normal subjects,” European Journal of Endocrinology, vol. 151, no. 4, pp. 447–450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  206. M. Arnold, A. Mura, W. Langhans, and N. Geary, “Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat,” Journal of Neuroscience, vol. 26, no. 43, pp. 11052–11060, 2006. View at Publisher · View at Google Scholar · View at Scopus
  207. D. L. Williams, H. J. Grill, D. E. Cummings, and J. M. Kaplan, “Overfeeding-induced weight gain suppresses plasma ghrelin levels in rats,” Journal of Endocrinological Investigation, vol. 29, no. 10, pp. 863–868, 2006. View at Scopus
  208. E. Palik, E. Baranyi, Z. Melczer et al., “Elevated serum acylated (biologically active) ghrelin and resistin levels associate with pregnancy-induced weight gain and insulin resistance,” Diabetes Research and Clinical Practice, vol. 76, no. 3, pp. 351–357, 2007. View at Publisher · View at Google Scholar · View at Scopus
  209. H. Hosojima, T. Togo, T. Odawara et al., “Early effects of olanzapine on serum levels of ghrelin, adiponectin and leptin in patients with schizophrenia,” Journal of Psychopharmacology, vol. 20, no. 1, pp. 75–79, 2006. View at Publisher · View at Google Scholar · View at Scopus
  210. E. E. Otukonyong, M. G. Dube, R. Torto, P. S. Kalra, and S. P. Kalra, “High-fat diet-induced ultradian leptin and insulin hypersecretion are absent in obesity-resistant rats,” Obesity Research, vol. 13, no. 6, pp. 991–999, 2005. View at Scopus
  211. J. Q. Purnell, D. Cummings, and D. S. Weigle, “Changes in 24-h area-under-the-curve ghrelin values following diet-induced weight loss are associated with loss of fat-free mass, but not with changes in fat mass, insulin levels or insulin sensitivity,” International Journal of Obesity, vol. 31, no. 2, pp. 385–389, 2007. View at Publisher · View at Google Scholar · View at Scopus
  212. R. R. Kraemer and V. D. Castracane, “Exercise and humoral mediators of peripheral energy balance: ghrelin and adiponectin,” Experimental Biology and Medicine, vol. 232, no. 2, pp. 184–194, 2007. View at Scopus
  213. N. Nagaya, M. Uematsu, M. Kojima et al., “Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors,” Circulation, vol. 104, no. 17, pp. 2034–2038, 2001. View at Scopus
  214. Y. Shimizu, N. Nagaya, T. Isobe et al., “Increased plasma ghrelin level in lung cancer cachexia,” Clinical Cancer Research, vol. 9, no. 2, pp. 774–778, 2003. View at Scopus
  215. I. Wolf, S. Sadetzki, H. Kanely et al., “Adiponectin, ghrelin, and leptin in cancer cachexia in breast and colon cancer patients,” Cancer, vol. 106, no. 4, pp. 966–973, 2006. View at Publisher · View at Google Scholar · View at Scopus
  216. J. L. Chan, E. C. Mun, V. Stoyneva, C. S. Mantzoros, and A. B. Goldfine, “Peptide YY levels are elevated after gastric bypass surgery,” Obesity, vol. 14, no. 2, pp. 194–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  217. D. E. Cummings, D. S. Weigle, R. S. Frayo et al., “Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery,” The New England Journal of Medicine, vol. 346, no. 21, pp. 1623–1630, 2002. View at Publisher · View at Google Scholar · View at Scopus
  218. G. Frühbeck, A. Diez-Caballero, M. J. Gil et al., “The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus,” Obesity Surgery, vol. 14, no. 5, pp. 606–612, 2004. View at Publisher · View at Google Scholar · View at Scopus
  219. J. Korner, W. Inabnet, I. M. Conwell et al., “Differential effects of gastric bypass and banding on circulating gut hormone and leptin levels,” Obesity, vol. 14, no. 9, pp. 1553–1561, 2006. View at Publisher · View at Google Scholar · View at Scopus
  220. M. E. Couce, D. Cottam, J. Esplen, P. Schauer, and B. Burguera, “Is ghrelin the culprit for weight loss after gastric bypass surgery? A negative answer,” Obesity Surgery, vol. 16, no. 7, pp. 870–878, 2006. View at Publisher · View at Google Scholar · View at Scopus
  221. M. C. Mancini, A. P. A. C. Costa, M. E. de Melo et al., “Effect of gastric bypass on spontaneous growth hormone and ghrelin release profiles,” Obesity, vol. 14, no. 3, pp. 383–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  222. B. Stenstrom, C. M. Zhao, K. Tømmerås, C. J. Arum, and D. Chen, “Is gastrin partially responsible for body weight reduction after gastric bypass?” European Surgical Research, vol. 38, pp. 94–101, 2006.
