About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2013 (2013), Article ID 795964, 24 pages
http://dx.doi.org/10.1155/2013/795964
Review Article

L-Ascorbic Acid: A Multifunctional Molecule Supporting Plant Growth and Development

Department of Biochemistry, University of California, Riverside, CA 92521-0129, USA

Received 16 August 2012; Accepted 2 October 2012

Academic Editors: H. Ashihara, C. Riganti, and A. Vanin

Copyright © 2013 Daniel R. Gallie. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. B. Chatterjee, “Evolution and the biosynthesis of ascorbic acid,” Science, vol. 182, no. 4118, pp. 1271–1272, 1973. View at Scopus
  2. J. L. Svirbely and A. Szent-Györgyi, “Hexuronic acid as the antiscorbutic factor,” Nature, vol. 129, no. 3259, p. 576, 1932. View at Scopus
  3. J. Tillmans and P. Hirsch, “Vitamin C,” Biochem Z, vol. 250, pp. 312–320, 1932.
  4. W. A. Waugh and C. G. King, “The isolation and identification of vitamin C,” The Journal of Biological Chemistry, vol. 97, pp. 325–331, 1932.
  5. R. W. Herbert, E. L. Hirst, E. G. V. Percival, R. J. W. Reynolds, and F. Smith, “The constitution of ascorbic acid,” Journal of the Chemical Society, pp. 1270–1290, 1933. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Levine, “New concepts in the biology and biochemistry of ascorbic acid,” The New England Journal of Medicine, vol. 314, no. 14, pp. 892–902, 1986. View at Scopus
  7. M. Levine, C. C. Cantilena, and K. R. Dhariwal, “Determination of optimal vitamin C requirements in humans,” The American Journal of Clinical Nutrition, vol. 62, pp. 1347S–1356S., 1995.
  8. H. Sies and W. Stahl, “Vitamins E and C, β-carotene, and other carotenoids as antioxidants,” American Journal of Clinical Nutrition, vol. 62, no. 6, pp. 1315S–1321S, 1995. View at Scopus
  9. Food and Nutrition Board and Institute of Medicine, Vitamin C. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids, National Academy Press, Washington DC, USA, 2000.
  10. C. S. Johnston and L. L. Thompson, “Vitamin C status of an outpatient population,” Journal of the American College of Nutrition, vol. 17, no. 4, pp. 366–370, 1998. View at Scopus
  11. Z. Chen, T. E. Young, J. Ling, S. C. Chang, and D. R. Gallie, “Increasing vitamin C content of plants through enhanced ascorbate recycling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3525–3530, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. R. D. Hancock and R. Viola, “Improving the nutritional value of crops through enhancement of L-ascorbic acid (vitamin C) content: rationale and biotechnological opportunities,” Journal of Agricultural and Food Chemistry, vol. 53, no. 13, pp. 5248–5257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Naqvi, C. Zhu, G. Farre et al., “Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 19, pp. 7762–7767, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Pignocchi and C. H. Foyer, “Apoplastic ascorbate metabolism and its role in the regulation of cell signalling,” Current Opinion in Plant Biology, vol. 6, no. 4, pp. 379–389, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Smirnoff and G. L. Wheeler, “Ascorbic acid in plants: biosynthesis and function,” Critical Reviews in Plant Sciences, vol. 19, no. 4, pp. 267–290, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Smirnoff and G. L. Wheeler, “Ascorbic acid in plants: biosynthesis and function,” Critical Reviews in Biochemistry and Molecular Biology, vol. 35, no. 4, pp. 291–314, 2000. View at Scopus
  17. N. M. Kerk and L. J. Feldman, “A biochemical model for the initiation and maintenance of the quiescent center: Implications for organization of root meristems,” Development, vol. 121, no. 9, pp. 2825–2833, 1995. View at Scopus
  18. G. Noctor, S. Veljovic-Jovanovic, C. H. Foyer, and S. Grace, “Peroxide processing in photosynthesis: antioxidant coupling and redox signalling,” Philosophical Transactions of the Royal Society B, vol. 355, no. 1402, pp. 1465–1475, 2000. View at Scopus
  19. J. J. Burns, “Ascorbic acid,” in Metabolic Pathways, D. M. Greenberg, Ed., vol. 1, pp. 394–411, Academic Press, New York, NY, USA, 3rd edition, 1967.
