About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2013 (2013), Article ID 621249, 22 pages
http://dx.doi.org/10.1155/2013/621249
Review Article

Protein-Mediated Interactions of Pancreatic Islet Cells

Department of Cell Physiology and Metabolism, University of Geneva School of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland

Received 19 November 2012; Accepted 10 December 2012

Academic Editors: B. R. Gauthier, A. Pileggi, and D. Sakamuro

Copyright © 2013 Paolo Meda. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. LeRoith, G. Delahunty, G. L. Wilson et al., “Evolutionary aspects of the endocrine and nervous systems,” Recent Progress in Hormone Research, vol. 42, pp. 549–587, 1986. View at Scopus
  2. P. Bergsten and B. Hellman, “Glucose-induced amplitude regulation of pulsatile insulin secretion from individual pancreatic islets,” Diabetes, vol. 42, no. 5, pp. 670–674, 1993. View at Scopus
  3. P. Gilon, M. A. Ravier, J. C. Jonas, and J. C. Henquin, “Control mechanisms of the oscillations of insulin secretion in vitro and in vivo,” Diabetes, vol. 51, supplement 1, pp. S144–S151, 2002. View at Scopus
  4. A. Tengholm and E. Gylfe, “Oscillatory control of insulin secretion,” Molecular and Cellular Endocrinology, vol. 297, no. 1-2, pp. 58–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. C. Henquin, “Regulation of insulin secretion: a matter of phase control and amplitude modulation,” Diabetologia, vol. 52, no. 5, pp. 739–751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Bosco, J. A. Haefliger, and P. Meda, “Connexins: key mediators of endocrine function,” Physiological Reviews, vol. 91, pp. 1393–1445, 2011.
  7. P. Meda, “Intercellular communication and insulin secretion,” in Contributions of Physiology to the Understanding of Diabeteseds, G. R. Zahnd and C. B. Wollheim, Eds., pp. 24–42, Springer, Berlin, Germany, 1997.
  8. J. P. Trinkaus, Cells into Organs. The Forces That Shape the Embryo, Prentice-Hall, Englewood Cliffs, NJ, USA, 1984.
  9. G. M. Edelman and J. P. Thiery, The Cell in Contact. Adhesions and Junctions as Morphogenetic Determinants, John Wiley and Sons, New York, NY, USA, 1985.
  10. J. R. Henderson, “Why are the islets of Langerhans?” The Lancet, vol. 2, no. 7618, pp. 469–470, 1969. View at Scopus
  11. J. W. Schopf, “Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life,” Science, vol. 260, no. 5108, pp. 640–646, 1993. View at Scopus
  12. J. T. Bonner, First Signals: The Evolution of Multicellular Development, Princeton University Press, Princeton, NJ, USA, 2001.
  13. J. T. Bonner, “A way of following individual cells in the migrating slugs of Dictyostelium discoideum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9355–9359, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. J. T. Bonner, “The origins of multicellularity,” Integrative Biology, vol. 1, pp. 27–36, 1999.
  15. J. Gerhart and M. Kirschner, Cells, Embryos and Evolution, Blackwell Science, Malden, Mass, USA, 1997.
  16. J. Gerhart and M. Kirschner, “The theory of facilitated variation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, supplement 1, pp. 8582–8589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Gerhart, C. Lowe, and M. Kirschner, “Hemichordates and the origin of chordates,” Current Opinion in Genetics and Development, vol. 15, no. 4, pp. 461–467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Rokas, “The molecular origins of multicellular transitions,” Current Opinion in Genetics and Development, vol. 18, no. 6, pp. 472–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Rokas, “The origins of multicellularity and the early history of the genetic toolkit for animal development,” Annual Review of Genetics, vol. 42, pp. 235–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Wolpert and E. Szathmáry, “Multicellularity: evolution and the egg,” Nature, vol. 420, no. 6917, article 745, 2002. View at Scopus
  21. J. T. Bonner, Why Size Matters: From Bacteria to Blue Whales, Princeton University Press, Princeton, NJ, USA, 2006.
  22. L. W. Buss, “Slime molds, ascidians, and the utility of evolutionary theory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 8801–8803, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Bull, “On the evolution of multicellularity and eusociality,” Artificial Life, vol. 5, no. 1, pp. 1–15, 1999. View at Scopus
  24. R. E. Michod and D. Roze, “Cooperation and conflict in the evolution of multicellularity,” Heredity, vol. 86, no. 1, pp. 1–7, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. H. A. Bern, “The properties of neurosecretory cells,” General and Comparative Endocrinology, vol. 1, supplement 1, pp. 117–132, 1962. View at Scopus
  26. R. K. Campbell, N. Satoh, and B. M. Degnan, “Piecing together evolution of the vertebrate endocrine system,” Trends in Genetics, vol. 20, no. 8, pp. 359–366, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Gorbman, W. D. Dickoff, S. R. Vigna, N. B. Clark, and C. L. Ralph, Comparative Endocrinology, John Wiley and Sons, Hoboken, NJ, USA, 1983.
  28. D. LeRoith, J. Shiloach, J. Roth, and M. A. Lesniak, “Evolutionary origins of vertebrate hormones: substances similar to mammalian insulins are native to unicellular eukaryotes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 10, pp. 6184–6188, 1980. View at Scopus
  29. D. LeRoith, C. Roberts, M. A. Lesniak, and J. Roth, “Receptors for intercellular messenger molecules in microbes: similarities to vertebrate receptors and possible implications for diseases in man,” Experientia, vol. 42, no. 7, pp. 782–788, 1986. View at Scopus
  30. J. Roth, D. Leroith, and E. S. Collier, “The evolutionary origins of intercellular communication and the Maginot lines of the mind,” Annals of the New York Academy of Sciences, vol. 463, pp. 1–11, 1986. View at Scopus
  31. J. Roth, D. LeRoith, and E. S. Collier, “Evolutionary origins of neuropeptides, hormones, and receptors: possible applications to immunology,” Journal of Immunology, vol. 135, supplement 2, pp. 816s–819s, 1985. View at Scopus
  32. J. Roth, D. LeRoith, M. A. Lesniak, F. de Pablo, L. Bassas, and E. Collier, “Molecules of intercellular communication in vertebrates, invertebrates and microbes: do they share common origins?” Progress in Brain Research, vol. 68, pp. 71–79, 1986.
  33. F. M. Ashcroft, Ion Channels and Disease, Academic press, San Diego, Calif, USA, 2000.
  34. S. Bröer and C. A. Wagner, Membrane Transporter Diseases, Kluwer Academic, New York, NY, USA, 2003.
  35. A. Harris and D. Locke, Connexin Biology: The Role of Gap Junction in Disease, The Humana Press, Totowa, NJ, USA, 2008.
  36. A. L. Harris, “Emerging issues of connexin channels: biophysics fills the gap,” Quarterly Reviews of Biophysics, vol. 34, no. 3, pp. 325–472, 2001. View at Scopus
  37. J. C. Hervé, “The connexins, part II,” Biochim Biophys Acta, vol. 1711, pp. 97–246, 2005.
  38. J. C. Hervé, “The connexins, part I,” Biochim Biophys Acta, vol. 1662, pp. 1–172, 2004.
  39. J. C. Hervé, “The connexins, part III,” Biochem Biophys Acta, vol. 1719, pp. 1–160, 2005.
  40. E. J. W. Barrington, “The phylogeny of the endocrine system,” Experientia, vol. 42, no. 7, pp. 775–781, 1986. View at Scopus
  41. K. L. Becker, E. S. Nylen, and R. H. Snider, “Endocrinology and the endocrine patient,” in Principles and Practice of Emdocrinolgy and Metabolismed, K. L. Becker, Ed., pp. 2–13, J.B. Lippincot, Philadelphia, Pa, USA, 1990.
