About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2013 (2013), Article ID 849186, 17 pages
http://dx.doi.org/10.1155/2013/849186
Review Article

mTOR Inhibition: From Aging to Autism and Beyond

Department of Pathology, University of Washington, 1959 NE Pacific Street, D-514, Seattle, WA 98195-7470, USA

Received 23 September 2013; Accepted 27 October 2013

Academic Editors: O. Huber, R. Ria, and S.-Y. Shieh

Copyright © 2013 Matt Kaeberlein. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. T. Keith and S. L. Schreiber, “PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints,” Science, vol. 270, no. 5233, pp. 50–51, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Loewith, E. Jacinto, S. Wullschleger et al., “Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control,” Molecular Cell, vol. 10, no. 3, pp. 457–468, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Zhou and S. Huang, “The complexes of mammalian target of rapamycin,” Current Protein and Peptide Science, vol. 11, no. 6, pp. 409–424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Bracho-Valdés, P. Moreno-Alvarez, I. Valencia-Martínez, E. Robles-Molina, L. Chávez-Vargas, and J. Vázquez-Prado, “MTORC1- and mTORC2-interacting proteins keep their multifunctional partners focused,” IUBMB Life, vol. 63, no. 10, pp. 880–898, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A. Guertin, D. M. Stevens, C. C. Thoreen et al., “Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1,” Developmental Cell, vol. 11, no. 6, pp. 859–871, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. B. Helliwell, I. Howald, N. Barbet, and M. N. Hall, “TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae,” Genetics, vol. 148, no. 1, pp. 99–112, 1998. View at Scopus
  7. J. Heitman, N. R. Movva, and M. N. Hall, “Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast,” Science, vol. 253, no. 5022, pp. 905–909, 1991. View at Scopus
  8. R. Cafferkey, P. R. Young, M. M. McLaughlin et al., “Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity,” Molecular and Cellular Biology, vol. 13, no. 10, pp. 6012–6023, 1993. View at Scopus
  9. C. J. Sabers, M. M. Martin, G. J. Brunn et al., “Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells,” Journal of Biological Chemistry, vol. 270, no. 2, pp. 815–822, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. E. J. Brown, M. W. Albers, T. B. S. Tae Bum Shin et al., “A mammalian protein targeted by G1-arresting rapamycin-receptor complex,” Nature, vol. 369, no. 6483, pp. 756–758, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. M. I. Chiu, H. Katz, and V. Berlin, “RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12574–12578, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. D. M. Sabatini, H. Erdjument-Bromage, M. Lui, P. Tempst, and S. H. Snyder, “RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs,” Cell, vol. 78, no. 1, pp. 35–43, 1994. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Chen, H. Chen, A. E. Rhoad et al., “A putative sirolimus (rapamycin) effector protein,” Biochemical and Biophysical Research Communications, vol. 203, no. 1, pp. 1–7, 1994. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Laplante and D. M. Sabatini, “Regulation of mTORC1 and its impact on gene expression at a glance,” Journal of Cell Science, vol. 126, pp. 1713–1719, 2013. View at Publisher · View at Google Scholar
  15. M. Laplante and D. M. Sabatini, “mTOR signaling at a glance,” Journal of Cell Science, vol. 122, no. 20, pp. 3589–3594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. X. M. Ma and J. Blenis, “Molecular mechanisms of mTOR-mediated translational control,” Nature Reviews Molecular Cell Biology, vol. 10, no. 5, pp. 307–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Inoki, Y. Li, T. Xu, and K.-L. Guan, “Rheb GTpase is a direct target of TSC2 GAP activity and regulates mTOR signaling,” Genes and Development, vol. 17, no. 15, pp. 1829–1834, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Inoki, Y. Li, T. Zhu, J. Wu, and K.-L. Guan, “TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling,” Nature Cell Biology, vol. 4, no. 9, pp. 648–657, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. B. D. Manning, A. R. Tee, M. N. Logsdon, J. Blenis, and L. C. Cantley, “Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway,” Molecular Cell, vol. 10, no. 1, pp. 151–162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Long, F. Müller, and J. Avruch, “TOR action in mammalian cells and in Caenorhabditis elegans,” Current Topics in Microbiology and Immunology, vol. 279, pp. 115–138, 2003. View at Scopus