  20. G. L. Wheeler, M. A. Jones, and N. Smirnoff, “The biosynthetic pathway of vitamin C in higher plants,” Nature, vol. 393, no. 6683, pp. 365–369, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. B. A. Wolucka, G. Persiau, J. Van Doorsselaere et al., “Partial purification and identification of GDP-mannose 3,5-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 14843–14848, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. C. G. Bartoli, G. M. Pastori, and C. H. Foyer, “Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV,” Plant Physiology, vol. 123, no. 1, pp. 335–343, 2000. View at Scopus
  23. E. Siendones, J. A. González-Reyes, C. Santos-Ocaña, P. Navas, and F. Córdoba, “Biosynthesis of ascorbic acid in kidney bean. L-Galactono-γ-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane,” Plant Physiology, vol. 120, no. 3, pp. 907–912, 1999. View at Scopus
  24. P. L. Conklin, J. E. Pallanca, R. L. Last, and N. Smirnoff, “L-Ascorbic acid metabolism in the ascorbate-deficient Arabidopsis mutant vtc1,” Plant Physiology, vol. 115, no. 3, pp. 1277–1285, 1997. View at Scopus
  25. P. L. Conklin, E. H. Williams, and R. L. Last, “Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9970–9974, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. P. L. Conklin, S. Gatzek, G. L. Wheeler et al., “Arabidopsis thalianaVTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme,” Journal of Biological Chemistry, vol. 281, no. 23, pp. 15662–15670, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. P. L. Conklin, S. R. Norris, G. L. Wheeler, E. H. Williams, N. Smirnoff, and R. L. Last, “Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 7, pp. 4198–4203, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Dowdle, T. Ishikawa, S. Gatzek, S. Rolinski, and N. Smirnoff, “Two genes in Arabidopsis thaliana encoding GDP-L-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability,” Plant Journal, vol. 53, no. 3, p. 595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. W. A. Laing, M. A. Wright, J. Cooney, and S. M. Bulley, “The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 22, pp. 9534–9539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. C. L. Linster, T. A. Gomez, K. C. Christensen et al., “Arabidopsis VTC2 encodes a GDP-L-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants,” Journal of Biological Chemistry, vol. 282, no. 26, pp. 18879–18885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. F. A. Loewus and S. Kelly, “The metabolism of D-galacturonic acid and its methyl ester in the detached ripening strawberry,” Archives of Biochemistry and Biophysics, vol. 95, no. 3, pp. 483–493, 1961. View at Scopus
  32. V. Valpuesta and M. A. Botella, “Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant,” Trends in Plant Science, vol. 9, no. 12, pp. 573–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. W. Davey, C. Gilot, G. Persiau et al., “Ascorbate biosynthesis in Arabidopsis cell suspension culture,” Plant Physiology, vol. 121, no. 2, pp. 535–543, 1999. View at Scopus
  34. F. A. Isherwood, Y. T. Chen, and L. W. Mapson, “Synthesis of L-ascorbic acid in plants and animals,” The Biochemical Journal, vol. 56, no. 1, pp. 1–15, 1954. View at Scopus
  35. F. Agius, R. González-Lamothe, J. L. Caballero, J. Muñoz-Blanco, M. A. Botella, and V. Valpuesta, “Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase,” Nature Biotechnology, vol. 21, no. 2, pp. 177–181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. F. A. Loewus, “Tracer studies on ascorbic acid formation in plants,” Phytochemistry, vol. 2, no. 2, pp. 109–128, 1963. View at Scopus
  37. S. Gatzek, G. L. Wheeler, and N. Smirnoff, “Antisense suppression of L-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated L-galactose synthesis,” Plant Journal, vol. 30, no. 5, pp. 541–553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. K. Jain and C. L. Nessler, “Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants,” Molecular Breeding, vol. 6, no. 1, pp. 73–78, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Lorence, B. I. Chevone, P. Mendes, and C. L. Nessler, “myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis,” Plant Physiology, vol. 134, no. 3, pp. 1200–1205, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. B. A. Wolucka and M. Van Montagu, “GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants,” Journal of Biological Chemistry, vol. 278, no. 48, pp. 47483–47490, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Wagner, M. Sefkow, and J. Kopka, “Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles,” Phytochemistry, vol. 62, no. 6, pp. 887–900, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. J. A. Radzio, A. Lorence, B. I. Chevone, and C. L. Nessler, “L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants,” Plant Molecular Biology, vol. 53, no. 6, pp. 837–844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Askerlund and C. Larsson, “Transmembrane electron transport in plasma membrane vesicles loaded with an NADH-generating system or ascorbate,” Plant Physiology, vol. 96, no. 4, pp. 1178–1184, 1991. View at Scopus
  44. N. Horemans, C. H. Foyer, and H. Asard, “Transport and action of ascorbate at the plant plasma membrane,” Trends in Plant Science, vol. 5, no. 6, pp. 263–267, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Horemans, C. H. Foyer, G. Potters, and H. Asard, “Ascorbate function and associated transport systems in plants,” Plant Physiology and Biochemistry, vol. 38, no. 7-8, pp. 531–540, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Goldenberg and E. Schweinzer, “Transport of vitamin C in animal and human cells,” Journal of Bioenergetics and Biomembranes, vol. 26, no. 4, pp. 359–367, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. R. C. Rose, “Transport of ascorbic acid and other water-soluble vitamins,” Biochimica et Biophysica Acta, vol. 947, no. 2, pp. 335–366, 1988. View at Scopus
  48. J. C. Vera, C. I. Rivas, J. Fischbarg, and D. W. Golde, “Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid,” Nature, vol. 364, no. 6432, pp. 79–82, 1993. View at Publisher · View at Google Scholar · View at Scopus
  49. U. Heber, N. G. Bukhov, C. Wiese, and R. Hedrich, “Energized uptake of ascorbate and dehydroascorbate from the apoplast of intact leaves in relation to apoplastic steady state concentrations of ascorbate,” Plant Biology, vol. 5, no. 2, pp. 151–158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Horemans, H. Asard, and R. J. Caubergs, “Transport of ascorbate into plasma membrane vesicles of Phaseolus vulgaris L,” Protoplasma, vol. 194, no. 3-4, pp. 177–185, 1996. View at Scopus
  51. N. Horemans, M. Asard, and R. J. Caubergs, “The ascorbate carrier of higher plant plasma membranes preferentially translocates the fully oxidized (dehydroascorbate) molecule,” Plant Physiology, vol. 114, no. 4, pp. 1247–1253, 1997. View at Scopus
  52. N. Horemans, H. Asard, P. Van Gestelen, and R. J. Caubergs, “Facilitated diffusion drives transport of oxidised ascorbate molecules into purified plasma membrane vesicles of Phaseolus vulgaris,” Physiologia Plantarum, vol. 104, no. 4, pp. 783–789, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Horemans, G. Potters, R. J. Caubergs, and H. Asard, “Transport of ascorbate into protoplasts of Nicotiana tabacum Bright Yellow-2 cell line,” Protoplasma, vol. 205, no. 1–4, pp. 114–121, 1998. View at Scopus
  54. A. A. F. Rautenkranz, Li Liantje, F. Machler, E. Martinoia, and J. J. Oertli, “Transport of ascorbic and dehydroascorbic acids across protoplast and vacuole membranes isolated from barley (Hordeum vulgare L. cv Gerbel) leaves,” Plant Physiology, vol. 106, no. 1, pp. 187–193, 1994. View at Scopus
  55. V. G. Maurino, E. Grube, J. Zielinski, A. Schild, K. Fischer, and U. I. Flügge, “Identification and expression analysis of twelve members of the nucleobase-ascorbate transporter (NAT) gene family in Arabidopsis thaliana,” Plant and Cell Physiology, vol. 47, no. 10, pp. 1381–1393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Beck, A. Burkert, and M. Hofmann, “Uptake of L-ascorbate by intact spinach chloroplasts,” Plant Physiology, vol. 73, pp. 41–45, 1983.