  42. A. M. Stoka, “Phylogeny and evolution of chemical communication: an endocrine approach,” Journal of Molecular Endocrinology, vol. 22, no. 3, pp. 207–225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. J. E. Blalock and J. D. Stanton, “Common pathways of interferon and hormonal action,” Nature, vol. 283, no. 5745, pp. 406–408, 1980. View at Scopus
  44. J. E. Blalock, “A molecular basis for bidirectional communication between the immune and neuroendocrine systems,” Physiological Reviews, vol. 69, no. 1, pp. 1–32, 1989. View at Scopus
  45. J. Roth, D. LeRoith, and J. Shiloach, “The evolutionary origins of hormones, neurotransmitters, and other extracellular chemical messengers. Implications for mammalian biology,” The New England Journal of Medicine, vol. 306, no. 9, pp. 523–527, 1982. View at Scopus
  46. B. Scharrer, “Peptidergic neurons: facts and trends,” General and Comparative Endocrinology, vol. 34, no. 1, pp. 50–62, 1978. View at Scopus
  47. H. A. Bern, “The properties of neurosecretory cells,” General and Comparative Endocrinology, vol. 1, supplement 1, pp. 117–132, 1962. View at Scopus
  48. G. Csaba, “The present state in the phylogeny and ontogeny of hormone receptors,” Hormone and Metabolic Research, vol. 16, no. 7, pp. 329–335, 1984. View at Scopus
  49. S. Falkmer, “Phylogeny and ontogeny of the neuroendocrine cells of the gastrointestinal tract,” Endocrinology and Metabolism Clinics of North America, vol. 22, no. 4, pp. 731–752, 1993. View at Scopus
  50. S. van Noorden and S. Falkmer, “Gut-islet endocrinology—some evolutionary aspects,” Investigative and Cell Pathology, vol. 3, no. 1, pp. 21–35, 1980. View at Scopus
  51. S. Bavamian, P. Klee, A. Britan et al., “Islet-cell-to-cell communication as basis for normal insulin secretion,” Diabetes, Obesity and Metabolism, vol. 9, supplement 2, pp. 118–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Caton, A. Calabrese, C. Mas, V. Serre-Beinier, A. Wonkam, and P. Meda, “β-cell crosstalk: a further dimension in the stimulus-secretion coupling of glucose-induced insulin release,” Diabetes and Metabolism, vol. 28, no. 6, pp. 3–3S45, 2002. View at Scopus
  53. R. Jain and E. Lammert, “Cell-cell interactions in the endocrine pancreas,” Diabetes, Obesity and Metabolism, vol. 11, supplement 4, pp. 159–167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Meda, “The role of gap junction membrane channels in secretion and hormonal action,” Journal of Bioenergetics and Biomembranes, vol. 28, no. 4, pp. 369–377, 1996. View at Scopus
  55. R. N. Nlend, L. Michon, S. Bavamian et al., “Connexin36 and pancreatic β-cell functions,” Archives of Physiology and Biochemistry, vol. 112, no. 2, pp. 74–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Meda and D. Bosco, “Communication of islet cells: molecules, mechanisms, functions,” in Molecular Basis of Endocrine Pancreas Development and Functions, J. F. Habener and M. Hussein, Eds., pp. 138–159, Springer, Berlin, Germany, 2001.
  57. I. Potolicchio, V. Cigliola, S. Velazquez-Garcia et al., “Connexin-dependent signaling in neuro-hormonal systems,” Biochimica et Biophysica Acta, vol. 1818, no. 8, pp. 1919–1936, 2012.
  58. M. Brissova and A. C. Powers, “Architecture of pancreatic islets,” in Pancreatic Beta Cell in Health and Disease, S. Seino and G. I. Bell, Eds., pp. 3–11, Springer, Berlin, Germany, 2008.
  59. R. K. P. Benninger, M. Zhang, W. S. Head, L. S. Satin, and D. W. Piston, “Gap junction coupling and calcium waves in the pancreatic islet,” Biophysical Journal, vol. 95, no. 11, pp. 5048–5061, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Gylfe, E. Grapengiesser, Y. J. Liu, S. Dryselius, A. Tengholm, and M. Eberhardson, “Generation of glucose-dependent slow oscillations of cytoplasmic Ca2+ in individual pancreatic β cells,” Diabetes and Metabolism, vol. 24, no. 1, pp. 25–29, 1998. View at Scopus
  61. B. Hellman, E. Gylfe, E. Grapengiesser, P. E. Lund, and A. Berts, “Cytoplasmic Ca2+ oscillations in pancreaticfd β-cells,” Biochimica et Biophysica Acta, vol. 1113, no. 3-4, pp. 295–305, 1992. View at Publisher · View at Google Scholar · View at Scopus
  62. M. A. Ravier, M. Güldenagel, A. Charollais et al., “Loss of connexin36 channels alters β-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release,” Diabetes, vol. 54, no. 6, pp. 1798–1807, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Hellman, A. Salehi, E. Gylfe, H. Dansk, and E. Grapengiesser, “Glucose generates coincident insulin and somatostatin pulses and antisynchronous glucagon pulses from human pancreatic islets,” Endocrinology, vol. 150, no. 12, pp. 5334–5340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. P. O. Berggren, P. Rorsman, S. Efendic et al., “Mechanism of action of entero-insular hormones, islet peptides and neural input on the insulin secretory process,” in Nutrient Regulation of Insulin Secretion, P. R. Flatt, Ed., pp. 289–319, Portland Press, London, UK, 1992.
  65. D. G. Pipeleers, F. C. Schuit, and P. A. in't Veld, “Interplay of nutrients and hormones in the regulation of insulin release,” Endocrinology, vol. 117, no. 3, pp. 824–833, 1985. View at Scopus
  66. J. I. Stagner, “Pulsatile secretion from the endocrine pancreas : metabolic, hormonal and neural modulation,” in The Endocrine Pancreas, E. Samole, Ed., pp. 283–302, Raven, New York, NY, USA, 1991.
  67. C. B. Wollheim and G. W. Sharp, “Regulation of insulin release by calcium,” Physiological Reviews, vol. 61, no. 4, pp. 914–973, 1981. View at Scopus
  68. C. J. Goodner, D. J. Koerker, J. I. Stagner, and E. Samols, “In vitro pancreatic hormonal pulses are less regular and more frequent than in vivo,” American Journal of Physiology, vol. 260, no. 3, pp. E422–E429, 1991. View at Scopus
  69. E. Samols and J. I. Stagner, “Intraislet and islet-acinar portal systems and their significance,” in The Endocrine Pancreas, E. Samols, Ed., pp. 93–124, Raven Press, New York, NY, USA, 1991.
  70. V. Marks, E. Samols, and J. Stagner, “Intra-islet interactions,” in Nutrient Regulation of Insulin Secretion, P. R. Flatt, Ed., pp. 41–57, Portland Press, London, UK, 1992.
  71. D. Pipeleers, “Islet cell interactions with pancreatic B-cells,” Experientia, vol. 40, no. 10, pp. 1114–1126, 1984. View at Scopus
  72. B. S. Chertow, N. G. Baranetsky, and W. I. Sivitz, “Cellular mechanisms of insulin release. Effects of retinoids on rat islet cell-to-cell adhesion, reaggregation, and insulin release,” Diabetes, vol. 32, no. 6 I, pp. 568–574, 1983. View at Scopus
  73. P. A. Halban, C. B. Wollheim, B. Blondel, P. Meda, E. N. Niesor, and D. H. Mintz, “The possible importance of contact between pancreatic islet cells for the control of insulin release,” Endocrinology, vol. 111, no. 1, pp. 86–94, 1982. View at Scopus
  74. E. Maes and D. Pipeleers, “Effects of glucose and 3',5'-cyclic adenosine monophosphate upon reaggregation of single pancreatic B-cells,” Endocrinology, vol. 114, no. 6, pp. 2205–2209, 1984. View at Scopus
  75. A. Lernmark, “The preparation of, and studies on, free cell suspensions from mouse pancreatic islets,” Diabetologia, vol. 10, no. 5, pp. 431–438, 1974. View at Scopus
  76. D. G. Pipeleers, “Heterogeneity in pancreatic β-cell population,” Diabetes, vol. 41, no. 7, pp. 777–781, 1992. View at Scopus
  77. D. Salomon and P. Meda, “Heterogeneity and contact-dependent regulation of hormone secretion by individual B cells,” Experimental Cell Research, vol. 162, no. 2, pp. 507–520, 1986. View at Scopus
  78. D. Bosco, L. Orci, and P. Meda, “Homologous but not heterologous contact increases the insulin secretion of individual pancreatic B-cells,” Experimental Cell Research, vol. 184, no. 1, pp. 72–80, 1989. View at Scopus
  79. K. Kawai, E. Ipp, and L. Orci, “Circulating somatostatin acts on the islets of Langerhans by way of a somatostatin-poor compartment,” Science, vol. 218, no. 4571, pp. 477–478, 1982. View at Scopus
  80. R. N. Kulkarni, J. C. Brüning, J. N. Winnay, C. Postic, M. A. Magnuson, and C. R. Kahn, “Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes,” Cell, vol. 96, no. 3, pp. 329–339, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. P. Rorsman and G. Trube, “Calcium and delayed potassium currents in mouse pancreatic β-cells under voltage-clamp conditions,” The Journal of Physiology, vol. 374, pp. 531–550, 1986. View at Scopus
  82. R. Rodriguez-Diaz, M. H. Abdulreda, A. L. Formoso et al., “Innervation patterns of autonomic axons in the human endocrine pancreas,” Cell Metabolism, vol. 14, pp. 45–54, 2011.