  223. D. G. Haider, K. Schindler, G. Prager et al., “Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 3, pp. 1168–1171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  224. G. Mingrone, L. Granato, E. Valera-Mora et al., “Ultradian ghrelin pulsatility is disrupted in morbidly obese subjects after weight loss induced by malabsorptive bariatric surgery,” American Journal of Clinical Nutrition, vol. 83, no. 5, pp. 1017–1024, 2006. View at Scopus
  225. C. Stratis, T. Alexandrides, K. Vagenas, and F. Kalfarentzos, “Ghrelin and peptide YY levels after a variant of biliopancreatic diversion with Roux-en-Y gastric bypass versus after colectomy: a prospective comparative study,” Obesity Surgery, vol. 16, no. 6, pp. 752–758, 2006. View at Publisher · View at Google Scholar · View at Scopus
  226. T. Tsubone, T. Masaki, I. Katsuragi, K. Tanaka, T. Kakuma, and H. Yoshimatsu, “Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice,” Regulatory Peptides, vol. 130, no. 1-2, pp. 97–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  227. K. E. Wortley, K. D. Anderson, K. Garcia et al., “Genetic deletion of ghrelin does decrease food intake but influences metabolic fuel preference,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 21, pp. 8227–8232, 2004. View at Publisher · View at Google Scholar · View at Scopus
  228. A. Giovambattista, R. C. Gaillard, and E. Spinedi, “Ghrelin gene-related peptides modulate rat white adiposity,” Vitamins and Hormones, vol. 77, pp. 171–205, 2007. View at Publisher · View at Google Scholar · View at Scopus
  229. M. S. Kim, C. Y. Yoon, P. G. Jang, et al., “The mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adipocytes,” Molecular Endocrinology, vol. 18, no. 9, pp. 2291–2301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  230. G. Muccioli, N. Pons, C. Ghè, F. Catapano, R. Granata, and E. Ghigo, “Ghrelin and des-acyl ghrelin both inhibit isoproterenol-induced lipolysis in rat adipocytes via a non-type 1a growth hormone secretagogue receptor,” European Journal of Pharmacology, vol. 498, no. 1–3, pp. 27–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  231. C. Theander-Carrillo, P. Wiedmer, P. Cettour-Rose et al., “Ghrelin action in the brain controls adipocyte metabolism,” The Journal of Clinical Investigation, vol. 116, no. 7, pp. 1983–1993, 2006. View at Publisher · View at Google Scholar · View at Scopus
  232. T. Shimbara, M. S. Mondal, T. Kawagoe et al., “Central administration of ghrelin preferentially enhances fat ingestion,” Neuroscience Letters, vol. 369, no. 1, pp. 75–79, 2004. View at Publisher · View at Google Scholar · View at Scopus
  233. J. M. Zigman, Y. Nakano, R. Coppari et al., “Mice lacking ghrelin receptors resist the development of diet-induced obesity,” The Journal of Clinical Investigation, vol. 115, no. 12, pp. 3564–3572, 2005. View at Publisher · View at Google Scholar · View at Scopus
  234. K. E. Wortley, J.-P. del Rincon, J. D. Murray et al., “Absence of ghrelin protects against early-onset obesity,” The Journal of Clinical Investigation, vol. 115, no. 12, pp. 3573–3578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  235. Y. Sun, N. F. Butte, J. M. Garcia, and R. G. Smith, “Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance,” Endocrinology, vol. 149, no. 2, pp. 843–850, 2008. View at Publisher · View at Google Scholar · View at Scopus
  236. D. E. Cummings, K. Clement, J. Q. Purnell et al., “Elevated plasma ghrelin levels in Prader-Willi syndrome,” Nature Medicine, vol. 8, no. 7, pp. 643–644, 2002. View at Publisher · View at Google Scholar · View at Scopus
  237. A. DelParigi, M. Tschöp, M. L. Heiman et al., “High circulating ghrelin: a potential cause for hyperphagia and obesity in Prader-Willi syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 12, pp. 5461–5464, 2002. View at Publisher · View at Google Scholar · View at Scopus
  238. O. Giménez-Palop, G. Giménez-Pérez, D. Mauricio et al., “. A lesser postprandial suppression of plasma ghrelin in Prader-Willi syndrome is associated with low fasting and a blunted postprandial PYY response,” Clinical Endocrinology, vol. 66, pp. 198–204, 2007.
  239. K.-H. Paik, M.-K. Lee, D.-K. Jin et al., “Marked suppression of ghrelin concentration by insulin in Prader-Willi syndrome,” Journal of Korean Medical Science, vol. 22, no. 2, pp. 177–182, 2007. View at Scopus
  240. C. R. Erdie-Lalena, V. A. Holm, P. C. Kelly, R. S. Frayo, and D. E. Cummings, “Ghrelin levels in young children with Prader-Willi syndrome,” Journal of Pediatrics, vol. 149, no. 2, pp. 199–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  241. A. M. Haqq, S. C. Grambow, M. Muehlbauer et al., “Ghrelin concentrations in Prader-Willi syndrome (PWS) infants and children: changes during development,” Clinical Endocrinology, vol. 69, no. 6, pp. 911–920, 2008. View at Publisher · View at Google Scholar · View at Scopus
  242. E. Feigerlová, G. Diene, F. Conte-Auriol et al., “Hyperghrelinemia precedes obesity in Prader-Willi syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 7, pp. 2800–2805, 2008. View at Publisher · View at Google Scholar · View at Scopus
  243. S. Sangiao-Alvarellos, M. J. Vázquez, L. Varela et al., “Central ghrelin regulates peripheral lipid metabolism in a growth hormone-independent fashion,” Endocrinology, vol. 150, no. 10, pp. 4562–4574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  244. C. T. Lim, B. Kola, and M. Korbonits, “The ghrelin/GOAT/GHS-R system and energy metabolism,” Reviews in Endocrine and Metabolic Disorders, vol. 12, no. 3, pp. 173–186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  245. B. Porteiro, A. Díaz-Ruíz, G. Martínez et al., “Ghrelin requires p53 to stimulate lipid storage in fat and liver,” Endocrinology, vol. 154, pp. 3671–3679, 2013.
  246. A. Asakawa, A. Inui, T. Kaga et al., “Ghrelin is an appetite-stimulatory signal from stomach with structural resemblance to motilin,” Gastroenterology, vol. 120, no. 2, pp. 337–345, 2001. View at Scopus
  247. Y. Masuda, T. Tanaka, N. Inomata et al., “Ghrelin stimulates gastric acid secretion and motility in rats,” Biochemical and Biophysical Research Communications, vol. 276, no. 3, pp. 905–908, 2000. View at Publisher · View at Google Scholar · View at Scopus
  248. K. Yakabi, S. Ro, T. Onouhi et al., “Histamine mediates the stimulatory action of ghrelin on acid secretion in rat stomach,” Digestive Diseases and Sciences, vol. 51, no. 8, pp. 1313–1321, 2006. View at Publisher · View at Google Scholar · View at Scopus
  249. T. Sakurada, S. Ro, T. Onouchi et al., “Comparison of the actions of acylated and desacylated ghrelin on acid secretion in the rat stomach,” Journal of Gastroenterology, vol. 45, no. 11, pp. 1111–1120, 2010. View at Publisher · View at Google Scholar · View at Scopus
  250. K. Fukumoto, K. Nakahara, T. Katayama, M. Miyazatao, K. Kangawa, and N. Murakami, “Synergistic action of gastrin and ghrelin on gastric acid secretion in rats,” Biochemical and Biophysical Research Communications, vol. 374, no. 1, pp. 60–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  251. Y. Date, M. Nakazato, N. Murakami, M. Kojima, K. Kangawa, and S. Matsukura, “Ghrelin acts in the central nervous system to stimulate gastric acid secretion,” Biochemical and Biophysical Research Communications, vol. 280, no. 3, pp. 904–907, 2001. View at Publisher · View at Google Scholar · View at Scopus
  252. F. Levin, T. Edholm, M. Ehrström et al., “Effect of peripherally administered ghrelin on gastric emptying and acid secretion in the rat,” Regulatory Peptides, vol. 131, no. 1–3, pp. 59–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  253. V. Sibilia, F. Pagani, F. Guidobono et al., “Evidence for a central inhibitory role of growth hormone secretagogues and ghrelin on gastric acid secretion in conscious rats,” Neuroendocrinology, vol. 75, no. 2, pp. 92–97, 2002. View at Publisher · View at Google Scholar · View at Scopus
  254. H. M. Bilgin, C. Tumer, H. Diken, M. Kelle, and A. Sermet, “Role of ghrelin in the regulation of gastric acid secretion involving nitrergic mechanisms in rats,” Physiological Research, vol. 57, no. 4, pp. 563–568, 2008. View at Scopus
  255. B. Avau, B. De Smet, T. Thijs et al., “Ghrelin is involved in the paracrine communication between neurons and glial cells,” Neurogastroenterology and Motility, vol. 25, pp. 599–608, 2013.