  57. C. H. Foyer and M. Lelandais, “A comparison of the relative rates of transport of ascorbate and glucose across the thylakoid, chloroplast and plasmalemma membranes of pea leaf mesophyll cells,” Journal of Plant Physiology, vol. 148, no. 3-4, pp. 391–398, 1996. View at Scopus
  58. A. Szarka, N. Horemans, G. Bánhegyi, and H. Asard, “Facilitated glucose and dehydroascorbate transport in plant mitochondria,” Archives of Biochemistry and Biophysics, vol. 428, no. 1, pp. 73–80, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. V. R. Franceschi and N. M. Tarlyn, “L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants,” Plant Physiology, vol. 130, no. 2, pp. 649–656, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Tedone, R. D. Hancock, S. Alberino, S. Haupt, and R. Viola, “Long-distance transport of L-ascorbic acid in potato,” BMC Plant Biology, vol. 4, article 16, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. R. D. Hancock, D. McRae, S. Haupt, and R. Viola, “Synthesis of L-ascorbic acid in the phloem,” BMC Plant Biology, vol. 3, article 7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. A. A. Badejo, K. Wada, Y. Gao et al., “Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway,” Journal of Experimental Botany, vol. 63, pp. 229–239, 2012.
  63. M. Eskling, P. O. Arvidsson, and H. E. Åkerlund, “The xanthophyll cycle, its regulation and components,” Physiologia Plantarum, vol. 100, no. 4, pp. 806–816, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Asada, “Mechanisms for scavenging reactive molecules generated in chloroplasts under light stress photoinhibition of photosynthesis: from molecular mechanisms to the field,” in BIOS Scientific Publishers, N. R. Baker and J. R. Bowyer, Eds., pp. 129–142, Oxford, UK, 1994.
  65. K. I. Kivirikko and T. Pihlajaniemi, “Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl 4-hydroxylases,” Advances in Enzymology and Related Areas of Molecular Biology, vol. 72, pp. 325–398, 1998. View at Scopus
  66. P. Wojtaszek, C. G. Smith, and G. P. Bolwell, “Ultrastructural localisation and further biochemical characterisation of prolyl 4-hydroxylase from Phaseolus vulgaris: comparative analysis,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 3-4, pp. 463–477, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. M. B. Davies, J. Austin, and D. A. Partridge, Vitamin C: Its Chemistry and Biochemistry, Royal Society of Chemistry, Cambridge, UK, 1991.
  68. J. J. Smith, P. Ververidis, and P. John, “Characterization of the ethylene-forming enzyme partially purified from melon,” Phytochemistry, vol. 31, no. 5, pp. 1485–1494, 1992. View at Scopus
  69. X. Qin and J. A. D. Zeevaart, “The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 26, pp. 15354–15361, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. O. Arrigoni and M. C. De Tullio, “The role of ascorbic acid in cell metabolism: between gene-directed functions and unpredictable chemical reactions,” Journal of Plant Physiology, vol. 157, no. 5, pp. 481–488, 2000. View at Scopus
  71. O. Arrigoni and M. C. De Tullio, “Ascorbic acid: much more than just an antioxidant,” Biochimica et Biophysica Acta, vol. 1569, no. 1–3, pp. 1–9, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Hedden and Y. Kamiya, “Gibberellin biosynthesis: enzymes, genes and their regulation,” Annual Review of Plant Biology, vol. 48, pp. 431–460, 1997. View at Scopus
  73. T. Lange, “Purification and partial amino-acid sequence of gibberellin 20-oxidase from Cucurbita maxima L. endosperm,” Planta, vol. 195, no. 1, pp. 108–115, 1994. View at Scopus
  74. L. Britsch, “Purification and characterization of flavone synthase I, a 2-oxoglutarate-dependent desaturase,” Archives of Biochemistry and Biophysics, vol. 282, no. 1, pp. 152–160, 1990. View at Scopus
  75. L. Britsch, J. Dedio, H. Saedler, and G. Forkmann, “Molecular characterization of flavanone 3β-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues,” European Journal of Biochemistry, vol. 217, no. 2, pp. 745–754, 1993. View at Publisher · View at Google Scholar · View at Scopus
  76. T. A. Holton, F. Brugliera, and Y. Tanaka, “Cloning and expression of flavonol synthase from Petunia hybrida,” Plant Journal, vol. 4, no. 6, pp. 1003–1010, 1993. View at Scopus
  77. N. Smirnoff, “The function and metabolism of ascorbic acid in plants,” Annals of Botany, vol. 78, no. 6, pp. 661–669, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Smirnoff and C. Critchley, “Ascorbate biosynthesis and function in photoprotection,” Philosophical Transactions of the Royal Society B, vol. 355, no. 1402, pp. 1455–1464, 2000. View at Scopus
  79. N. Smirnoff, “Ascorbic acid: metabolism and functions of a multi-facetted molecule,” Current Opinion in Plant Biology, vol. 3, no. 3, pp. 229–235, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Foyer, J. Rowell, and D. Walker, “Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination,” Planta, vol. 157, no. 3, pp. 239–244, 1983. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Asada and M. Takahashi, “Production and scavenging of active oxygen in photosynthesis,” in Photoinhibition, D. J. Kyle, C. B. Osmond, and C. J. Arntzen, Eds., pp. 227–287, Elsevier, Amsterdam, The Netherlands, 1987.