  83. R. Rodriguez-Diaz, R. Dando, M. C. Jacques-Silva et al., “Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans,” Nature Medicine, vol. 17, pp. 888–892, 2011.
  84. L. C. Falke, K. D. Gillis, D. M. Pressel, and S. Misler, “‘Perforated patch recording’ allows long-term monitoring of metabolite-induced electrical activity and voltage-dependent Ca2+ currents in pancreatic islet B cells,” FEBS Letters, vol. 251, no. 1-2, pp. 167–172, 1989. View at Scopus
  85. H. P. Meissner, “Electrophysiological evidence for coupling between β cells of pancreatic islets,” Nature, vol. 262, no. 5568, pp. 502–504, 1976. View at Scopus
  86. G. T. Eddlestone, A. Goncalves, J. A. Bangham, and E. Rojas, “Electrical coupling between cells in islets of Langerhans from mouse,” Journal of Membrane Biology, vol. 77, no. 1, pp. 1–14, 1984. View at Scopus
  87. P. Meda, I. Atwater, and A. Goncalves, “The topography of electrical synchrony among β-cells in the mouse islet of Langerhans,” Quarterly Journal of Experimental Physiology, vol. 69, no. 4, pp. 719–735, 1984. View at Scopus
  88. M. Valdeolmillos, A. Nadal, B. Soria, and J. Garcia-Sancho, “Fluorescence digital image analysis of glucose-induced [Ca2+]i oscillations in mouse pancreatic islets of Langerhans,” Diabetes, vol. 42, no. 8, pp. 1210–1214, 1993. View at Scopus
  89. M. Valdeolmillos, R. M. Santos, D. Contreras, B. Soria, and L. M. Rosario, “Glucose-induced oscillations of intracellular Ca2+ concentration resembling bursting electrical activity in single mouse islets of Langerhans,” FEBS Letters, vol. 259, no. 1, pp. 19–23, 1989. View at Publisher · View at Google Scholar · View at Scopus
  90. E. Pérez-Armendariz, I. Atwater, and E. Rojas, “Glucose-induced oscillatory changes in extracellular ionized potassium concentration in mouse islets of Langerhans,” Biophysical Journal, vol. 48, pp. 741–749, 1985.
  91. D. Bleich, S. Chen, J. L. Gu, and J. L. Nadler, “The role of 12-lipoxygenase in pancreatic-cells,” International Journal of Molecular Medicine, vol. 1, no. 1, pp. 265–272, 1998.
  92. M. L. McDaniel, J. A. Corbett, G. Kwon, and J. R. Hill, “A role for nitric oxide and other inflammatory mediators in cytokine-induced pancreatic β-cell dysfunction and destruction,” Advances in Experimental Medicine and Biology, vol. 426, pp. 313–319, 1997. View at Scopus
  93. D. L. Eizirik, M. Flodström, A. E. Karlsen, and N. Welsh, “The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells,” Diabetologia, vol. 39, no. 8, pp. 875–890, 1996. View at Publisher · View at Google Scholar · View at Scopus
  94. J. M. Argiles, J. Lopez-Soriano, M. A. Ortiz, J. M. Pou, and F. J. Lopez-Soriano, “Interleukin-1 and β-cell function: more than one second messenger?” Endocrine Reviews, vol. 13, no. 3, pp. 515–524, 1992. View at Publisher · View at Google Scholar · View at Scopus
  95. R. O. Hynes, “Integrins: bidirectional, allosteric signaling machines,” Cell, vol. 110, no. 6, pp. 673–687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. F. G. Giancotti and E. Ruoslahti, “Integrin signaling,” Science, vol. 285, no. 5430, pp. 1028–1032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. A. M. Belkin and M. A. Stepp, “Integrins as receptors for laminins,” Microscopy Research and Technique, vol. 51, pp. 280–301, 2000.
  98. C. K. Miranti and J. S. Brugge, “Sensing the environment: a historical perspective on integrin signal transduction,” Nature Cell Biology, vol. 4, no. 4, pp. E83–E90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. M. A. Schwartz and M. H. Ginsberg, “Networks and crosstalk: integrin signalling spreads,” Nature Cell Biology, vol. 4, no. 4, pp. E65–E68, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. J. T. Parsons, “Focal adhesion kinase: the first ten years,” Journal of Cell Science, vol. 116, no. 8, pp. 1409–1416, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. M. A. Schwartz, “Integrin signaling revisited,” Trends in Cell Biology, vol. 11, no. 12, pp. 466–470, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. A. K. Howe, A. E. Aplin, and R. L. Juliano, “Anchorage-dependent ERK signaling—mechanisms and consequences,” Current Opinion in Genetics and Development, vol. 12, no. 1, pp. 30–35, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. F. Levine, G. M. Beattie, and A. Hayek, “Differential integrin expression facilitates isolation of human fetal pancreatic epithelial cells,” Cell Transplantation, vol. 3, no. 4, pp. 307–313, 1994. View at Scopus
  104. R. N. Wang, S. Paraskevas, and L. Rosenberg, “Characterization of integrin expression in islets isolated from hamster, canine, porcine, and human pancreas,” Journal of Histochemistry and Cytochemistry, vol. 47, no. 4, pp. 499–506, 1999. View at Scopus
  105. R. N. Wang and L. Rosenberg, “Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship,” Journal of Endocrinology, vol. 163, no. 2, pp. 181–190, 1999. View at Scopus
  106. D. Bosco, P. Meda, P. A. Halban, and D. G. Rouiller, “Importance of cell-matrix interactions in rat islet β-cell secretion in vitro: role of α6β1 integrin,” Diabetes, vol. 49, no. 2, pp. 233–243, 2000. View at Scopus
  107. S. Kantengwa, D. Baetens, K. Sadoul, C. A. Buck, P. A. Halban, and D. G. Rouiller, “Identification and characterization of α3β1 integrin on primary and transformed rat islet cells,” Experimental Cell Research, vol. 237, no. 2, pp. 394–402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  108. G. Parnaud, E. Hammar, D. G. Rouiller, M. Armanet, P. A. Halban, and D. Bosco, “Blockade of β1 integrin-laminin-5 interaction affects spreading and insulin secretion of rat β-cells attached on extracellular matrix,” Diabetes, vol. 55, no. 5, pp. 1413–1420, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Kaido, M. Yebra, V. Cirulli, C. Rhodes, G. Diaferia, and A. M. Montgomery, “Impact of defined matrix interactions on insulin production by cultured human β-cells: effect on insulin content, secretion, and gene transcription,” Diabetes, vol. 55, no. 10, pp. 2723–2729, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. G. M. Beattie, D. A. Lappi, A. Baird, and A. Hayek, “Functional impact of attachment and purification in the short term culture of human pancreatic islets,” Journal of Clinical Endocrinology and Metabolism, vol. 73, no. 1, pp. 93–98, 1991. View at Scopus
  111. N. Kaiser, A. P. Corcos, A. Tur-Sinai, Y. Ariav, and E. Cerasi, “Monolayer culture of adult rat pancreatic islets on extracellular matrix: long term maintenance of differentiated B-cell function,” Endocrinology, vol. 123, no. 2, pp. 834–840, 1988. View at Scopus
  112. N. Kaiser, A. P. Corcos, I. Sarel, and E. Cerasi, “Monolayer culture of adult rat pancreatic islets on extracellular matrix: modulation of B-cell function by chronic exposure to high glucose,” Endocrinology, vol. 129, no. 4, pp. 2067–2076, 1991. View at Scopus
  113. I. Hulinsky, J. Harrington, S. Cooney, and M. Silink, “Insulin secretion and DNA synthesis of cultured islets of Langerhans are influenced by the matrix,” Pancreas, vol. 11, no. 3, pp. 309–314, 1995. View at Scopus