  256. N. B. Dass, M. Munonyara, A. K. Bassil et al., “Growth hormone secretagogue receptors in rat and human gastrointestinal tract and the effects of ghrelin,” Neuroscience, vol. 120, no. 2, pp. 443–453, 2003. View at Publisher · View at Google Scholar · View at Scopus
  257. I. Depoortere, B. de Winter, T. Thijs, J. de Man, P. Pelckmans, and T. Peeters, “Comparison of the gastroprokinetic effects of ghrelin, GHRP-6 and motilin in rats in vivo and in vitro,” European Journal of Pharmacology, vol. 515, no. 1–3, pp. 160–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  258. A. K. Bassil, N. B. Dass, and G. J. Sanger, “The prokinetic-like activity of ghrelin in rat isolated stomach is mediated via cholinergic and tachykininergic motor neurones,” European Journal of Pharmacology, vol. 544, no. 1–3, pp. 146–152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  259. P.-J. Verhulst, B. De Smet, I. Saels et al., “Role of ghrelin in the relationship between hyperphagia and accelerated gastric emptying in diabetic mice,” Gastroenterology, vol. 135, no. 4, pp. 1267–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  260. T. Kitazawa, T. Nakamura, A. Saeki, H. Teraoka, T. Hiraga, and H. Kaiya, “Molecular identification of ghrelin receptor (GHS-R1a) and its functional role in the gastrointestinal tract of the guinea-pig,” Peptides, vol. 32, no. 9, pp. 1876–1886, 2011. View at Publisher · View at Google Scholar · View at Scopus
  261. A. K. Bassil, N. B. Dass, C. D. Murray, A. Muir, and G. J. Sanger, “Prokineticin-2, motilin, ghrelin and metoclopramide: prokinetic utility in mouse stomach and colon,” European Journal of Pharmacology, vol. 524, no. 1–3, pp. 138–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  262. B. De Smet, T. Thijs, D. Moechars et al., “Endogenous and exogenous ghrelin enhance the colonic and gastric manifestations of dextran sodium sulphate-induced colitis in mice,” Neurogastroenterology and Motility, vol. 21, no. 1, pp. 59–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  263. H. Fukuda, Y. Mizuta, H. Isomoto et al., “Ghrelin enhances gastric motility through direct stimulation of intrinsic neural pathways and capsaicin-sensitive afferent neurones in rats,” Scandinavian Journal of Gastroenterology, vol. 39, no. 12, pp. 1209–1214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  264. C. Tümer, H. D. Oflazoğlu, B. D. Obay, M. Kelle, and E. Taşdemir, “Effect of ghrelin on gastric myoelectric activity and gastric emptying in rats,” Regulatory Peptides, vol. 146, pp. 26–32, 2008.
  265. T. Nakamura, T. Onaga, and T. Kitazawa, “Ghrelin stimulates gastric motility of the guinea pig through activation of a capsaicin-sensitive neural pathway: in vivo and in vitro functional studies,” Neurogastroenterology and Motility, vol. 22, no. 4, pp. 446–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  266. L. Trudel, C. Tomasetto, M. C. Rio et al., “Ghrelin/motilin-related peptide is a potent prokinetic to reverse gastric postoperative ileus in rat,” American Journal of Physiology—Gastrointestinal and Liver Physiology, vol. 282, no. 6, pp. G948–G952, 2002. View at Scopus
  267. B. Avau, F. Carbone, J. Tack, and I. Depoortere, “Ghrelin signaling in the gut, its physiological properties, and therapeutic potential,” Neurogastroenterology and Motility, vol. 25, pp. 720–732, 2013.
  268. K. Fujino, A. Inui, A. Asakawa, N. Kihara, M. Fujimura, and M. Fujimiya, “Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats,” Journal of Physiology, vol. 550, no. 1, pp. 227–240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  269. H. Ariga, K. Tsukamoto, C. Chen, C. Mantyh, T. N. Pappas, and T. Takahashi, “Endogenous acyl ghrelin is involved in mediating spontaneous phase III-like contractions of the rat stomach,” Neurogastroenterology and Motility, vol. 19, no. 8, pp. 675–680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  270. J. Zheng, H. Ariga, H. Taniguchi, K. Ludwig, and T. Takahashi, “Ghrelin regulates gastric phase III-like contractions in freely moving conscious mice,” Neurogastroenterology and Motility, vol. 21, no. 1, pp. 78–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  271. M. Bülbül, R. Babygirija, J. Zheng et al., “Food intake and interdigestive gastrointestinal motility in ghrelin receptor mutant rats,” Journal of Gastroenterology, vol. 46, no. 4, pp. 469–478, 2011. View at Publisher · View at Google Scholar · View at Scopus
  272. T. Ohno, Y. Kamiyama, R. Aihara et al., “Ghrelin does not stimulate gastrointestinal motility and gastric emptying: an experimental study of conscious dogs,” Neurogastroenterology and Motility, vol. 18, no. 2, pp. 129–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  273. J. J. Tebbe, S. Mronga, C. G. Tebbe, E. Ortmann, R. Arnold, and M. K.-H. Schäfert, “Ghrelin-induced stimulation of colonic propulsion is dependent on hypothalamic neuropeptide Y1-and corticotrophin-releasing factor 1 receptor activation,” Journal of Neuroendocrinology, vol. 17, no. 9, pp. 570–576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  274. J. J. Tebbe, C. G. Tebbe, S. Mronga, M. Ritter, and M. K. H. Schäfer, “Central neuropeptide Y receptors are involved in 3rd ventricular ghrelin induced alteration of colonic transit time in conscious fed rats,” BMC Gastroenterology, vol. 5, article 5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  275. F. Levin, T. Edholm, P. T. Schmidt et al., “Ghrelin stimulates gastric emptying and hunger in normal-weight humans,” The Journal of Clinical Endocrinology & Metabolism, vol. 91, pp. 3296–3302, 2006.