  82. C. H. Foyer, “Oxygen metabolism and electron transport in photosynthesis,” in Oxidative Stress and the Molecular Biology of Antioxidant Defenses, J. G. Scandalios, Ed., pp. 587–621, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY, USA, 1997.
  83. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 2000.
  84. R. Mittler, “Oxidative stress, antioxidants and stress tolerance,” Trends in Plant Science, vol. 7, no. 9, pp. 405–410, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Mano, É. Hideg, and K. Asada, “Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I,” Archives of Biochemistry and Biophysics, vol. 429, no. 1, pp. 71–80, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. J. Mano, T. Ushimaru, and K. Asada, “Ascorbate in thylakoid lumen as an endogenous electron donor to Photosystem II: protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase,” Photosynthesis Research, vol. 53, no. 2-3, pp. 197–204, 1997. View at Scopus
  87. G. Forti and A. M. Ehrenheim, “The role of ascorbic acid in photosynthetic electron transport,” Biochimica et Biophysica Acta, vol. 1183, no. 2, pp. 408–412, 1993. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Grace, R. Pace, and T. Wydrzynski, “Formation and decay of monodehydroascorbate radicals in illuminated thylakoids as determined by EPR spectroscopy,” Biochimica et Biophysica Acta, vol. 1229, no. 2, pp. 155–165, 1995. View at Publisher · View at Google Scholar · View at Scopus
  89. K. Asada, “The water-water cycle as alternative photon and electron sinks,” Philosophical Transactions of the Royal Society B, vol. 355, pp. 1419–1431, 2000.
  90. Y. Nakano and K. Asada, “Spinach chloroplasts scavenge hydrogen peroxide on illumination,” Plant and Cell Physiology, vol. 21, no. 7, pp. 1295–1307, 1980. View at Scopus
  91. K. Asada, “The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons,” Annual Review of Plant Biology, vol. 50, pp. 601–639, 1999. View at Scopus
  92. J. B. Mudd, “Biochemical basis for the toxicity of ozone,” in Plant Response to Air Pollution, M. Yunus and M. Iqba, Eds., pp. 267–284, Wiley & Sons, New York, NY, USA, 1997.
  93. M. Schraudner, W. Moeder, C. Wiese et al., “Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3,” Plant Journal, vol. 16, no. 2, pp. 235–245, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. Z. M. Pel, Y. Murata, G. Benning et al., “Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells,” Nature, vol. 406, no. 6797, pp. 731–734, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. X. Zhang, L. Zhang, F. Dong, J. Gao, D. W. Galbraith, and C. P. Song, “Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba,” Plant Physiology, vol. 126, no. 4, pp. 1438–1448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. J. R. Koch, R. A. Creelman, S. M. Eshita, M. Seskar, J. E. Mullet, and K. R. Davis, “Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation,” Plant Physiology, vol. 123, no. 2, pp. 487–496, 2000. View at Scopus
  97. S. Pasqualini, C. Piccioni, L. Reale, L. Ederli, G. D. Della Torre, and F. Ferranti, “Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation,” Plant Physiology, vol. 133, no. 3, pp. 1122–1134, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. M. V. Rao, J. R. Koch, and K. R. Davis, “Ozone: a tool for probing programmed cell death in plants,” Plant Molecular Biology, vol. 44, no. 3, pp. 345–358, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. E. M. Aro, I. Virgin, and B. Andersson, “Photoinhibition of photosystem. II. Inactivation, protein damage and turnover,” Biochimica et Biophysica Acta, vol. 1143, no. 2, pp. 113–134, 1993. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Nishiyama, S. I. Allakhverdiev, and N. Murata, “A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II,” Biochimica et Biophysica Acta, vol. 1757, no. 7, pp. 742–749, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. P. L. Conklin, S. A. Saracco, S. R. Norris, and R. L. Last, “Identification of ascorbic acid-deficient Arabidopsis thaliana mutants,” Genetics, vol. 154, no. 2, pp. 847–856, 2000. View at Scopus
  102. S. D. Veljovic-Jovanovic, C. Pignocchi, G. Noctor, and C. H. Foyer, “Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system,” Plant Physiology, vol. 127, no. 2, pp. 426–435, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Müller-Moulé, T. Golan, and K. K. Niyogi, “Ascorbate-deficient mutants of Arabidopsis grow in high light despite chronic photooxidative stress,” Plant Physiology, vol. 134, no. 3, pp. 1163–1172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. P. Müller-Moulé, P. L. Conklin, and K. K. Niyogi, “Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo,” Plant Physiology, vol. 128, no. 3, pp. 970–977, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. P. Müller-Moulé, M. Havaux, and K. K. Niyogi, “Zeaxanthin deficiency enhances the high light sensitivity of an ascorbate-deficient mutant of Arabidopsis,” Plant Physiology, vol. 133, no. 2, pp. 748–760, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. C. H. Foyer, H. Lopez-Delgado, J. F. Dat, and I. M. Scott, “Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling,” Physiologia Plantarum, vol. 100, no. 2, pp. 241–254, 1997. View at Publisher · View at Google Scholar · View at Scopus