  114. P. M. Jones, M. L. Courtney, C. J. Burns, and S. J. Persaud, “Cell-based treatments for diabetes,” Drug Discovery Today, vol. 13, no. 19-20, pp. 888–893, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. F. Gao, D. Q. Wu, Y. H. Hu, and G. X. Jin, “Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells,” Chinese Medical Journal, vol. 121, no. 9, pp. 811–818, 2008. View at Scopus
  116. A. Hayek, A. D. Lopez, and G. M. Beattie, “Enhancement of pancreatic islet cell monolayer growth by endothelial cell matrix and insulin,” In Vitro Cellular and Developmental Biology, vol. 25, no. 2, pp. 146–150, 1989. View at Scopus
  117. G. T. Schuppin, S. Bonner-Weir, E. Montana, N. Kaiser, and G. C. Weir, “Replication of adult pancreatic-beta cells cultured on bovine corneal endothelial cell extracellular matrix,” In Vitro Cellular and Developmental Biology A, vol. 29, no. 4, pp. 339–344, 1993. View at Scopus
  118. P. Metrakos, S. Yuan, S. J. Qi, W. P. Duguid, and L. Rosenberg, “Collagen gel matrix promotes islet cell proliferation,” Transplantation Proceedings, vol. 26, no. 6, pp. 3349–3350, 1994. View at Scopus
  119. A. Hayek, G. M. Beattie, V. Cirulli, A. D. Lopez, C. Ricordi, and J. S. Rubin, “Growth factor/matrix-induced proliferation of human adult β-cells,” Diabetes, vol. 44, no. 12, pp. 1458–1460, 1995. View at Scopus
  120. G. Parnaud, D. Bosco, T. Berney et al., “Proliferation of sorted human and rat beta cells,” Diabetologia, vol. 51, no. 1, pp. 91–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. G. M. Beattie, J. S. Rubin, M. I. Mally, T. Otonkoski, and A. Hayek, “Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact,” Diabetes, vol. 45, no. 9, pp. 1223–1228, 1996. View at Scopus
  122. V. H. Lefebvre, T. Otonkoski, J. Ustinov, M. A. Huotari, D. G. Pipeleers, and L. Bouwens, “Culture of adult human islet preparations with hepatocyte growth factor and 804 G matrix is mitogenic for duct cells but not for β-cells: effect of HGF on human 2-cells,” Diabetes, vol. 47, no. 1, pp. 134–137, 1998. View at Scopus
  123. F. T. Thomas, J. L. Contreras, G. Bilbao, C. Ricordi, D. Curiel, and J. M. Thomas, “Anoikis, extracellular matrix, and apoptosis factors in isolated cell transplantation,” Surgery, vol. 126, no. 2, pp. 299–304, 1999. View at Publisher · View at Google Scholar · View at Scopus
  124. E. Hammar, G. Parnaud, D. Bosco et al., “Extracellular matrix protects pancreatic β-cells against apoptosis: role of short- and long-term signaling pathways,” Diabetes, vol. 53, no. 8, pp. 2034–2041, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. X. D. Yang, S. A. Michie, R. E. Mebius, R. Tisch, I. Weissman, and H. O. McDevitt, “The role of cell adhesion molecules in the development of IDDM: implications for pathogenesis and therapy,” Diabetes, vol. 45, no. 6, pp. 705–710, 1996. View at Scopus
  126. N. Yagi, K. Yokono, K. Amano et al., “Expression of intercellular adhesion molecule 1 on pancreatic β-cells accelerates β-cell destruction by cytotoxic T-cells in murine autoimmune diabetes,” Diabetes, vol. 44, no. 7, pp. 744–752, 1995. View at Scopus
  127. X. D. Yang, S. A. Michie, R. Tisch, N. Karin, L. Steinman, and H. O. McDevitt, “A predominant role of integrin α4 in the spontaneous development of autoimmune diabetes in nonobese diabetic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12604–12608, 1994. View at Publisher · View at Google Scholar · View at Scopus
  128. X. D. Yang, H. K. Sytwu, H. O. McDevitt, and S. A. Michie, “Involvement of β7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in the development of diabetes in nonobese diabetic mice,” Diabetes, vol. 46, no. 10, pp. 1542–1547, 1997. View at Scopus
  129. X. H. Tian, W. J. Xue, X. L. Pang, Y. Teng, P. X. Tian, and X. S. Feng, “Effect of small intestinal submucosa on islet recovery and function in vitro culture,” Hepatobiliary and Pancreatic Diseases International, vol. 4, no. 4, pp. 524–529, 2005. View at Scopus
  130. D. M. Salvay, C. B. Rives, X. Zhang et al., “Extracellular matrix protein-coated scaffolds promote the reversal of diabetes after extrahepatic islet transplantation,” Transplantation, vol. 85, no. 10, pp. 1456–1464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. N. Navarro-Alvarez, J. D. Rivas-Carrillo, A. Soto-Gutierrez et al., “Reestablishment of microenvironment is necessary to maintain in vitro and in vivo human islet function,” Cell Transplantation, vol. 17, no. 1-2, pp. 111–119, 2008. View at Scopus
  132. W. Cui, D. H. Kim, M. Imamura, S. H. Hyon, and K. Inoue, “Tissue-engineered pancreatic islets: culturing rat islets in the chitosan sponge,” Cell Transplantation, vol. 10, no. 4-5, pp. 499–502, 2001. View at Scopus
  133. Y. V. Panchin, “Evolution of gap junction proteins—the pannexin alternative,” Journal of Experimental Biology, vol. 208, no. 8, pp. 1415–1419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. V. I. Shestopalov and Y. Panchin, “Pannexins and gap junction protein diversity,” Cellular and Molecular Life Sciences, vol. 65, no. 3, pp. 376–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. D. Boassa, C. Ambrosi, F. Qiu, G. Dahl, G. Gaietta, and G. Sosinsky, “Pannexin1 channels contain a glycosylation site that targets the hexamer to the plasma membrane,” Journal of Biological Chemistry, vol. 282, no. 43, pp. 31733–31743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. D. Boassa, F. Qiu, G. Dahl, and G. Sosinsky, “Trafficking dynamics of glycosylated pannexin1 proteins,” Cell Communication and Adhesion, vol. 15, no. 1-2, pp. 119–132, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. H. Jiang, A. G. Zhu, M. Mamczur, J. R. Falck, K. M. Lerea, and J. C. McGiff, “Stimulation of rat erythrocyte P2X7 receptor induces the release of epoxyeicosatrienoic acids,” British Journal of Pharmacology, vol. 151, no. 7, pp. 1033–1040, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Kang, N. Kang, D. Lovatt et al., “Connexin 43 hemichannels are permeable to ATP,” The Journal of Neuroscience, vol. 28, no. 18, pp. 4702–4711, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. D. W. Laird, “Closing the gap on autosomal dominant connexin-26 and connexin-43 mutants linked to human disease,” Journal of Biological Chemistry, vol. 283, no. 6, pp. 2997–3001, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. D. A. Goodenough and D. L. Paul, “Beyond the gap: functions of unpaired connexon channels,” Nature Reviews Molecular Cell Biology, vol. 4, no. 4, pp. 285–294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. J. C. Sáez, M. A. Retamal, D. Basilio, F. F. Bukauskas, and M. V. L. Bennett, “Connexin-based gap junction hemichannels: gating mechanisms,” Biochimica et Biophysica Acta, vol. 1711, no. 2, pp. 215–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. E. Scemes, S. O. Suadicani, G. Dahl, and D. C. Spray, “Connexin and pannexin mediated cell-cell communication,” Neuron Glia Biology, vol. 3, no. 3, pp. 199–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. D. C. Spray, Z. C. Ye, and B. R. Ramson, “Functional connexin “hemichannels”: a critical ap-praisal,” Glia, vol. 54, pp. 758–773, 2006.