  276. Y. Falkén, P. M. Hellström, G. J. Sanger et al., “Actions of prolonged ghrelin infusion on gastrointestinal transit and glucose homeostasis in humans,” Neurogastroenterology and Motility, vol. 22, no. 6, pp. e192–e200, 2010. View at Publisher · View at Google Scholar · View at Scopus
  277. J. Tack, I. Depoortere, R. Bisschops et al., “Influence of ghrelin on interdigestive gastrointestinal motility in humans,” Gut, vol. 55, no. 3, pp. 327–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  278. D. I. Briggs and Z. B. Andrews, “A recent update on the role of ghrelin in glucose homeostasis,” Current Diabetes Reviews, vol. 7, no. 3, pp. 201–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  279. P. J. Verhulst and I. Depoortere, “Ghrelin's second life: from appetite stimulator to glucose regulator,” World Journal of Gastroenterology, vol. 18, pp. 3183–3195, 2012.
  280. M. F. Saad, B. Bernaba, C.-M. Hwu et al., “Insulin regulates plasma ghrelin concentration,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 8, pp. 3997–4000, 2002. View at Publisher · View at Google Scholar · View at Scopus
  281. K. Toshinai, M. S. Mondal, M. Nakazato et al., “Upregulation of ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration,” Biochemical and Biophysical Research Communications, vol. 281, no. 5, pp. 1220–1225, 2001. View at Publisher · View at Google Scholar · View at Scopus
  282. F. Broglio, E. Arvat, A. Benso et al., “Ghrelin, a natural gh secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 10, pp. 5083–5086, 2001. View at Publisher · View at Google Scholar · View at Scopus
  283. E. Adeghate and A. S. Ponery, “Ghrelin stimulates insulin secretion from the pancreas of normal and diabetic rats,” Journal of Neuroendocrinology, vol. 14, no. 7, pp. 555–560, 2002. View at Publisher · View at Google Scholar · View at Scopus
  284. H. M. Lee, G. Wang, E. W. Englander, M. Kojima, and G. H. Greeley Jr., “Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: enteric distribution, ontogeny, influence of endocrine, and dietary manipulations,” Endocrinology, vol. 143, no. 1, pp. 185–190, 2002. View at Publisher · View at Google Scholar · View at Scopus
  285. M. Colombo, S. Gregersen, J. Xiao, and K. Hermansen, “Effects of ghrelin and other neuropeptides (CART, MCH, orexin A and B, and GLP-1) on the release of insulin from isolated rat islets,” Pancreas, vol. 27, no. 2, pp. 161–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  286. A. Salehi, C. D. de La Cour, R. Håkanson, and I. Lundquist, “Effects of ghrelin on insulin and glucagon secretion: a study of isolated pancreatic islets and intact mice,” Regulatory Peptides, vol. 118, no. 3, pp. 143–150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  287. A. Doi, T. Shono, M. Nishi, H. Furuta, H. Sasaki, and K. Nanjo, “IA-2β, but not IA-2, is induced by ghrelin and inhibits glucose-stimulated insulin secretion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 4, pp. 885–890, 2006. View at Publisher · View at Google Scholar · View at Scopus
  288. Y. Wang, M. Nishi, A. Doi et al., “Ghrelin inhibits insulin secretion through the AMPK-UCP2 pathway in β cells,” FEBS Letters, vol. 584, no. 8, pp. 1503–1508, 2010. View at Publisher · View at Google Scholar · View at Scopus
  289. W. Zhang, M. Chen, X. Chen, B. J. Segura, and M. W. Mulholland, “Inhibition of pancreatic protein secretion by ghrelin in the rat,” Journal of Physiology, vol. 537, no. 1, pp. 231–236, 2001. View at Publisher · View at Google Scholar · View at Scopus
  290. F. Broglio, C. Gottero, F. Prodam et al., “Ghrelin secretion is inhibited by glucose load and insulin-induced hypoglycaemia but unaffected by glucagon and arginine in humans,” Clinical Endocrinology, vol. 61, no. 4, pp. 503–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  291. R. Barazzoni, M. Zanetti, C. Ferreira et al., “Relationships between desacylated and acylated ghrelin and insulin sensitivity in the metabolic syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 10, pp. 3935–3940, 2007. View at Publisher · View at Google Scholar · View at Scopus
  292. D. E. Flanagan, M. L. Evans, T. P. Monsod et al., “The influence of insulin on circulating ghrelin,” American Journal of Physiology—Endocrinology and Metabolism, vol. 284, no. 2, pp. E313–E316, 2003. View at Scopus
  293. P. Lucidi, G. Murdolo, C. di Loreto et al., “Ghrelin is not necessary for adequate hormonal counterregulation of insulin-induced hypoglycemia,” Diabetes, vol. 51, no. 10, pp. 2911–2914, 2002. View at Scopus
  294. M. Möhlig, J. Spranger, B. Otto, M. Ristow, M. Tschöp, and A. F. H. Pfeiffer, “Euglycemic hyperinsulinemia, but not lipid infusion, decreases circulating ghrelin levels in humans,” Journal of Endocrinological Investigation, vol. 25, no. 11, pp. RC36–RC38, 2002. View at Scopus
  295. A. Caixàs, C. Bashore, W. Nash, F. Pi-Sunyer, and B. Laferrère, “Insulin, unlike food intake, does not suppress ghrelin in human subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 4, pp. 1902–1906, 2002. View at Publisher · View at Google Scholar · View at Scopus
  296. G. Schaller, A. Schmidt, J. Pleiner, W. Woloszczuk, M. Wolzt, and A. Luger, “Plasma ghrelin concentrations are not regulated by glucose or insulin: a double-blind, placebo-controlled crossover clamp study,” Diabetes, vol. 52, no. 1, pp. 16–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  297. K. Spiegel, E. Tasali, R. Leproult, N. Scherberg, and E. van Cauter, “Twenty-four-hour profiles of acylated and total ghrelin: relationship with glucose levels and impact of time of day and sleep,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 2, pp. 486–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  298. A. J. van der Lely, M. Tschöp, M. L. Heiman, and E. Ghigo, “Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin,” Endocrine Reviews, vol. 25, pp. 426–457, 2004.