  21. X. Long, C. Spycher, Z. S. Han, A. M. Rose, F. Müller, and J. Avruch, “TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation,” Current Biology, vol. 12, no. 17, pp. 1448–1461, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. C. J. Potter, L. G. Pedraza, and T. Xu, “Akt regulates growth by directly phosphorylating Tsc2,” Nature Cell Biology, vol. 4, no. 9, pp. 658–665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Ma, Z. Chen, H. Erdjument-Bromage, P. Tempst, and P. P. Pandolfi, “Phosphorylation and functional inactivation of TSC2 by Erk: implications for tuberous sclerosis and cancer pathogenesis,” Cell, vol. 121, no. 2, pp. 179–193, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Inoki, T. Zhu, and K.-L. Guan, “TSC2 mediates cellular energy response to control cell growth and survival,” Cell, vol. 115, no. 5, pp. 577–590, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. D. M. Gwinn, D. B. Shackelford, D. F. Egan et al., “AMPK phosphorylation of raptor mediates a metabolic checkpoint,” Molecular Cell, vol. 30, no. 2, pp. 214–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Sancak, T. R. Peterson, Y. D. Shaul et al., “The rag GTPases bind raptor and mediate amino acid signaling to mTORC1,” Science, vol. 320, no. 5882, pp. 1496–1501, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Sancak, L. Bar-Peled, R. Zoncu, A. L. Markhard, S. Nada, and D. M. Sabatini, “Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids,” Cell, vol. 141, no. 2, pp. 290–303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Zoncu, L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, and D. M. Sabatini, “mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase,” Science, vol. 334, no. 6056, pp. 678–683, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Kim, P. Goraksha-Hicks, L. Li, T. P. Neufeld, and K.-L. Guan, “Regulation of TORC1 by Rag GTPases in nutrient response,” Nature Cell Biology, vol. 10, no. 8, pp. 935–945, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Laplante and D. M. Sabatini, “mTOR signaling,” Cold Spring Harbor Perspectives in Biology, vol. 4, 2012.
  31. M. Laplante and D. M. Sabatini, “mTOR signaling in growth control and disease,” Cell, vol. 149, no. 2, pp. 274–293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. S. G. Kim, G. R. Buel, and J. Blenis, “Nutrient regulation of the mTOR complex 1 signaling pathway,” Molecules and Cells, vol. 35, pp. 463–473, 2013.
  33. D. E. Martin and M. N. Hall, “The expanding TOR signaling network,” Current Opinion in Cell Biology, vol. 17, no. 2, pp. 158–166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. S. N. Sehgal, H. Baker, and C. Vezina, “Rapamycin (AY 22,989), a new antifungal antibiotic—II. Fermentation, isolation and characterization,” Journal of Antibiotics, vol. 28, no. 10, pp. 727–732, 1975. View at Scopus
  35. C. Vezina, A. Kudelski, and S. N. Sehgal, “Rapamycin (AY 22,989), a new antifungal antibiotic—I. Taxonomy of the producing streptomycete and isolation of the active principle,” Journal of Antibiotics, vol. 28, no. 10, pp. 721–726, 1975. View at Scopus
  36. J. Douros and M. Suffness, “New antitumor substances of natural origin,” Cancer Treatment Reviews, vol. 8, no. 1, pp. 63–87, 1981. View at Scopus
  37. C. P. Eng, S. N. Sehgal, and C. Vezina, “Activity of rapamycin (AY-22,989) against transplanted tumors,” Journal of Antibiotics, vol. 37, no. 10, pp. 1231–1237, 1984. View at Scopus
  38. J. Chen, X.-F. Zheng, E. J. Brown, and S. L. Schreiber, “Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 11, pp. 4947–4951, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Choi, J. Chen, S. L. Schreiber, and J. Clardy, “Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP,” Science, vol. 273, no. 5272, pp. 239–242, 1996. View at Scopus
  40. S. C. Johnson, P. S. Rabinovitch, and M. Kaeberlein, “mTOR is a key modulator of ageing and age-related disease,” Nature, vol. 493, pp. 338–345, 2013. View at Publisher · View at Google Scholar