  144. C. Stout, D. A. Goodenough, and D. L. Paul, “Connexins: functions without junctions,” Current Opinion in Cell Biology, vol. 16, no. 5, pp. 507–512, 2004. View at Publisher · View at Google Scholar · View at Scopus
  145. S. Penuela, R. Bhalla, X. Q. Gong et al., “Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins,” Journal of Cell Science, vol. 120, no. 21, pp. 3772–3783, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. Y. Huang, J. B. Grinspan, C. K. Abrams, and S. S. Scherer, “Pannexin1 is expressed by neurons and glia but does not form functional gap junctions,” Glia, vol. 55, no. 1, pp. 46–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  147. E. Scemes, S. Bavamian, A. Charollais, D. C. Spray, and P. Meda, “Lack of “hemichannel” activity in insulin-producing cells,” Cell Communication and Adhesion, vol. 15, no. 1-2, pp. 143–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. L. Bao, S. Locovei, and G. Dahl, “Pannexin membrane channels are mechanosensitive conduits for ATP,” FEBS Letters, vol. 572, no. 1–3, pp. 65–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  149. L. Bao, F. Sachs, and G. Dahl, “Connexins are mechanosensitive,” American Journal of Physiology, vol. 287, no. 5, pp. C1389–C1395, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. H. T. Liu, B. A. Tashmukhamedov, H. Inoue, Y. Okada, and R. Z. Sabirov, “Roles of two types of anion channels in glutamate release from mouse astrocytes under ischemic or osmotic stress,” Glia, vol. 54, pp. 343–357, 2006.
  151. A. P. Quist, S. K. Rhee, H. Lin, and R. Lal, “Physiological role of gap-junctional hemichannels: extracellular calcium-dependent isosmotic volume regulation,” Journal of Cell Biology, vol. 148, no. 5, pp. 1063–1074, 2000. View at Publisher · View at Google Scholar · View at Scopus
  152. P. P. Cherian, A. J. Siller-Jackson, S. Gu et al., “Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin,” Molecular Biology of the Cell, vol. 16, no. 7, pp. 3100–3106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  153. S. E. Hickman, C. E. Semrad, and S. C. Silverstein, “P2Z purinoceptors,” CIBA Foundation Symposia, vol. 198, pp. 71–83, 1996. View at Scopus
  154. S. Locovei, E. Scemes, F. Qiu, D. C. Spray, and G. Dahl, “Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex,” FEBS Letters, vol. 581, no. 3, pp. 483–488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. V. Parpura, E. Scemes, and D. C. Spray, “Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release,” Neurochemistry International, vol. 45, no. 2-3, pp. 259–264, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. P. Pelegrin and A. Surprenant, “Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor,” The EMBO Journal, vol. 25, no. 21, pp. 5071–5082, 2006. View at Publisher · View at Google Scholar · View at Scopus
  157. S. O. Suadicani, C. F. Brosnan, and E. Scemes, “P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling,” The Journal of Neuroscience, vol. 26, no. 5, pp. 1378–1385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  158. S. O. Suadicani, C. E. Flores, M. Urban-Maldonado, M. Beelitz, and E. Scemes, “Gap junction channels coordinate the propagation of intercellular Ca2+ signals generated by P2Y receptor activation,” Glia, vol. 48, no. 3, pp. 217–229, 2004. View at Publisher · View at Google Scholar · View at Scopus
  159. E. C. Y. Wang, J. M. Lee, W. G. Ruiz et al., “ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells,” The Journal of Clinical Investigation, vol. 115, no. 9, pp. 2412–2422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. E. Scemes, D. C. Spray, and P. Meda, “Connexins, pannexins, innexins: novel roles of ‘hemi-channels’,” Pflugers Archiv European Journal of Physiology, vol. 457, no. 6, pp. 1207–1226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. M. F. Santiago, J. Veliskova, N. K. Patel et al., “Targeting pannexin1 improves seizure outcome,” PLoS ONE, vol. 6, Article ID e25178, 2011.
  162. J. A. Orellana, K. F. Shoji, V. Abudara et al., “Amyloid β-induced death in neurons involves glial and neuronal hemichannels,” The Journal of Neuroscience, vol. 31, pp. 4962–4977, 2011.
  163. H. Ishihara, P. Maechler, A. Gjinovci, P. L. Herrera, and C. B. Wollheim, “Islet β-cell secretion determines glucagon release from neigbouring α-cells,” Nature Cell Biology, vol. 5, no. 4, pp. 330–335, 2003. View at Publisher · View at Google Scholar · View at Scopus
  164. S. Penuela, L. Gyenis, A. Ablack et al., “Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype,” The Journal of Biological Chemistry, vol. 287, pp. 29184–29193, 2012.
  165. R. N. Kulkarni, M. Holzenberger, D. Q. Shih et al., “β-cell-specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass,” Nature Genetics, vol. 31, no. 1, pp. 111–115, 2002. View at Publisher · View at Google Scholar · View at Scopus
  166. I. Konstantinova, G. Nikolova, M. Ohara-Imaizumi et al., “EphA-ephrin-A mediated beta cell communication regulates insulin secretion from pancreatic islets,” Cell, vol. 129, no. 2, pp. 359–370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  167. D. M. Schumann, K. Maedler, I. Franklin et al., “The Fas pathway is involved in pancreatic β cell secretory function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2861–2866, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. M. Takeichi, “The cadherins: cell-cell adhesion molecules controlling animal morphogenesis,” Development, vol. 102, no. 4, pp. 639–655, 1988. View at Scopus
  169. M. Takeichi, “Cadherins: a molecular family important in selective cell-cell adhesion,” Annual Review of Biochemistry, vol. 59, pp. 237–252, 1990. View at Scopus
  170. K. Hatta and M. Takeichi, “Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development,” Nature, vol. 320, no. 6061, pp. 447–449, 1986. View at Scopus
  171. C. J. Gottardi and B. M. Gumbiner, “Adhesion signaling: how β-catenin interacts with its partners,” Current Biology, vol. 11, no. 19, pp. R792–R794, 2001. View at Publisher · View at Google Scholar · View at Scopus
  172. W. J. Nelson, “Regulation of cell-cell adhesion by the cadherin-catenin complex,” Biochemical Society Transactions, vol. 36, pp. 149–155, 2008.