  299. M.-S. Kim, C.-Y. Yoon, K.-H. Park et al., “Changes in ghrelin and ghrelin receptor expression according to feeding status,” NeuroReport, vol. 14, no. 10, pp. 1317–1320, 2003. View at Publisher · View at Google Scholar · View at Scopus
  300. Y. Sun, M. Asnicar, and R. G. Smith, “Central and peripheral roles of ghrelin on glucose homeostasis,” Neuroendocrinology, vol. 86, no. 3, pp. 215–228, 2007. View at Publisher · View at Google Scholar · View at Scopus
  301. D. Burdakov and J. A. González, “Physiological functions of glucose-inhibited neurones,” Acta Physiologica, vol. 195, pp. 71–78, 2009.
  302. H. Kageyama, F. Takenoya, K. Shiba, and S. Shioda, “Neuronal circuits involving ghrelin in the hypothalamus-mediated regulation of feeding,” Neuropeptides, vol. 44, no. 2, pp. 133–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  303. X. Chen, Y.-L. Ge, Z.-Y. Jiang, C.-Q. Liu, I. Depoortere, and T. L. Peeters, “Effects of ghrelin on hypothalamic glucose responding neurons in rats,” Brain Research, vol. 1055, no. 1-2, pp. 131–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  304. J. M. Zigman, J. E. Jones, C. E. Lee, C. B. Saper, and J. K. Elmquist, “Expression of ghrelin receptor mRNA in the rat and the mouse brain,” Journal of Comparative Neurology, vol. 494, pp. 528–548, 2006.
  305. A. Solomon, B. A. de Fanti, and J. A. Martínez, “The nucleus tractus solitari (NTS) participates in peripheral ghrelin glucostatic hunger signalling mediated by insulin,” Neuropeptides, vol. 40, no. 3, pp. 169–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  306. W.-G. Wang, X. Chen, H. Jiang, and Z.-Y. Jiang, “Effects of ghrelin on glucose-sensing and gastric distension sensitive neurons in rat dorsal vagal complex,” Regulatory Peptides, vol. 146, no. 1–3, pp. 169–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  307. C. Gauna and A. J. van der Lely, “Somatostatin, cortistatin, ghrelin and glucose metabolism,” Journal of Endocrinological Investigation, vol. 28, no. 11, supplement, pp. 127–131, 2005. View at Scopus
  308. F. Broglio, F. Prodam, E. Me et al., “Ghrelin: endocrine, metabolic and cardiovascular actions,” Journal of Endocrinological Investigation, vol. 28, no. 5, supplement, pp. 23–25, 2005. View at Scopus
  309. M. Murata, Y. Okimura, K. Iida et al., “Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells,” The Journal of Biological Chemistry, vol. 277, no. 7, pp. 5667–5674, 2002. View at Publisher · View at Google Scholar · View at Scopus
  310. A. C. Heijboer, H. Pijl, A. M. van den Hoek, L. M. Havekes, J. A. Romijn, and E. P. M. Corssmit, “Gut-brain axis: regulation of glucose metabolism,” Journal of Neuroendocrinology, vol. 18, no. 12, pp. 883–894, 2006. View at Publisher · View at Google Scholar · View at Scopus
  311. C.-X. Yi, K. M. Heppner, H. Kirchner et al., “The goat-ghrelin system is not essential for hypoglycemia prevention during prolonged calorie restriction,” PLoS ONE, vol. 7, no. 2, Article ID e32100, 2012. View at Publisher · View at Google Scholar · View at Scopus
  312. I. Kishimoto, T. Tokudome, H. Hosoda, M. Miyazato, and K. Kangawa, “Ghrelin and cardiovascular diseases,” Journal of Cardiology, vol. 59, no. 1, pp. 8–13, 2012. View at Publisher · View at Google Scholar · View at Scopus
  313. C. Ledderose, S. Kreth, and A. Beiras-Fernandez, “Ghrelin, a novel peptide hormone in the regulation of energy balance and cardiovascular function,” Recent Patents on Endocrine, Metabolic and Immune Drug Discovery, vol. 5, no. 1, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  314. M. Rizzo, A. A. Rizvi, E. Sudar et al., “A review of the cardiovascular and anti-atherogenic effects of ghrelin,” Current Pharmaceutical Design, vol. 19, pp. 4953–4963, 2013.