  41. M. Kaeberlein, “Longevity and aging,” F1000prime Reports, vol. 5, p. 5, 2013.
  42. G. M. Martin, “The biology of aging: 1985–2010 and beyond,” FASEB Journal, vol. 25, no. 11, pp. 3756–3762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Kaeberlein, “Lessons on longevity from budding yeast,” Nature, vol. 464, no. 7288, pp. 513–519, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. M. E. Yanos, C. F. Bennett, and M. Kaeberlein, “Genome-wide RNAi longevity screens in Caenorhabditis elegans,” Current Genomics, vol. 13, pp. 508–518, 2012. View at Publisher · View at Google Scholar
  45. T. E. Johnson, “25 years after age-1: genes, interventions and the revolution in aging research,” Experimental Gerontology, vol. 48, p. 640, 2013.
  46. A. Bartke, “Single-gene mutations and healthy ageing in mammals,” Philosophical Transactions of the Royal Society B, vol. 366, p. 28, 2011.
  47. L. Partridge, “Some highlights of research on aging with invertebrates, 2010,” Aging Cell, vol. 10, no. 1, pp. 5–9, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. L. Fontana, L. Partridge, and V. D. Longo, “Extending healthy life span-from yeast to humans,” Science, vol. 328, no. 5976, pp. 321–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. C. J. Kenyon, “The genetics of ageing,” Nature, vol. 464, no. 7288, pp. 504–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. B. K. Kennedy, K. K. Steffen, and M. Kaeberlein, “Ruminations on dietary restriction and aging,” Cellular and Molecular Life Sciences, vol. 64, no. 11, pp. 1323–1328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. V. D. Longo, G. S. Shadel, M. Kaeberlein, and B. Kennedy, “Replicative and chronological aging in Saccharomyces cerevisiae,” Cell Metabolism, vol. 16, p. 18, 2012.
  52. K. A. Steinkraus, M. Kaeberlein, and B. K. Kennedy, “Replicative aging in yeast: the means to the end,” Annual Review of Cell and Developmental Biology, vol. 24, pp. 29–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Fabrizio, F. Pozza, S. D. Pletcher, C. M. Gendron, and V. D. Longo, “Regulation of longevity and stress resistance by Sch9 in yeast,” Science, vol. 292, no. 5515, pp. 288–290, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Urban, A. Soulard, A. Huber et al., “Sch9 is a major target of TORC1 in Saccharomyces cerevisiae,” Molecular Cell, vol. 26, no. 5, pp. 663–674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Fabrizio, L.-L. Liou, V. N. Moy et al., “SOD2 functions downstream of Sch9 to extend longevity in yeast,” Genetics, vol. 163, no. 1, pp. 35–46, 2003. View at Scopus
  56. P. Fabrizio, S. D. Pletcher, N. Minois, J. W. Vaupel, and V. D. Longo, “Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae,” FEBS Letters, vol. 557, no. 1-3, pp. 136–142, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Kaeberlein, R. W. Powers III, K. K. Steffen et al., “Regulation of yeast replicative life span by TOR and Sch9 response to nutrients,” Science, vol. 310, no. 5751, pp. 1193–1196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. R. W. Powers III, M. Kaeberlein, S. D. Caldwell, B. K. Kennedy, and S. Fields, “Extension of chronological life span in yeast by decreased TOR pathway signaling,” Genes and Development, vol. 20, no. 2, pp. 174–184, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Vellai, K. Takacs-Vellai, Y. Zhang, A. L. Kovacs, L. Orosz, and F. Müller, “Influence of TOR kinase on lifespan in C. elegans,” Nature, vol. 426, no. 6967, p. 620, 2003. View at Scopus
  60. K. Jia, D. Chen, and D. L. Riddle, “The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span,” Development, vol. 131, no. 16, pp. 3897–3906, 2004. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Kapahi, B. M. Zid, T. Harper, D. Koslover, V. Sapin, and S. Benzer, “Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway,” Current Biology, vol. 14, p. 885, 2004.