  107. C. Huang, W. He, J. Guo, X. Chang, P. Su, and L. Zhang, “Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant,” Journal of Experimental Botany, vol. 56, no. 422, pp. 3041–3049, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. O. Chew, J. Whelan, and A. H. Millar, “Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants,” Journal of Biological Chemistry, vol. 278, no. 47, pp. 46869–46877, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. A. A. Grantz, D. A. Brummell, and A. B. Bennett, “Ascorbate free radical reductase mRNA levels are induced by wounding,” Plant Physiology, vol. 108, no. 1, pp. 411–418, 1995. View at Scopus
  110. S. Adriano, C. T. Angelo, D. Bartolomeo, and X. Cristos, “Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids,” Plant Science, vol. 169, no. 2, pp. 403–412, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. N. Dipierro, D. Mondelli, C. Paciolla, G. Brunetti, and S. Dipierro, “Changes in the ascorbate system in the response of pumpkin (Cucurbita pepo L.) roots to aluminium stress,” Journal of Plant Physiology, vol. 162, no. 5, pp. 529–536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. C. Barth, W. Moeder, D. F. Klessig, and P. L. Conklin, “The timing of senescence and response to pathogens is altered in the ascorbate-deficient arabidopsis mutant vitamin c-1,” Plant Physiology, vol. 134, no. 4, pp. 1784–1792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  113. I. A. Graham and P. J. Eastmond, “Pathways of straight and branched chain fatty acid catabolism in higher plants,” Progress in Lipid Research, vol. 41, no. 2, pp. 156–181, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. R. T. Mullen and R. N. Trelease, “Biogenesis and membrane properties of peroxisomes: does the boundary membrane serve and protect?” Trends in Plant Science, vol. 1, no. 11, pp. 389–394, 1996. View at Publisher · View at Google Scholar · View at Scopus
  115. J. R. Bunkelmann and R. N. Trelease, “Ascorbate peroxidase: a prominent membrane protein in oilseed glyoxysomes,” Plant Physiology, vol. 110, no. 2, pp. 589–598, 1996. View at Scopus
  116. K. Karyotou and R. P. Donaldson, “Ascorbate peroxidase, a scavenger of hydrogen peroxide in glyoxysomal membranes,” Archives of Biochemistry and Biophysics, vol. 434, no. 2, pp. 248–257, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Yamaguchi, H. Mori, and M. Nishimura, “A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin,” Plant and Cell Physiology, vol. 36, no. 6, pp. 1157–1162, 1995. View at Scopus
  118. S. Narendra, S. Venkataramani, G. Shen et al., “The Arabidopsis ascorbate peroxidase 3 is a peroxisomal membrane-bound antioxidant enzyme and is dispensable for Arabidopsis growth and development,” Journal of Experimental Botany, vol. 57, no. 12, pp. 3033–3042, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. J. Wang, H. Zhang, and R. D. Allen, “Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress,” Plant and Cell Physiology, vol. 40, no. 7, pp. 725–732, 1999. View at Scopus
  120. G. H. Badawi, N. Kawano, Y. Yamauchi et al., “Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit,” Physiologia Plantarum, vol. 121, no. 2, pp. 231–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. P. J. Eastmond, “MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil hydrolysis and postgerminative growth in Arabidopsis,” Plant Cell, vol. 19, no. 4, pp. 1376–1387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. P. J. Eastmond, “SUGAR-DEPENDENT1 encodes a patatin domain triacylglycerol lipase that initiates storage oil breakdown in germinating Arabidopsis seeds,” Plant Cell, vol. 18, no. 3, pp. 665–675, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. O. Arrigoni, M. B. Bitonti, R. Cozza, A. M. Innocenti, R. Liso, and R. Veltri, “Ascorbic acid effect on pericycle cell line in Allium cepa root,” Caryologia, vol. 42, pp. 213–216, 1989.
  124. R. C. De Cabo, J. A. Gonzalez-Reyes, and P. Navas, “The onset of cell proliferation is stimulated by ascorbate free radical in onion root primordia,” Biology of the Cell, vol. 77, no. 2, pp. 231–233, 1993. View at Scopus
  125. M. C. De Pinto, D. Francis, and L. De Gara, “The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells,” Protoplasma, vol. 209, no. 1-2, pp. 90–97, 1999. View at Scopus
  126. A. M. Innocenti, M. B. Bitonti, O. Arrigoni, and R. Liso, “The size of quiescent centre in roots of Allium cepa L. grown with ascorbic acid,” New Phytologist, vol. 110, pp. 507–509, 1990.
  127. R. Liso, A. M. Innocenti, M. B. Bitonti, and O. Arrigoni, “Ascorbic acid-induced progression of quiescent centre cells from G1 to S phase,” New Phytologist, vol. 110, pp. 469–471, 1988.