  315. N. Nagaya, M. Kojima, M. Uematsu et al., “Hemodynamic and hormonal effects of human ghrelin in healthy volunteers,” American Journal of Physiology—Regulatory Integrative and Comparative Physiology, vol. 280, no. 5, pp. R1483–R1487, 2001. View at Scopus
  316. N. Nagaya, M. Uematsu, M. Kojima et al., “Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure,” Circulation, vol. 104, no. 12, pp. 1430–1435, 2001. View at Scopus
  317. N. Nagaya, J. Moriya, Y. Yasumura et al., “Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure,” Circulation, vol. 110, no. 24, pp. 3674–3679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  318. J. Isgaard and I. Johansson, “Ghrelin and GHS on cardiovascular applications/functions,” Journal of Endocrinological Investigation, vol. 28, no. 9, pp. 838–842, 2005. View at Scopus
  319. Y. Lin, K. Matsumura, M. Fukuhara, S. Kagiyama, K. Fujii, and M. Iida, “Ghrelin acts at the nucleus of the solitary tract to decrease arterial pressure in rat,” Hypertension, vol. 43, no. 5, pp. 977–982, 2004. View at Publisher · View at Google Scholar · View at Scopus
  320. K. E. Wiley and A. P. Davenport, “Comparison of vasodilators in human internal mammary artery: ghrelin is a potent physiological antagonist of endothelin-1,” British Journal of Pharmacology, vol. 136, no. 8, pp. 1146–1152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  321. M. Iantorno, H. Chen, J.-A. Kim et al., “Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells,” American Journal of Physiology—Endocrinology and Metabolism, vol. 292, no. 3, pp. E756–E764, 2007. View at Publisher · View at Google Scholar · View at Scopus
  322. X. Xu, S. J. Bong, H. H. Chang, and Z.-G. Jin, “Molecular mechanisms of ghrelin-mediated endothelial nitric oxide synthase activation,” Endocrinology, vol. 149, no. 8, pp. 4183–4192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  323. H. Okumura, N. Nagaya, M. Enomoto, E. Nakagawa, H. Oya, and K. Kangawa, “Vasodilatory effect of ghrelin, an endogenous peptide from the stomach,” Journal of Cardiovascular Pharmacology, vol. 39, no. 6, pp. 779–783, 2002. View at Publisher · View at Google Scholar · View at Scopus
  324. T. Soeki, I. Kishimoto, D. O. Schwenke et al., “Ghrelin suppresses cardiac sympathetic activity and prevents early left ventricular remodeling in rats with myocardial infarction,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 294, no. 1, pp. H426–H432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  325. D. O. Schwenke, T. Tokudome, I. Kishimoto et al., “Early ghrelin treatment after myocardial infarction prevents an increase in cardiac sympathetic tone and reduces mortality,” Endocrinology, vol. 149, no. 10, pp. 5172–5176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  326. L. Li, L.-K. Zhang, Y.-Z. Pang et al., “Cardioprotective effects of ghrelin and des-octanoyl ghrelin on myocardial injury induced by isoproterenol in rats,” Acta Pharmacologica Sinica, vol. 27, no. 5, pp. 527–535, 2006. View at Publisher · View at Google Scholar · View at Scopus
  327. A. Torsello, E. Bresciani, M. Ravelli et al., “Novel domain-selective ACE-inhibiting activity of synthetic growth hormone secretagogues,” Pharmacological Research, vol. 66, pp. 317–324, 2012.
  328. L. Chang, Y. Ren, X. Liu et al., “Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart,” Journal of Cardiovascular Pharmacology, vol. 43, no. 2, pp. 165–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  329. L. Chang, J.-B. Du, L.-R. Gao, Y.-Z. Pang, and C.-S. Tang, “Effect of ghrelin on septic shock in rats,” Acta Pharmacologica Sinica, vol. 24, no. 1, pp. 45–49, 2003. View at Scopus
  330. A. Dembinski, Z. Warzecha, P. Ceranowicz et al., “Ghrelin attenuates the development of acute pancreatitis in rats,” Journal of Physiology and Pharmacology, vol. 54, no. 4, pp. 561–573, 2003. View at Scopus
  331. V. D. Dixit, E. M. Schaffer, R. S. Pyle et al., “Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells,” The Journal of Clinical Investigation, vol. 114, no. 1, pp. 57–66, 2004. View at Publisher · View at Google Scholar · View at Scopus
  332. Q. Xia, W. Pang, H. Pan, Y. Zheng, J.-S. Kang, and S.-G. Zhu, “Effects of ghrelin on the proliferation and secretion of splenic T lymphocytes in mice,” Regulatory Peptides, vol. 122, no. 3, pp. 173–178, 2004. View at Publisher · View at Google Scholar · View at Scopus
  333. Z. Warzecha, P. Ceranowicz, A. Dembinski et al., “Therapeutic effect of ghrelin in the course of cerulein induced acute pancreatitis in rats,” Journal of Physiology and Pharmacology, vol. 61, no. 4, pp. 419–427, 2010. View at Scopus
  334. M. Granado, T. Priego, A. I. Martín, M. A. Villanúa, and A. López-Calderón, “Anti-inflammatory effect of the ghrelin agonist growth hormone-releasing peptide-2 (GHRP-2) in arthritic rats,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 288, pp. E486–E492, 2005.
  335. A. Chorny, P. Anderson, E. Gonzalez-Rey, and M. Delgado, “Ghrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria,” Journal of Immunology, vol. 180, no. 12, pp. 8369–8377, 2008. View at Scopus
  336. M. D. Deboer, “Use of ghrelin as a treatment for inflammatory bowel disease: mechanistic considerations,” International Journal of Peptides, vol. 2011, Article ID 189242, 8 pages, 2011. View at Publisher · View at Google Scholar
  337. C. Cheyuo, A. Jacob, and P. Wang, “Ghrelin-mediated sympathoinhibition and suppression of inflammation in sepsis,” American Journal of Physiology—Endocrinology and Metabolism, vol. 302, no. 3, pp. E265–E272, 2012. View at Publisher · View at Google Scholar · View at Scopus
  338. D. Baatar, K. Patel, and D. D. Taub, “The effects of ghrelin on inflammation and the immune system,” Molecular and Cellular Endocrinology, vol. 340, no. 1, pp. 44–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  339. U. N. Das, “Relationship between gut and sepsis: role of ghrelin,” The World Journal of Diabetes, vol. 2, pp. 1–7, 2011.
  340. V. Sibilia, F. Pagani, E. Mrak, E. Dieci, G. Tulipano, and F. Ferrucci, “Pharmacological characterization of the ghrelin receptor mediating its inhibitory action on inflammatory pain in rats,” Amino Acids, vol. 43, pp. 1751–1759, 2012. View at Publisher · View at Google Scholar · View at Scopus
  341. W. Tsuchimochi, I. Kyoraku, H. Yamaguchi et al., “Ghrelin prevents the development of experimental diabetic neuropathy in rodents,” The European Journal of Pharmacology, vol. 702, pp. 187–193, 2013.