  62. S. Huang and P. J. Houghton, “Inhibitors of mammalian target of rapamycin as novel antitumor agents: from bench to clinic,” Current Opinion in Investigational Drugs, vol. 3, no. 2, pp. 295–304, 2002. View at Scopus
  63. C. M. Hartford and M. J. Ratain, “Rapamycin: something old, something new, sometimes borrowed and now renewed,” Clinical Pharmacology and Therapeutics, vol. 82, no. 4, pp. 381–388, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Mita, K. Sankhala, I. Abdel-Karim, A. Mita, and F. Giles, “Deforolimus (AP23573) a novel mTOR inhibitor in clinical development,” Expert Opinion on Investigational Drugs, vol. 17, no. 12, pp. 1947–1954, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. L. Buellesfeld and E. Grube, “ABT-578-eluting stents: the promising successor of sirolimus- and paclitaxel-eluting stent concepts?” Herz, vol. 29, no. 2, pp. 167–170, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. S. E. Burke, R. E. Kuntz, and L. B. Schwartz, “Zotarolimus (ABT-578) eluting stents,” Advanced Drug Delivery Reviews, vol. 58, no. 3, pp. 437–446, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. K. G. Pike, K. Malagu, M. G. Hummersone, et al., “Optimization of potent and selective dual mTORC1 and mTORC2 inhibitors: the discovery of AZD8055 and AZD2014,” Bioorganic & Medicinal Chemistry Letters, vol. 23, pp. 1212–1216, 2013.
  68. A. Naing, C. Aghajanian, E. Raymond, et al., “Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma,” British Journal of Cancer, vol. 107, pp. 1093–1099, 2012.
  69. H. Asahina, H. Nokihara, N. Yamamoto, et al., “Safety and tolerability of AZD8055 in Japanese patients with advanced solid tumors; a dose-finding phase I study,” Investigational New Drugs, vol. 31, pp. 677–684, 2013.
  70. C. M. Chresta, B. R. Davies, and I. Hickson, “AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity,” Cancer Research, vol. 70, p. 288, 2010.
  71. N. Carayol, E. Vakana, A. Sassano et al., “Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 28, pp. 12469–12474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. S. Schenone, C. Brullo, F. Musumeci, M. Radi, and M. Botta, “ATP-competitive inhibitors of mTOR: an update,” Current Medicinal Chemistry, vol. 18, no. 20, pp. 2995–3014, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Yu, C. Shi, L. Toral-Barza et al., “Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2,” Cancer Research, vol. 70, no. 2, pp. 621–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. C. C. Thoreen, S. A. Kang, J. W. Chang et al., “An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1,” Journal of Biological Chemistry, vol. 284, no. 12, pp. 8023–8032, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. Q.-W. Fan, Z. A. Knight, D. D. Goldenberg et al., “A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma,” Cancer Cell, vol. 9, no. 5, pp. 341–349, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. V. R. Agarwal, A. Joshi, and M. Venkataraman, “Abstract 3759: P7170, a novel inhibitor of phosphoinositide 3-kinase (PI3K)-mammalian target of Rapamycin (mTOR) and activin receptor-like kinase 1 (ALK1) as a new therapeutic option for Kras mutated non small cell lung cancer (NSCLC),” Cancer Research, vol. 72, Abstract 3759, 2012.