  173. C. M. Chuong and G. M. Edelman, “Alterations in neural cell adhesion molecules during development of different regions of the nervous system,” The Journal of Neuroscience, vol. 4, no. 9, pp. 2354–2368, 1984. View at Scopus
  174. O. K. Langley, M. C. Aletsee-Ufrecht, N. J. Grant, and M. Gratzl, “Expression of the neural cell adhesion molecule NCAM in endocrine cells,” Journal of Histochemistry and Cytochemistry, vol. 37, no. 6, pp. 781–791, 1989. View at Scopus
  175. C. M. Chuong and G. M. Edelman, “Alterations in neural cell adhesion molecules during development of different regions of the nervous system,” The Journal of Neuroscience, vol. 4, no. 9, pp. 2354–2368, 1984. View at Scopus
  176. D. G. Rouiller, V. Cirulli, and P. A. Halban, “Uvomorulin mediates calcium-dependent aggregation of islet cells, whereas calcium-independent cell adhesion molecules distinguish between islet cell types,” Developmental Biology, vol. 148, no. 1, pp. 233–242, 1991. View at Publisher · View at Google Scholar · View at Scopus
  177. J. Z. Kiss, C. Wang, S. Olive et al., “Activity-dependent mobilization of the adhesion molecule polysialic NCAM to the cell surface of neurons and endocrine cells,” The EMBO Journal, vol. 13, no. 22, pp. 5284–5292, 1994. View at Scopus
  178. Y. A. Gaidar, E. A. Lepekhin, G. A. Sheichetova, and M. Witt, “Distribution of N-cadherin and NCAM in neurons and endocrine cells of the human embryonic and fetal gastroenteropancreatic system,” Acta Histochemica, vol. 100, no. 1, pp. 83–97, 1998. View at Scopus
  179. J. C. Hutton, G. Christofori, W. Y. Chi et al., “Molecular cloning of mouse pancreatic islet R-cadherin: differential expression in endocrine and exocrine tissue,” Molecular Endocrinology, vol. 7, no. 9, pp. 1151–1160, 1993. View at Publisher · View at Google Scholar · View at Scopus
  180. V. Cirulli, L. Crisa, G. M. Beattie et al., “KSA antigen Ep-CAM mediates cell-cell adhesion of pancreatic epithelial cells: morphoregulatory roles in pancreatic islet development,” Journal of Cell Biology, vol. 140, no. 6, pp. 1519–1534, 1998. View at Publisher · View at Google Scholar · View at Scopus
  181. A. Sjodin, U. Dahl, and H. Semb, “Mouse R-cadherin: expression during the organogenesis of pancreas and gastrointestinal tract,” Experimental Cell Research, vol. 221, no. 2, pp. 413–425, 1995. View at Publisher · View at Google Scholar · View at Scopus
  182. R. Montesano, P. Mouron, M. Amherdt, and L. Orci, “Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids,” Journal of Cell Biology, vol. 97, no. 3, pp. 935–939, 1983. View at Scopus
  183. P. A. Halban, S. L. Powers, K. L. George, and S. Bonner-Weir, “Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets,” Diabetes, vol. 36, no. 7, pp. 783–790, 1987. View at Scopus
  184. D. G. Rouiller, V. Cirulli, and P. A. Halban, “Differences in aggregation properties and levels of the neural cell adhesion molecule (NCAM) between islet cell types,” Experimental Cell Research, vol. 191, no. 2, pp. 305–312, 1990. View at Publisher · View at Google Scholar · View at Scopus
  185. V. Cirulli, D. Baetens, U. Rutishauser, P. A. Halban, L. Orci, and D. G. Rouiller, “Expression of neural cell adhesion molecule (N-CAM) in rat islets and its role in islet cell type segregation,” Journal of Cell Science, vol. 107, no. 6, pp. 1429–1436, 1994. View at Scopus
  186. F. Esni, I. B. Täljedal, A. K. Perl, H. Cremer, G. Christofori, and H. Semb, “Neural cell adhesion molecule (N-CAM) is required for cell: type segregation and normal ultrastructure in pancreatic islets,” Journal of Cell Biology, vol. 144, no. 2, pp. 325–337, 1999. View at Publisher · View at Google Scholar · View at Scopus
  187. U. Dahl, A. Sjödin, and H. Semb, “Cadherins regulate aggregation of pancreatic β-cells in vivo,” Development, vol. 122, no. 9, pp. 2895–2902, 1996. View at Scopus
  188. K. Yamagata, T. Nammo, M. Moriwaki et al., “Overexpression of dominant-negative mutant hepatocyte nuclear factor-1α in pancreatic β-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced β-cell proliferation, and diabetes,” Diabetes, vol. 51, no. 1, pp. 114–123, 2002. View at Scopus
  189. D. Q. Shih, M. Heimesaat, S. Kuwajima, R. Stein, C. V. E. Wright, and M. Stoffel, “Profound defects in pancreatic β-cell function in mice with combined heterozygous mutations in Pdx-1, Hnf-1α, and Hnf-3β,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3818–3823, 2002. View at Scopus
  190. O. Cabrera, D. M. Berman, N. S. Kenyon, C. Ricordi, P. O. Berggren, and A. Caicedo, “The unique cytoarchitecture of human pancreatic islets has implications for islet cell function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 7, pp. 2334–2339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  191. C. Bernard-Kargar, N. Kassis, M. F. Berthault, W. Pralong, and A. Ktorza, “Sialylated form of the neural cell adhesion molecule (NCAM): a new tool for the identification and sorting of β-cell subpopulations with different functional activity,” Diabetes, vol. 50, supplement 1, pp. S125–S130, 2001. View at Scopus
  192. D. Bosco, D. G. Rouiller, and P. A. Halban, “Differential expression of E-cadherin at the surface of rat β-cells as a marker of functional heterogeneity,” Journal of Endocrinology, vol. 194, no. 1, pp. 21–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  193. A. C. Hauge-Evans, P. E. Squires, S. J. Persaud, and P. M. Jones, “Pancreatic β-cell-to-β-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets,” Diabetes, vol. 48, no. 7, pp. 1402–1408, 1999. View at Publisher · View at Google Scholar · View at Scopus
  194. F. Jaques, H. Jousset, A. Tomas et al., “Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion,” Endocrinology, vol. 149, no. 5, pp. 2494–2505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  195. G. J. Rogers, M. N. Hodgkin, and P. E. Squires, “E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet,” Cellular Physiology and Biochemistry, vol. 20, no. 6, pp. 987–994, 1997. View at Scopus
  196. M. J. Carvell, P. J. Marsh, S. J. Persaud, and P. M. Jones, “E-cadherin interactions regulate β-cell proliferation in islet-like structures,” Cellular Physiology and Biochemistry, vol. 20, no. 5, pp. 617–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  197. A. Calabrese, D. Caton, and P. Meda, “Differentiating the effects of Cx36 and E-cadherin for proper insulin secretion of MIN6 cells,” Experimental Cell Research, vol. 294, no. 2, pp. 379–391, 2004. View at Publisher · View at Google Scholar · View at Scopus
  198. N. Wakae-Takada, S. Xuan, K. Watanabe, P. Meda, and R. L. Leibel, “Molecular basis for regulation of islet β-cell mass: the role of E-cadherin”.
  199. A. K. Peri, P. Wilgenbus, U. Dahl, H. Semb, and G. Christofori, “A causal role for E-cadherin in the transition from adenoma to carcinoma,” Nature, vol. 392, no. 6672, pp. 190–193, 1998. View at Publisher · View at Google Scholar · View at Scopus
  200. A. K. Perl, U. Dahl, P. Wilgenbus, H. Cremer, H. Semb, and G. Christofori, “Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic β tumor cells,” Nature Medicine, vol. 5, no. 3, pp. 286–291, 1999. View at Publisher · View at Google Scholar · View at Scopus
  201. M. J. Luther, E. Davies, D. Muller et al., “Cell-to-cell contact influences proliferative marker expression and apoptosis in MIN6 cells grown in islet-like structures,” American Journal of Physiology, vol. 288, no. 3, pp. E502–E509, 2005. View at Publisher · View at Google Scholar · View at Scopus
  202. L. L. Field, “Genetic linkage and association studies of type I diabetes: challenges and rewards,” Diabetologia, vol. 45, no. 1, pp. 21–35, 2002. View at Publisher · View at Google Scholar · View at Scopus
  203. M. Sleater, A. S. Diamond, and R. G. Gill, “Islet allograft rejection by contact-dependent CD8+ T cells: perforin and FasL play alternate but obligatory roles,” American Journal of Transplantation, vol. 7, no. 8, pp. 1927–1933, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. K. L. Cepek, S. K. Shaw, C. M. Parker et al., “Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the α(E)β7 integrin,” Nature, vol. 372, no. 6502, pp. 190–193, 1994. View at Publisher · View at Google Scholar · View at Scopus
  205. Y. Feng, D. Wang, R. Yuan, C. M. Parker, D. L. Farber, and G. A. Hadley, “CD103 expression is required for destruction of pancreatic islet allografts by CD8+ T cells,” Journal of Experimental Medicine, vol. 196, no. 7, pp. 877–886, 2002. View at Publisher · View at Google Scholar · View at Scopus
  206. M. Koval, “Claudin heterogeneity and control of lung tight junctions,” Annual Review of Physiology. In press.
  207. M. Cereijido and J. Anderon, Eds., Tight Junctions, CRC Press, Boca Raton, Fla, USA, 2nd edition, 2001.
  208. E. Steed, M. S. Balda, and K. Matter, “Dynamics and functions of tight junctions,” Trends in Cell Biology, vol. 20, no. 3, pp. 142–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  209. S. K. Kim, “Tight junctions, membrane-associated guanylate kinases and cell signaling,” Current Opinion in Cell Biology, vol. 7, no. 5, pp. 641–649, 1995. View at Publisher · View at Google Scholar · View at Scopus
  210. L. Orci and A. Perrelet, “Morphology of membrane systems in pancreatic islets,” in The Diabetic Pancreas, B. W. Volk and K. F. Wellmann, Eds., pp. 171–210, Plenum Press, New York, NY, USA, 1997.