  342. A. Jacob, D. Rajan, B. Pathickal et al., “The inhibitory effect of ghrelin on sepsis-induced inflammation is mediated by the MAPK phosphatase-1,” International Journal of Molecular Medicine, vol. 25, no. 1, pp. 159–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  343. R. Wu, M. Zhou, P. Das et al., “Ghrelin inhibits sympathetic nervous activity in sepsis,” American Journal of Physiology—Endocrinology and Metabolism, vol. 293, no. 6, pp. E1697–E1702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  344. I. Bulgarelli, L. Tamiazzo, E. Bresciani et al., “Desacyl-ghrelin and synthetic GH-secretagogues modulate the production of inflammatory cytokines in mouse microglia cells stimulated by β-amyloid fibrils,” Journal of Neuroscience Research, vol. 87, no. 12, pp. 2718–2727, 2009. View at Publisher · View at Google Scholar · View at Scopus
  345. M. L. Barreiro and M. Tena-Sempere, “Ghrelin and reproduction: a novel signal linking energy status and fertility?” Molecular and Cellular Endocrinology, vol. 226, no. 1-2, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  346. M. Tena-Sempere, “Ghrelin: novel regulator of gonadal function,” Journal of Endocrinological Investigation, vol. 28, no. 5, supplement, pp. 26–29, 2005. View at Scopus
  347. G. Muccioli, T. Lorenzi, M. Lorenzi et al., “Beyond the metabolic role of ghrelin: a new player in the regulation of reproductive function,” Peptides, vol. 32, no. 12, pp. 2514–2521, 2011. View at Publisher · View at Google Scholar · View at Scopus
  348. J. Dupont, V. Maillard, S. Coyral-Castel, C. Ramé, and P. Froment, “Ghrelin in female and male reproduction,” International Journal of Peptides, vol. 2010, Article ID 158102, 8 pages, 2010. View at Publisher · View at Google Scholar
  349. T. Lorenzi, R. Meli, D. Marzioni et al., “Ghrelin: a metabolic signal affecting the reproductive system,” Cytokine and Growth Factor Reviews, vol. 20, no. 2, pp. 137–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  350. R. Fernandez-Fernandez, A. C. Martini, V. M. Navarro et al., “Novel signals for the integration of energy balance and reproduction,” Molecular and Cellular Endocrinology, vol. 254-255, pp. 127–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  351. R. Fernández-Fernández, M. Tena-Sempere, E. Aguilar, and L. Pinilla, “Ghrelin effects on gonadotropin secretion in male and female rats,” Neuroscience Letters, vol. 362, no. 2, pp. 103–107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  352. M.-C. Lebrethon, A. Aganina, M. Fournier, A. Gérard, A. S. Parent, and J. P. Bourguignon, “Effects of in vivo and in vitro administration of ghrelin, leptin and neuropeptide mediators on pulsatile gonadotrophin-releasing hormone secretion from male rat hypothalamus before and after puberty,” Journal of Neuroendocrinology, vol. 19, no. 3, pp. 181–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  353. A. Benso, E. Calvi, E. Gramaglia et al., “Other than growth hormone neuroendocrine actions of ghrelin,” Endocrine Development, vol. 25, pp. 59–68, 2013.
  354. J. E. Caminos, M. Tena-Sempere, F. Gaytán et al., “Expression of ghrelin in the cyclic and pregnant rat ovary,” Endocrinology, vol. 144, no. 4, pp. 1594–1602, 2003. View at Publisher · View at Google Scholar · View at Scopus
  355. W. Zhang, Z. Lei, J. Su, and S. Chen, “Expression of ghrelin in the porcine hypothalamo-pituitary-ovary axis during the estrous cycle,” Animal Reproduction Science, vol. 109, no. 1–4, pp. 356–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  356. D. W. Miller, J. L. Harrison, Y. A. Brown et al., “Immunohistochemical evidence for an endocrine/paracrine role for ghrelin in the reproductive tissues of sheep,” Reproductive Biology and Endocrinology, vol. 3, article 60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  357. F. Gaytan, M. L. Barreiro, L. K. Chopin et al., “Immunolocalization of ghrelin and its functional receptor, the type 1a growth hormone secretagogue receptor, in the cyclic human ovary,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 2, pp. 879–887, 2003. View at Publisher · View at Google Scholar · View at Scopus
  358. A. V. Sirotkin, R. Grossmann, M. T. María-Peon, J. Roa, M. Tena-Sempere, and S. Klein, “Novel expression and functional role of ghrelin in chicken ovary,” Molecular and Cellular Endocrinology, vol. 257-258, pp. 15–25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  359. I. Viani, A. Vottero, F. Tassi et al., “Ghrelin inhibits steroid biosynthesis by cultured granulosa-lutein cells,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 4, pp. 1476–1481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  360. A. Tropea, F. Tiberi, F. Minici et al., “Ghrelin affects the release of luteolytic and luteotropic factors in human luteal cells,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 8, pp. 3239–3245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  361. A. Rak and E. L. Gregoraszczuk, “Modulatory effect of ghrelin in prepubertal porcine ovarian follicles,” Journal of Physiology and Pharmacology, vol. 59, no. 4, pp. 781–793, 2008. View at Scopus
  362. A. V. Sirotkin and R. Grossmann, “The role of ghrelin and some intracellular mechanisms in controlling the secretory activity of chicken ovarian cells,” Comparative Biochemistry and Physiology A, vol. 147, no. 1, pp. 239–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  363. K. Kawamura, N. Sato, J. Fukuda et al., “Ghrelin inhibits the development of mouse preimplantation embryos in vitro,” Endocrinology, vol. 144, no. 6, pp. 2623–2633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  364. O. Gualillo, J. E. Caminos, M. Blanco et al., “Ghrelin, a novel placental-derived hormone,” Endocrinology, vol. 142, no. 2, pp. 788–794, 2001. View at Publisher · View at Google Scholar · View at Scopus