  77. J. Yuan, P. P. Mehta, M.-J. Yin et al., “PF-04691502, a potent and selective oral inhibitor of PI3K and mTOR kinases with antitumor activity,” Molecular Cancer Therapeutics, vol. 10, no. 11, pp. 2189–2199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. S. J. Shuttleworth, F. A. Silva, A. R. L. Cecil et al., “Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors,” Current Medicinal Chemistry, vol. 18, no. 18, pp. 2686–2714, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. A. M. Venkatesan, C. M. Dehnhardt, E. D. Delos Santos et al., “Bis(morpholino-l,3,5-triazine) derivatives: potent adenosine 5′-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor,” Journal of Medicinal Chemistry, vol. 53, no. 6, pp. 2636–2645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. A. M. Venkatesan, Z. Chen, O. D. Santos et al., “PKI-179: an orally efficacious dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor,” Bioorganic and Medicinal Chemistry Letters, vol. 20, no. 19, pp. 5869–5873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Prasad, T. Sottero, X. Yang et al., “Inhibition of PI3K/mTOR pathways in glioblastoma and implications for combination therapy with temozolomide,” Neuro-Oncology, vol. 13, no. 4, pp. 384–392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. S.-M. Maira, F. Stauffer, J. Brueggen et al., “Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity,” Molecular Cancer Therapeutics, vol. 7, no. 7, pp. 1851–1863, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Leung, J. E. Kim, G. W. Rewcastle, G. J. Finlay, and B. C. Baguley, “Comparison of the effects of the PI3K/mTOR inhibitors NVP-BEZ235 and GSK2126458 on tamoxifen-resistant breast cancer cells,” Cancer Biology and Therapy, vol. 11, no. 11, pp. 938–946, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. C. G. Sanchez, C. X. Ma, R. J. Crowder et al., “Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer,” Breast Cancer Research, vol. 13, no. 2, article R21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Markman, J. Tabernero, I. Krop, et al., “Phase I safety, pharmacokinetic, and pharmacodynamic study of the oral phosphatidylinositol-3-kinase and mTOR inhibitor BGT226 in patients with advanced solid tumors,” Annals of Oncology, vol. 23, pp. 2399–2408, 2012. View at Publisher · View at Google Scholar
  86. D. Mahadevan, E. G. Chiorean, D. D. Von Hoff, et al., “Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies,” European Journal of Cancer, vol. 48, pp. 3319–3327, 2012. View at Publisher · View at Google Scholar
  87. M. Kaeberlein and B. K. Kennedy, “Hot topics in aging research: protein translation and TOR signaling, 2010,” Aging Cell, vol. 10, no. 2, pp. 185–190, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. S. D. Katewa and P. Kapahi, “Dietary restriction and aging, 2009,” Aging Cell, vol. 9, no. 2, pp. 105–112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Kapahi, D. Chen, A. N. Rogers et al., “With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging,” Cell Metabolism, vol. 11, no. 6, pp. 453–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. J. Gallinetti, E. Harputlugil, and J. R. Mitchell, “Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR,” The Biochemical Journal, vol. 449, p. 1, 2013.