  128. K. Tabata, K. Ôba, K. Suzuki, and M. Esaka, “Generation and properties of ascorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L-galactono-1,4-lactone dehydrogenase,” Plant Journal, vol. 27, no. 2, pp. 139–148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  129. N. Kato and M. Esaka, “Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells,” Physiologia Plantarum, vol. 105, no. 2, pp. 321–329, 1999. View at Scopus
  130. G. Potters, N. Horemans, S. Bellone et al., “Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism,” Plant Physiology, vol. 134, no. 4, pp. 1479–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  131. G. Potters, N. Horemans, R. J. Caubergs, and H. Asard, “Ascorbate and dehydroascorbate influence cell cycle progression in a tobacco cell suspension,” Plant Physiology, vol. 124, no. 1, pp. 17–20, 2000. View at Scopus
  132. O. Arrigoni, “Ascorbate system in plant development,” Journal of Bioenergetics and Biomembranes, vol. 26, no. 4, pp. 407–419, 1994. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Citterio, S. Sgorbati, S. Scippa, and E. Sparvoli, “Ascorbic acid effect on the onset of cell proliferation in pea root,” Physiologia Plantarum, vol. 92, no. 4, pp. 601–607, 1994. View at Publisher · View at Google Scholar · View at Scopus
  134. R. Liso, G. Calabrese, M. B. Bitonti, and O. Arrigoni, “Relationship between ascorbic acid and cell division,” Experimental Cell Research, vol. 150, no. 2, pp. 314–320, 1984. View at Scopus
  135. N. Horemans, G. Potters, L. De Wilde, and R. J. Caubergs, “Dehydroascorbate uptake activity correlates with cell growth and cell division of tobacco Bright Yellow-2 cell cultures,” Plant Physiology, vol. 133, no. 1, pp. 361–367, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. G. Potters, L. De Gara, H. Asard, and N. Horemans, “Ascorbate and glutathione: guardians of the cell cycle, partners in crime?” Plant Physiology and Biochemistry, vol. 40, no. 6–8, pp. 537–548, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. J. P. Reichheld, T. Vernoux, F. Lardon, M. van Montagu, and D. Inzé, “Specific checkpoints regulate plant cell cycle progression in response to oxidative stress,” Plant Journal, vol. 17, no. 6, pp. 647–656, 1999. View at Publisher · View at Google Scholar · View at Scopus
  138. C. Paciolla, M. C. De Tullio, A. Chiappetta et al., “Short- and long-term effects of dehydroascorbate in Lupinus albus and Allium cepa roots,” Plant and Cell Physiology, vol. 42, no. 8, pp. 857–863, 2001. View at Scopus
  139. M. J. May, T. Vernoux, C. Leaver, M. Van Montagu, and D. Inzé, “Glutathione homeostasis in plants: implications for environmental sensing and plant development,” Journal of Experimental Botany, vol. 49, no. 321, pp. 649–667, 1998. View at Scopus
  140. M. C. De Tullio, C. Paciolla, F. Dalla Vecchia et al., “Changes in onion root development induced by the inhibition of peptidyl-prolyl hydroxylase and influence of the ascorbate system on cell division and elongation,” Planta, vol. 209, no. 4, pp. 424–434, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. Z. Chen and D. R. Gallie, “Induction of monozygotic twinning by ascorbic acid in tobacco,” PLoS ONE, vol. 7, Article ID e39147, 2012.
  142. O. Arrigoni, L. De Gara, F. Tommasi, and R. Liso, “Changes in the ascorbate system during seed development of Vicia faba L,” Plant Physiology, vol. 99, no. 1, pp. 235–238, 1992. View at Scopus
  143. L. De Gara, M. C. De Pinto, and O. Arrigoni, “Ascorbate synthesis and ascorbate peroxidase activity during the early stage of wheat germination,” Physiologia Plantarum, vol. 100, no. 4, pp. 894–900, 1997. View at Publisher · View at Google Scholar · View at Scopus
  144. F. Tommasi, C. Paciolla, M. C. De Pinto, and L. De Gara, “A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds,” Journal of Experimental Botany, vol. 52, no. 361, pp. 1647–1654, 2001. View at Scopus
  145. G. Borraccino, L. Mastropasqua, S. De Leonardis, and S. Dipierro, “The role of the ascorbic acid system in delaying the senescence of oat (Avena sativa L.) leaf segments,” Journal of Plant Physiology, vol. 144, no. 2, pp. 161–166, 1994. View at Scopus
  146. Z. Chen and D. R. Gallie, “Dehydroascorbate reductase affects leaf growth, development, and function,” Plant Physiology, vol. 142, no. 2, pp. 775–787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  147. U. Takahama, M. Hirotsu, and T. Oniki, “Age-dependent changes in levels of ascorbic acid and chlorogenic acid, and activities of peroxidase and superoxide dismutase in the apoplast of tobacco leaves: mechanism of the oxidation of chlorogenic acid in the apoplast,” Plant and Cell Physiology, vol. 40, no. 7, pp. 716–724, 1999. View at Scopus
  148. G. M. Pastori, G. Kiddle, J. Antoniw et al., “Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling,” Plant Cell, vol. 15, no. 4, pp. 939–951, 2003. View at Publisher · View at Google Scholar · View at Scopus
  149. V. Pavet, E. Olmos, G. Kiddle et al., “Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis,” Plant Physiology, vol. 139, no. 3, pp. 1291–1303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. P. L. Conklin and C. Barth, “Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence,” Plant, Cell and Environment, vol. 27, no. 8, pp. 959–970, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. S. O. Kotchoni, K. E. Larrimore, M. Mukherjee, C. F. Kempinski, and C. Barth, “Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis,” Plant Physiology, vol. 149, no. 2, pp. 803–815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  152. C. Barth, M. De Tullio, and P. L. Conklin, “The role of ascorbic acid in the control of flowering time and the onset of senescence,” Journal of Experimental Botany, vol. 57, no. 8, pp. 1657–1665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  153. S. M. Bulley, M. Rassam, D. Hoser et al., “Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis,” Journal of Experimental Botany, vol. 60, no. 3, pp. 765–778, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. M. M. Baig, S. Kelly, and F. Loewus, “L-Ascorbic acid biosynthesis in higher plants from L-gulono-1, 4-lactone and L-galactono-1, 4-lactone,” Plant Physiology, vol. 46, no. 2, pp. 277–280, 1970. View at Scopus