  365. J. L. Harrison, C. L. Adam, Y. A. Brown et al., “An immunohistochemical study of the localization and developmental expression of ghrelin and its functional receptor in the ovine placenta,” Reproductive Biology and Endocrinology, vol. 5, article 25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  366. A. Rak-Mardyła and E. L. Gregoraszczuk, “Effect of ghrelin on proliferation, apoptosis and secretion of progesterone and hCG in the placental JEG-3 cell line,” Reproductive Biology, vol. 10, no. 2, pp. 159–165, 2010. View at Scopus
  367. M. L. Barreiro, F. Gaytan, J. M. Castellano et al., “Ghrelin inhibits the proliferative activity of immature Leydig cells in vivo and regulates stem cell factor messenger ribonucleic acid expression in rat testis,” Endocrinology, vol. 145, no. 11, pp. 4825–4834, 2004. View at Publisher · View at Google Scholar · View at Scopus
  368. M. Tena-Sempere, M. L. Barreiro, L. C. González et al., “Novel expression and functional role of ghrelin in rat testis,” Endocrinology, vol. 143, no. 2, pp. 717–725, 2002. View at Publisher · View at Google Scholar · View at Scopus
  369. T. Ishikawa, H. Fujioka, T. Ishimura, A. Takenaka, and M. Fujisawa, “Ghrelin expression in human testis and serum testosterone level,” Journal of Andrology, vol. 28, no. 2, pp. 320–324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  370. L. Wang, F. Fang, Y. Li, Y. Zhang, Y. Pu, and X. Zhang, “Role of ghrelin on testosterone secretion and the mRNA expression of androgen receptors in adult rat testis,” Systems Biology in Reproductive Medicine, vol. 57, no. 3, pp. 119–123, 2011. View at Publisher · View at Google Scholar · View at Scopus
  371. A. V. Sirotkin, M. Chrenková, S. Nitrayová et al., “Effects of chronic food restriction and treatments with leptin or ghrelin on different reproductive parameters of male rats,” Peptides, vol. 29, no. 8, pp. 1362–1368, 2008. View at Publisher · View at Google Scholar · View at Scopus
  372. P. J. Delhanty, B. C. van der Eerden, and J. P. van Leeuwen, “Ghrelin and bone,” Biofactors, 2013. View at Publisher · View at Google Scholar
  373. Q. H. Liang, Y. Liu, S. S. Wu, R. R. Cui, L. Q. Yuan, and E. Y. Liao, “Ghrelin inhibits the apoptosis of MC3T3-E1 cells through ERK and AKT signaling pathway,” Toxicology and Applied Pharmacology, vol. 272, pp. 591–597, 2013.
  374. N. Fukushima, R. Hanada, H. Teranishi et al., “Ghrelin directly regulates bone formation,” Journal of Bone and Mineral Research, vol. 20, no. 5, pp. 790–798, 2005. View at Publisher · View at Google Scholar · View at Scopus
  375. G. Maccarinelli, V. Sibilia, A. Torsello et al., “Ghrelin regulates proliferation and differentiation of osteoblastic cells,” Journal of Endocrinology, vol. 184, no. 1, pp. 249–256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  376. M. van der Velde, P. Delhanty, B. van der Eerden, A. J. van der Lely, and J. van Leeuwen, “Ghrelin and bone,” Vitamins and Hormones, vol. 77, pp. 239–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  377. D. Nikolopoulos, S. Theocharis, and G. Kouraklis, “Ghrelin, another factor affecting bone metabolism,” Medical Science Monitor, vol. 16, no. 7, pp. RA147–RA162, 2010. View at Scopus
  378. P. J. D. Delhanty, B. C. J. van der Eerden, M. van der Velde et al., “Ghrelin and unacylated ghrelin stimulate human osteoblast growth via mitogen-activated protein kinase (MAPK)/phosphoinositide 3-kinase (PI3K) pathways in the absence of GHS-R1a,” Journal of Endocrinology, vol. 188, no. 1, pp. 37–47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  379. D. Cocchi, G. Maccarinelli, V. Sibilia et al., “GH-releasing peptides and bone,” Journal of Endocrinological Investigation, vol. 28, no. 8, supplement, pp. 11–14, 2005. View at Scopus
  380. J. L. Costa, D. Naot, J. M. Lin et al., “Ghrelin is an osteoblast mitogen and increases osteoclastic bone resorption in vitro,” International Journal of Peptides, vol. 2011, Article ID 605193, 7 pages, 2011. View at Publisher · View at Google Scholar
  381. M. van der Velde, B. C. van der Eerden, Y. Sun et al., “An age-dependent interaction with leptin unmasks ghrelin's bone-protective effects,” Endocrinology, vol. 153, pp. 3593–3602, 2012.
  382. J. E. Caminos, O. Gualillo, F. Lago et al., “The endogenous growth hormone secretagogue (ghrelin) is synthesized and secreted by chondrocytes,” Endocrinology, vol. 146, no. 3, pp. 1285–1292, 2005. View at Publisher · View at Google Scholar · View at Scopus
  383. H. J. Choi, K. H. Ki, J. Y. Yang et al., “Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation,” PLoS ONE, vol. 8, Article ID e65505, 2013.
  384. F. Deng, J. Ling, J. Ma, C. Liu, and W. Zhang, “Stimulation of intramembranous bone repair in rats by ghrelin,” Experimental Physiology, vol. 93, no. 7, pp. 872–879, 2008. View at Publisher · View at Google Scholar · View at Scopus
  385. O. Nouh, M. M. Abd Elfattah, and A. A. Hassouna, “Association between ghrelin levels and BMD: a cross sectional trial,” Gynecological Endocrinology, vol. 28, pp. 570–572, 2012.
  386. N. Napoli, C. Pedone, P. Pozzilli et al., “Effect of ghrelin on bone mass density: the InChianti study,” Bone, vol. 49, no. 2, pp. 257–263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  387. R. M. Campos, M. T. de Mello, L. Tock et al., “Interaction of bone mineral density, adipokines and hormones in obese adolescents girls submitted in an interdisciplinary therapy,” Journal of Pediatric Endocrinology and Metabolism, vol. 26, pp. 663–668, 2013.
  388. M. S. B. Huda, B. H. Durham, S. P. Wong et al., “Lack of an acute effect of ghrelin on markers of bone turnover in healthy controls and post-gastrectomy subjects,” Bone, vol. 41, no. 3, pp. 406–413, 2007. View at Publisher · View at Google Scholar · View at Scopus