  91. U. Kruegel, B. Robison, T. Dange et al., “Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae,” PLoS Genetics, vol. 7, no. 9, Article ID e1002253, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. N. D. Bonawitz, M. Chatenay-Lapointe, Y. Pan, and G. S. Shadel, “Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression,” Cell Metabolism, vol. 5, no. 4, pp. 265–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Pan and G. S. Shadel, “Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density,” Aging, vol. 1, no. 1, pp. 131–145, 2009. View at Scopus
  94. M. Hansen, A. Chandra, L. L. Mitic, B. Onken, M. Driscoll, and C. Kenyon, “A role for autophagy in the extension of lifespan by dietary restriction in C. elegans,” PLoS Genetics, vol. 4, no. 2, article e24, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Hansen, S. Taubert, D. Crawford, N. Libina, S.-J. Lee, and C. Kenyon, “Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans,” Aging Cell, vol. 6, no. 1, pp. 95–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. T.-T. Ching, A. B. Paal, A. Mehta, L. Zhong, and A.-L. Hsu, “drr-2 encodes an eIF4H that acts downstream of TOR in diet-restriction-induced longevity of C. elegans,” Aging Cell, vol. 9, no. 4, pp. 545–557, 2010. View at Scopus
  97. D. W. Lamming, L. Ye, P. Katajisto et al., “Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity,” Science, vol. 335, no. 6076, pp. 1638–1643, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. J. J. Wu, J. Liu, E. B. Chen, et al., “Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression,” Cell Reports, vol. 4, no. 5, pp. 913–920, 2013.
  99. O. Medvedik, D. W. Lamming, K. D. Kim, and D. A. Sinclair, “MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae,” PLoS Biology, vol. 5, no. 10, article e261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Rallis, S. Codlin, and J. Bahler, “TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast,” Aging Cell, vol. 12, p. 563, 2013.
  101. S. Robida-Stubbs, K. Glover-Cutter, D. W. Lamming et al., “TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO,” Cell Metabolism, vol. 15, no. 5, pp. 713–724, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. K. Seo, E. Choi, D. Lee, D. E. Jeong, S. K. Jang, and S. J. Lee, “Heat shock factor 1 mediates the longevity conferred by inhibition of TOR and insulin/IGF-1 signaling pathways in C. elegans,” Aging Cell, 2013.
  103. I. Bjedov, J. M. Toivonen, F. Kerr et al., “Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster,” Cell Metabolism, vol. 11, no. 1, pp. 35–46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. A. A. Moskalev and M. V. Shaposhnikov, “Pharmacological inhibition of phosphoinositide 3 and TOR kinases improves survival of drosophila melanogaster,” Rejuvenation Research, vol. 13, no. 2-3, pp. 246–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. D. E. Harrison, R. Strong, Z. D. Sharp et al., “Rapamycin fed late in life extends lifespan in genetically heterogeneous mice,” Nature, vol. 460, no. 7253, pp. 392–395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. R. A. Miller, D. E. Harrison, C. M. Astle, et al., “Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice,” Journals of Gerontology, vol. 66, pp. 191–201, 2011.
  107. J. E. Wilkinson, L. Burmeister, and S. V. Brooks, “Rapamycin slows aging in mice,” Aging Cell, vol. 11, pp. 675–682, 2012.
  108. V. N. Anisimov, M. A. Zabezhinski, I. G. Popovich et al., “Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice,” Cell Cycle, vol. 10, no. 24, pp. 4230–4236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. F. Neff, et al., “Rapamycin extends murine lifespan but has limited effects on aging,” The Journal of Clinical Investigation, vol. 123, pp. 3272–3291, 2013. View at Publisher · View at Google Scholar
  110. Y. Zhang, A. Bokov, J. Gelfond, et al., “Rapamycin extends life and health in C57BL/6 mice,” Journal of Gerontology, 2013.
  111. C. Chen, Y. Liu, Y. Liu, and P. Zheng, “MTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells,” Science Signaling, vol. 2, no. 98, p. ra75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  112. A. E. Roux, A. Quissac, P. Chartrand, G. Ferbeyre, and L. A. Rokeach, “Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2,” Aging Cell, vol. 5, no. 4, pp. 345–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Z. Pan, J. E. Palter, A. N. Rogers et al., “Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans,” Aging Cell, vol. 6, no. 1, pp. 111–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. D. Chen, E. L. Thomas, and P. Kapahi, “HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans,” PLoS Genetics, vol. 5, no. 5, Article ID e1000486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. B. M. Zid, A. N. Rogers, S. D. Katewa et al., “4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila,” Cell, vol. 139, no. 1, pp. 149–160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. C. Selman, J. M. Tullet, D. Wieser, et al., “Ribosomal protein S6 kinase 1 signaling regulates mammalian life span,” Science, vol. 326, pp. 140–144, 2009.