  155. K. Oba, M. Fukui, Y. Imai, S. Iriyama, and K. Nogami, “L-Galactono-γ-lactone dehydrogenase: partial characterization, induction of activity and role in the synthesis of ascorbic acid in wounded white potato tuber tissue,” Plant and Cell Physiology, vol. 35, no. 3, pp. 473–478, 1994. View at Scopus
  156. G. Noctor and C. H. Foyer, “Ascorbate and glutathione: keeping active oxygen under control,” Annual Review of Plant Biology, vol. 49, pp. 249–279, 1998. View at Scopus
  157. N. Smirnoff, P. L. Conklin, and F. A. Loewus, “Biosynthesis of ascorbic acid in plants: a renaissance,” Annual Review of Plant Biology, vol. 52, pp. 437–467, 2001. View at Scopus
  158. H. Yamasaki, S. Takahashi, and R. Heshiki, “The tropical fig Ficus microcarpa L. f. cv. Golden leaves lacks heat-stable dehydroascorbate reductase activity,” Plant and Cell Physiology, vol. 40, no. 6, pp. 640–646, 1999. View at Scopus
  159. R. Mittler, S. Vanderauwera, M. Gollery, and F. Van Breusegem, “Reactive oxygen gene network of plants,” Trends in Plant Science, vol. 9, no. 10, pp. 490–498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Yoshida, M. Tamaoki, T. Shikano et al., “Cytosolic dehydroascorbate reductase is important for ozone tolerance in Arabidopsis thaliana,” Plant and Cell Physiology, vol. 47, no. 2, pp. 304–308, 2006. View at Publisher · View at Google Scholar · View at Scopus
  161. L. Rizhsky, H. Liang, and R. Mittler, “The water-water cycle is essential for chloroplast protection in the absence of stress,” Journal of Biological Chemistry, vol. 278, no. 40, pp. 38921–38925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  162. Z. Chen and D. R. Gallie, “Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance,” Plant Physiology, vol. 138, no. 3, pp. 1673–1689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. B. C. Bønsager, A. Shahpiri, C. Finnie, and B. Svensson, “Proteomic and activity profiles of ascorbate-glutathione cycle enzymes in germinating barley embryo,” Phytochemistry, vol. 71, no. 14-15, pp. 1650–1656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. C. Yu, Y. Yang, X. Liu et al., “Molecular and biochemical analysis of two genes encoding dehydroascorbate reductase in common wheat,” Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, vol. 25, no. 10, pp. 1483–1489, 2009. View at Scopus
  165. J. Urano, T. Nakagawa, Y. Maki et al., “Molecular cloning and characterization of a rice dehydroascorbate reductase,” FEBS Letters, vol. 466, no. 1, pp. 107–111, 2000. View at Publisher · View at Google Scholar · View at Scopus
  166. M. Secenji, E. Hideg, A. Bebes, and J. Györgyey, “Transcriptional differences in gene families of the ascorbate-glutathione cycle in wheat during mild water deficit,” Plant Cell Reports, vol. 29, no. 1, pp. 37–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. C. Neubauer and H. Y. Yamamoto, “Membrane barriers and Mehler-peroxidase reaction limit the ascorbate available for violaxanthin de-epoxidase activity in intact chloroplasts,” Photosynthesis Research, vol. 39, no. 2, pp. 137–147, 1994. View at Scopus
  168. C. Miyake and K. Asada, “Ferredoxin-dependent photoreduction of the monodehydroascorbate radical in spinach thylakoids,” Plant and Cell Physiology, vol. 35, no. 4, pp. 539–549, 1994. View at Scopus
  169. S. Sano, C. Miyake, B. Mikami, and K. Asada, “Molecular characterization of monodehydroascorbate radical reductase from cucumber highly expressed in Escherichia coli,” Journal of Biological Chemistry, vol. 270, no. 36, pp. 21354–21361, 1995. View at Publisher · View at Google Scholar · View at Scopus
  170. L. Pnueli, H. Liang, M. Rozenberg, and R. Mittler, “Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants,” Plant Journal, vol. 34, no. 2, pp. 187–203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  171. A. Schützendübel, P. Nikolova, C. Rudolf, and A. Polle, “Cadmium and H2O2-induced oxidative stress in Populus x canescens roots,” Plant Physiology and Biochemistry, vol. 40, no. 6–8, pp. 577–584, 2002. View at Publisher · View at Google Scholar · View at Scopus
  172. A. Schützendübel, P. Schwanz, T. Teichmann et al., “Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots,” Plant Physiology, vol. 127, no. 3, pp. 887–898, 2001. View at Publisher · View at Google Scholar · View at Scopus
  173. P. Sharma and R. Shanker Dubey, “Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant,” Journal of Plant Physiology, vol. 162, no. 8, pp. 854–864, 2005. View at Publisher · View at Google Scholar · View at Scopus
  174. A. Jiménez, J. A. Hernández, L. A. del Río, and F. Sevilla, “Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves,” Plant Physiology, vol. 114, no. 1, pp. 275–284, 1997. View at Scopus
  175. K. Obara, K. Sumi, and H. Fukuda, “The use of multiple transcription starts causes the dual targeting of Arabidopsis putative monodehydroascorbate reductase to both mitochondria and chloroplasts,” Plant and Cell Physiology, vol. 43, no. 7, pp. 697–705, 2002. View at Scopus
  176. C. S. Lisenbee, M. J. Lingard, and R. N. Trelease, “Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase,” Plant Journal, vol. 43, no. 6, pp. 900–914, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. M. Leterrier, F. J. Corpas, J. B. Barroso, L. M. Sandalio, and L. A. Del Río, “Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions,” Plant Physiology, vol. 138, no. 4, pp. 2111–2123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  178. Z. Chen and D. R. Gallie, “The ascorbic acid redox state controls guard cell signaling and stomatal movement,” Plant Cell, vol. 16, no. 5, pp. 1143–1162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  179. S. Y. Kwon, Y. O. Ahn, H. S. Lee, and S. S. Kwak, “Biochemical characterization of transgenic tobacco plants expressing a human dehydroascorbate reductase gene,” Journal of Biochemistry and Molecular Biology, vol. 34, no. 4, pp. 316–321, 2001. View at Scopus