  211. P. Meda, A. Perrelet, and L. Orci, “Increase of gap junctions between pancreatic B-cells during stimulation of insulin secretion,” Journal of Cell Biology, vol. 82, no. 2, pp. 441–448, 1979. View at Scopus
  212. A. A. Like, “The uptake of exogenous peroxidase by the beta cells of the islets of Langerhans,” American Journal of Pathology, vol. 59, no. 2, pp. 225–246, 1970. View at Scopus
  213. K. Kawai, E. Ipp, and L. Orci, “Circulating somatostatin acts on the islets of Langerhans by way of a somatostatin-poor compartment,” Science, vol. 218, no. 4571, pp. 477–478, 1982. View at Scopus
  214. L. Orci, M. Amherdt, J. C. Henquin, A. E. Lambert, R. H. Unger, and A. E. Resold, “Pronase effect on pancreatic,' beta cell secretion and morphology,” Science, vol. 80, no. 4086, pp. 647–649, 1973. View at Scopus
  215. S. Rieck, P. White, J. Schug et al., “The transcriptional response of the islet to pregnancy in mice,” Molecular Endocrinology, vol. 23, pp. 1702–1712, 2009.
  216. A. Schraenen, G. de Faudeur, L. Thorrez et al., “MRNA expression analysis of cell cycle genes in islets of pregnant mice,” Diabetologia, vol. 53, no. 12, pp. 2579–2588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  217. M. Genevay, H. Pontes, and P. Meda, “Beta cell adaptation in pregnancy: a major difference between humans and rodents?” Diabetologia, vol. 53, no. 10, pp. 2089–2092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  218. S. Rieck and K. H. Kaestner, “Expansion of β-cell mass in response to pregnancy,” Trends in Endocrinology and Metabolism, vol. 21, no. 3, pp. 151–158, 2010. View at Publisher · View at Google Scholar · View at Scopus
  219. D. W. Laird, “The gap junction proteome and its relationship to disease,” Trends in Cell Biology, vol. 20, no. 2, pp. 92–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  220. D. W. Laird, “Life cycle of connexins in health and disease,” Biochemical Journal, vol. 394, no. 3, pp. 527–543, 2006. View at Publisher · View at Google Scholar · View at Scopus
  221. V. Serre-Beinier, S. Le Gurun, N. Belluardo et al., “Cx36 preferentially connects β-cells within pancreatic islets,” Diabetes, vol. 49, no. 5, pp. 727–734, 2000. View at Scopus
  222. K. Wellershaus, J. Degen, J. Deuchars et al., “A new conditional mouse mutant reveals specific expression and functions of connexin36 in neurons and pancreatic beta-cells,” Experimental Cell Research, vol. 314, no. 5, pp. 997–1012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  223. D. Mears, N. F. Sheppard Jr., I. Atwater, and E. Rojas, “Magnitude and modulation of pancreatic β-cell gap junction electrical conductance in situ,” Journal of Membrane Biology, vol. 146, no. 2, pp. 163–176, 1995. View at Scopus
  224. P. Meda, I. Atwater, and A. Goncalves, “The topography of electrical synchrony among β-cells in the mouse islet of Langerhans,” Quarterly Journal of Experimental Physiology, vol. 69, no. 4, pp. 719–735, 1984. View at Scopus
  225. H. P. Meissner, “Electrophysiological evidence for coupling between β cells of pancreatic islets,” Nature, vol. 262, no. 5568, pp. 502–504, 1976. View at Scopus
  226. S. Speier, A. Gjinovci, A. Charollais, P. Meda, and M. Rupnik, “Cx36-mediated coupling reduces β-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics,” Diabetes, vol. 56, no. 4, pp. 1078–1086, 2007. View at Publisher · View at Google Scholar · View at Scopus
  227. E. Charpantier, J. Cancela, and P. Meda, “Beta cells preferentially exchange cationic molecules via connexin 36 gap junction channels,” Diabetologia, vol. 50, no. 11, pp. 2332–2341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  228. E. Kohen, C. Kohen, and B. Thorell, “Intercellular communication in pancreatic islet monolayer cultures: a microfluorometric study,” Science, vol. 204, no. 4395, pp. 862–865, 1979. View at Scopus
  229. P. Meda, M. Amherdt, A. Perrelet, and L. Orci, “Metabolic coupling between cultured pancreatic B-cells,” Experimental Cell Research, vol. 133, no. 2, pp. 421–430, 1981. View at Scopus
  230. P. Meda, R. L. Michaels, and P. A. Halban, “In vivo modulation of gap junctions and dye coupling between B-cells of the intact pancreatic islet,” Diabetes, vol. 32, no. 9, pp. 858–868, 1983. View at Scopus
  231. A. Calabrese, M. Zhang, V. Serre-Beinier et al., “Connexin 36 controls synchronization of Ca2+ oscillations and insulin secretion in MIN6 cells,” Diabetes, vol. 52, no. 2, pp. 417–424, 2003. View at Publisher · View at Google Scholar · View at Scopus
  232. F. C. Jonkers, J. C. Jonas, P. Gilon, and J. C. Henquin, “Influence of cell number on the characteristics and synchrony of Ca2+ oscillations in clusters of mouse pancreatic islet cells,” The Journal of Physiology, vol. 520, no. 3, pp. 839–849, 1999. View at Publisher · View at Google Scholar · View at Scopus
  233. W. S. Head, M. L. Orseth, C. S. Nunemaker, et al., “Connexin-36 gap junctuiions regulate in vivo first and second phase secretion dynamics and glucose tolerance in the conscious mouse,” Diabetes, vol. 61, pp. 1700–1707, 2012.
  234. V. Serre-Beinier, D. Bosco, L. Zulianello et al., “Cx36 makes channels coupling human pancreatic β-cells, and correlates with insulin expression,” Human Molecular Genetics, vol. 18, no. 3, pp. 428–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  235. P. Klee, F. Allagnat, H. Pontes, et al., “Connexins protect mouse pancreatic β cells against apoptosis,” The Journal of Clinical Investigation, vol. 121, pp. 4870–4879, 2011.
  236. J. Philippe, E. Giordano, A. Gjinovci, and P. Meda, “Cyclic adenosine monophosphate prevents the glucocorticoid-mediated inhibition of insulin gene expression in rodent islet cells,” The Journal of Clinical Investigation, vol. 90, no. 6, pp. 2228–2233, 1992. View at Scopus
  237. F. C. Schuit, P. A. in't Veld, and D. G. Pipeleers, “Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 11, pp. 3865–3869, 1988. View at Scopus
  238. P. Meda, P. Halban, and A. Perrelet, “Gap junction development is correlated with insulin content in the pancreatic B cell,” Science, vol. 209, no. 4460, pp. 1026–1028, 1980. View at Scopus
  239. C. P. F. Carvalho, H. C. L. Barbosa, A. Britan et al., “Beta cell coupling and connexin expression change during the functional maturation of rat pancreatic islets,” Diabetologia, vol. 53, no. 7, pp. 1428–1437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  240. C. P. Carvalho, R. B. Oliveira, A. Britan, J. C. Santos-Silva, et al., “Impaired β-cell-β-cell coupling mediated by Cx36 gap junctions in prediabetic mice,” American Journal of Physiology, vol. 303, pp. E144–E151, 2012.
  241. R. N. Nlend, A. Aït-Lounis, F. Allagnat, et al., “Cx36 is a target of Beta2/NeuroD1, which associates with prenatal differentiation of insulin-producing β cells,” Journal of Membrane Biology, vol. 245, pp. 263–273, 2012.
  242. D. Bosco, P. Meda, B. Thorens, and W. J. Malaisse, “Heterogeneous secretion of individual B cells in response to D-glucose and to nonglucidic nutrient secretagogues,” American Journal of Physiology, vol. 268, no. 3, pp. C611–C618, 1995. View at Scopus
  243. D. Bosco and P. Meda, “Actively synthesizing β-cells secrete preferentially after glucose stimulation,” Endocrinology, vol. 129, no. 6, pp. 3157–3166, 1991. View at Scopus
  244. F. C. Jonkers and J. C. Henquin, “Measurements of cytoplasmic Ca2+ in islet cell clusters show that glucose rapidly recruits β-cells and gradually increases the individual cell response,” Diabetes, vol. 50, no. 3, pp. 540–550, 2001. View at Scopus
  245. D. Pipeleers, P. in't Veld, E. Maes, and M. van De Winkel, “Glucose-induced insulin release depends on functional cooperation between islet cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 23 I, pp. 7322–7325, 1982. View at Scopus
  246. P. Meda, D. Bosco, M. Chanson et al., “Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells,” The Journal of Clinical Investigation, vol. 86, no. 3, pp. 759–768, 1990. View at Scopus
  247. A. Charollais, A. Gjinovci, J. Huarte et al., “Junctional communication of pancreatic β cell contributes to the control of insulin secretion and glucose tolerance,” The Journal of Clinical Investigation, vol. 106, no. 2, pp. 235–243, 2000. View at Publisher · View at Google Scholar · View at Scopus
  248. R. K. Benninger, W. S. Head, M. Zhang, L. S. Satin, and D. W. Piston, “Gap junctions and other mecha-nisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet,” The Journal of Physiology, vol. 589, pp. 5453–5466, 2011.