  180. S. Y. Kwon, S. M. Choi, Y. O. Ahn et al., “Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene,” Journal of Plant Physiology, vol. 160, no. 4, pp. 347–353, 2003. View at Publisher · View at Google Scholar · View at Scopus
  181. Z. Chen and D. R. Gallie, “Dehydroascorbate reductase affects non-photochemical quenching and photosynthetic performance,” Journal of Biological Chemistry, vol. 283, no. 31, pp. 21347–21361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  182. A. E. Eltayeb, N. Kawano, G. H. Badawi et al., “Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol,” Physiologia Plantarum, vol. 127, no. 1, pp. 57–65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  183. L. Yin, S. Wang, A. E. Eltayeb et al., “Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to Aluminum stress in transgenic Tobacco,” Planta, vol. 231, no. 3, pp. 609–621, 2010. View at Publisher · View at Google Scholar · View at Scopus
  184. B. Le Martret, M. Poage, K. Shiel, G. D. Nugent, and P. J. Dix, “Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance,” Plant Biotechnology Journal, vol. 9, no. 6, pp. 661–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  185. Y.-M. Goo, J.-C. Hyun, T.-W. Kim et al., “Expressional characterization of dehydroascorbate reductase cDNA in transgenic potato plants,” Journal of Plant Biology, vol. 51, no. 1, pp. 35–41, 2008. View at Scopus
  186. A. Qin, Q. Shi, and X. Yu, “Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes,” Molecular Biology Reports, vol. 38, no. 3, pp. 1557–1566, 2011. View at Publisher · View at Google Scholar · View at Scopus
  187. Z. Wang, Y. Xiao, W. Chen, K. Tang, and L. Zhang, “Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis,” Journal of Integrative Plant Biology, vol. 52, no. 4, pp. 400–409, 2010. View at Publisher · View at Google Scholar · View at Scopus
  188. T. Ushimaru, T. Nakagawa, Y. Fujioka et al., “Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress,” Journal of Plant Physiology, vol. 163, no. 11, pp. 1179–1184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  189. V. M. Haroldsen, C. L. Chi-Ham, S. Kulkarni, A. Lorence, and A. B. Bennett, “Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato,” Plant Physiology and Biochemistry, vol. 49, pp. 1244–1249, 2011.
  190. R. Stevens, D. Page, B. Gouble, C. Garchery, D. Zamir, and M. Causse, “Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress,” Plant, Cell and Environment, vol. 31, no. 8, pp. 1086–1096, 2008. View at Publisher · View at Google Scholar · View at Scopus
  191. A. E. Eltayeb, N. Kawano, G. H. Badawi et al., “Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses,” Planta, vol. 225, no. 5, pp. 1255–1264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  192. F. Li, Q. Y. Wu, Y. L. Sun, L. Y. Wang, X. H. Yang, and Q. W. Meng, “Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses,” Physiologia Plantarum, vol. 139, no. 4, pp. 421–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  193. M. Sanmartin, P. D. Drogoudi, T. Lyons, I. Pateraki, J. Barnes, and A. K. Kanellis, “Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone,” Planta, vol. 216, no. 6, pp. 918–928, 2003. View at Scopus
  194. G. E. Taylor Jr., “Plant and leaf resistance to gaseous air pollution stress,” New Phytologist, vol. 80, pp. 523–534, 1978.
  195. H. D. Grimes, K. K. Perkins, and W. F. Boss, “Ozone degrades into hydroxyl radical under physiological conditions. A spin trapping study,” Plant Physiology, vol. 72, no. 4, pp. 1016–1020, 1983. View at Scopus
  196. J. H. Joo, S. Wang, J. G. Chen, A. M. Jones, and N. V. Fedoroff, “Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone,” Plant Cell, vol. 17, no. 3, pp. 957–970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  197. Y. K. Sharma and K. R. Davis, “The effects of ozone on antioxidant responses in plants,” Free Radical Biology and Medicine, vol. 23, no. 3, pp. 480–488, 1997. View at Publisher · View at Google Scholar · View at Scopus
  198. K. Tanaka, Y. Suda, N. Kondo, and K. Sugahara, “O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts,” Plant and Cell Physiology, vol. 26, no. 7, pp. 1425–1431, 1985. View at Scopus
  199. Y. P. Lee, S. H. Kim, J. W. Bang, H. S. Lee, S. S. Kwak, and S. Y. Kwon, “Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts,” Plant Cell Reports, vol. 26, no. 5, pp. 591–598, 2007. View at Publisher · View at Google Scholar · View at Scopus
  200. A. Yamamoto, M. N. H. Bhuiyan, R. Waditee et al., “Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants,” Journal of Experimental Botany, vol. 56, no. 417, pp. 1785–1796, 2005. View at Publisher · View at Google Scholar · View at Scopus
  201. S. M. Assmann and X. Q. Wang, “From milliseconds to millions of years: guard cells and environmental responses,” Current Opinion in Plant Biology, vol. 4, no. 5, pp. 421–428, 2001. View at Publisher · View at Google Scholar · View at Scopus
  202. J. I. Schroeder, G. J. Allen, V. Hugouvieux, J. M. Kwak, and D. Waner, “Guard cell signal transduction,” Annual Review of Plant Biology, vol. 52, pp. 627–658, 2001. View at Scopus
  203. M. Alhagdow, F. Mounet, L. Gilbert et al., “Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato,” Plant Physiology, vol. 145, no. 4, pp. 1408–1422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  204. E. I. Urzica, L. N. Adler, M. D. Page et al., “Impact of oxidative stress on ascorbate biosynthesis in Chlamydomonas via regulation of the VTC2 gene encoding a GDP- L-galactose phosphorylase,” The Journal of Biological Chemistry, vol. 287, pp. 14234–14245, 2012.
  205. G. Kiddle, G. M. Pastori, S. Bernard et al., “Effects of leaf ascorbate content on defense and photosynthesis gene expression in Arabidopsis thaliana,” Antioxidants and Redox Signaling, vol. 5, no. 1, pp. 23–32, 2003. View at Scopus