  249. P. Meda, “The in vivo β-to-β-cell chat room: connexin connections matter,” Diabetes, vol. 61, pp. 1656–1658, 2012.
  250. R. L. Michaels, R. L. Sorenson, J. A. Parsons, and J. D. Sheridan, “Prolactin enhances cell-to-cell communication among β-cells in pancreatic islets,” Diabetes, vol. 36, no. 10, pp. 1098–1103, 1987. View at Scopus
  251. P. Klee, S. Lamprianou, A. Charollais et al., “Connexin implication in the control of the murine beta-cell mass,” Pediatric Research, vol. 70, no. 2, pp. 142–147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  252. R. K. P. Benninger, M. S. Remedi, W. S. Head, A. Ustione, D. W. Piston, and C. G. Nichols, “Defects in beta cell Ca2+ signalling, glucose metabolism and insulin secretion in a murine model of KATP channel-induced neonatal diabetes mellitus,” Diabetologia, vol. 54, no. 5, pp. 1087–1097, 2011. View at Publisher · View at Google Scholar · View at Scopus
  253. Y. Stefan, P. Meda, M. Neufeld, and L. Orci, “Stimulation of insulin secretion reveals heterogeneity of pancreatic B cells in vivo,” The Journal of Clinical Investigation, vol. 80, no. 1, pp. 175–183, 1987. View at Scopus
  254. H. Heimberg, A. de Vos, A. Vandercammen, E. van Schaftingen, D. Pipeleers, and F. Schuit, “Heterogeneity in glucose sensitivity among pancreatic β-cells is correlated to differences in glucose phosphorylation rather than glucose transport,” The EMBO Journal, vol. 12, no. 7, pp. 2873–2879, 1993. View at Scopus
  255. J. A. Haefliger, D. Martin, D. Favre, et al., “Reduction of connexin36 content by ICER-1 contributes to insulin-secreting cells apoptosis induced by oxidized LDL particles,” PLoS One. In press.
  256. F. Allagnat, P. Klee, M. Peyrou, et al., “The gap junctional protein connexin36 (Cx36) protects pancreatic beta cells against cytotoxic attacks: a possible role in cytokine-mediated beta cell death,” Diabetologia, vol. 50, p. S45, 2007.
  257. B. Kutlu, A. K. Cardozo, M. I. Darville et al., “Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells,” Diabetes, vol. 52, no. 11, pp. 2701–2719, 2003. View at Publisher · View at Google Scholar · View at Scopus
  258. L. Orci, F. Malaisse Lagae, and M. Ravazzola, “A morphological basis for intercellular communication between α and β cells in the endocrine pancreas,” The Journal of Clinical Investigation, vol. 56, no. 4, pp. 1066–1070, 1975. View at Scopus
  259. P. Meda, E. Kohen, and C. Kohen, “Direct communication of homologous and heterologous endocrine islet cells in culture,” Journal of Cell Biology, vol. 92, no. 1, pp. 221–226, 1982. View at Scopus
  260. A. Ito, N. Ichiyanagi, Y. Ikeda et al., “Adhesion molecule CADM1 contributes to gap junctional communication among pan-creatic islet α-cells and prevents their excessive secretion of glucagon,” Islets, vol. 4, pp. 49–55, 2012.
  261. T. Kanno, S. O. Göpel, P. Rorsman, and M. Wakui, “Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on α-, β- and δ-cells of the pancreatic islet,” Neuroscience Research, vol. 42, no. 2, pp. 79–90, 2002. View at Publisher · View at Google Scholar · View at Scopus
  262. I. Quesada, E. Fuentes, E. Andreu, P. Meda, A. Nadal, and B. Soria, “On-line analysis of gap junctions reveals more efficient electrical than dye coupling between islet cells,” American Journal of Physiology, vol. 284, no. 5, pp. E980–E987, 2003. View at Scopus
  263. A. Nadal, I. Quesada, and B. Soria, “Homologous and heterologous asynchronicity between identified α-, β- and δ-cells within intact islets of Langerhans in the mouse,” The Journal of Physiology, vol. 517, no. 1, pp. 85–93, 1999. View at Publisher · View at Google Scholar · View at Scopus
  264. A. Nadal, I. Quesada, and B. Soria, “Homologous and heterologous asynchronicity between identified α-, β- and δ-cells within intact islets of Langerhans in the mouse,” The Journal of Physiology, vol. 517, no. 1, pp. 85–93, 1999. View at Publisher · View at Google Scholar · View at Scopus
  265. N. Belluardo, A. Trovato-Salinaro, G. Mudò, Y. L. Hurd, and D. F. Condorelli, “Structure, chromosomal localization, and brain expression of human Cx36 gene,” Journal of Neuroscience Research, vol. 57, pp. 740–752, 1999.
  266. Y. Mori, S. Otabe, C. Dina et al., “Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate loci on 7p and 11p,” Diabetes, vol. 51, no. 4, pp. 1247–1255, 2002. View at Scopus
  267. R. Hamelin, F. Allagnat, J. A. Haefliger, and P. Meda, “Connexins, diabetes and the metabolic syndrome,” Current Protein and Peptide Science, vol. 10, no. 1, pp. 18–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  268. F. Allagnat, D. Martin, D. F. Condorelli, G. Waeber, and J. A. Haefliger, “Glucose represses connexin36 in insulin-secreting cells,” Journal of Cell Science, vol. 118, no. 22, pp. 5335–5344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  269. F. Allagnat, F. Alonso, D. Martin, A. Abderrahmani, G. Waeber, and J. A. Haefliger, “ICER-1γ overexpression drives palmitate-mediated connexin36 down-regulation in insulin-secreting cells,” Journal of Biological Chemistry, vol. 283, no. 9, pp. 5226–5234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  270. J. A. Haefliger, D. Martin, D. Favre, et al., “Reduction of Cconnexin36 content by ICER-1 contributes to insulin-secreting cells apoptosis induced by oxidized LDL particles”.
  271. C. Mas, N. Taske, S. Deutsch et al., “Association of the connexin36 gene with juvenile myoclonic epilepsy,” Journal of Medical Genetics, vol. 41, no. 7, pp. e93–e98, 2004. View at Scopus
  272. A. Hempelmann, A. Heils, and T. Sander, “Confirmatory evidence for an association of the connexin-36 gene with juvenile myoclonic epilepsy,” Epilepsy Research, vol. 71, no. 2-3, pp. 223–228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  273. J. Rasschaert, D. Liu, B. Kutlu et al., “Global profiling of double stranded RNA- and IFN-γ-induced genes in rat pancreatic beta cells,” Diabetologia, vol. 46, no. 12, pp. 1641–1657, 2003. View at Publisher · View at Google Scholar · View at Scopus
  274. S. Bavamian, H. Pontes, J. Cancela, et al., “The intercellular synchronization of Ca2+ oscillations evaluates Cx36-dependent coupling,” PLoS ONE, vol. 7, Article ID e41535, 2012.
  275. M. Oyamada, Y. Oyamada, T. Kaneko, and T. Takamatsu, “Regulation of gap junction protein (connexin) genes and function in differentiating ES cells,” Methods in Molecular Biology, vol. 185, pp. 63–69, 2002. View at Scopus
  276. P. Wörsdörfer, S. Maxeiner, C. Markopoulos, et al., “Connexin expression and functional analy-sis of gap junctional communication in mouse embryonic stem cells,” Stem Cells, vol. 26, pp. 431–439, 2008.
  277. D. R. Bhandari, K. W. Seo, B. Sun, et al., “The simplest method for in vitro β-cell production from human adult stem cells,” Differentiation, vol. 82, pp. 144–152, 2011.
  278. E. M. Hartfield, F. Rinaldi, C. P. Glover, L. F. Wong, M. A. Caldwell, and J. B. Uney, “Connexin 36 expression regulates neuronal differentiation from neural progenitor cells,” PLoS ONE, vol. 6, no. 3, Article ID e14746, 2011. View at Publisher · View at Google Scholar · View at Scopus