  117. R. Mehta, D. Chandler-Brown, F. J. Ramos, L. S. Shamieh, and M. Kaeberlein, “Regulation of mRNA translation as a conserved mechanism of longevity control,” Advances in Experimental Medicine and Biology, vol. 694, pp. 14–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. B. K. Kennedy and M. Kaeberlein, “Hot topics in aging research: protein translation, 2009,” Aging Cell, vol. 8, no. 6, pp. 617–623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. P. Syntichaki, K. Troulinaki, and N. Tavernarakis, “eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans,” Nature, vol. 445, no. 7130, pp. 922–926, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. S. P. Curran and G. Ruvkun, “Lifespan regulation by evolutionarily conserved genes essential for viability,” PLoS Genetics, vol. 3, no. 4, e56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. J. R. Managbanag, T. M. Witten, D. Bonchev et al., “Shortest-path network analysis is a useful approach toward indentifying genetic determinants of longevity,” PLoS ONE, vol. 3, no. 11, Article ID e3802, 2008. View at Publisher · View at Google Scholar · View at Scopus
  122. E. D. Smith, M. Tsuchiya, L. A. Fox et al., “Quantitative evidence for conserved longevity pathways between divergent eukaryotic species,” Genome Research, vol. 18, no. 4, pp. 564–570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. K. K. Steffen, V. L. MacKay, E. O. Kerr et al., “Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4,” Cell, vol. 133, no. 2, pp. 292–302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  124. K. K. Steffen, M. A. McCormick, K. M. Pham et al., “Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae,” Genetics, vol. 191, no. 1, pp. 107–118, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Chiocchetti, J. Zhou, H. Zhu et al., “Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span,” Experimental Gerontology, vol. 42, no. 4, pp. 275–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Gelino and M. Hansen, “Autophagy—an emerging anti-aging mechanism,” Journal of Clinical & Experimental Pathology, 2012.
  127. E. Lionaki, M. Markaki, and N. Tavernarakis, “Autophagy and ageing: insights from invertebrate model organisms,” Ageing Research Reviews, vol. 12, p. 413, 2013.
  128. A. M. Cuervo, “Autophagy and aging: keeping that old broom working,” Trends in Genetics, vol. 24, no. 12, pp. 604–612, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. J.-O. Pyo, S.-M. Yoo, and H. H. Ahn, “Overexpression of Atg5 in mice activates autophagy and extends lifespan,” Nature Communications, vol. 4, p. 2300, 2013.
  130. R. A. Miller, D. E. Harrison, C. M. Astle et al., “An aging interventions testing program: study design and interim report,” Aging Cell, vol. 6, no. 4, pp. 565–575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  131. N. L. Nadon, R. Strong, R. A. Miller et al., “Design of aging intervention studies: the NIA interventions testing program,” Age, vol. 30, no. 4, pp. 187–199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. M. Kaeberlein and B. K. Kennedy, “Ageing: a midlife longevity drug?” Nature, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Kaeberlein, “Resveratrol and rapamycin: are they anti-aging drugs?” BioEssays, vol. 32, no. 2, pp. 96–99, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Kaeberlein and P. Kapahi, “Aging is RSKY business,” Science, vol. 326, no. 5949, pp. 55–56, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. J. L. Kirkland and C. Peterson, “Healthspan, translation, and new outcomes for animal studies of aging,” Journals of Gerontology A, vol. 64, no. 2, pp. 209–212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. M. Tatar, “Can we develop genetically tractable models to assess healthspan (rather than life span) in animal models?” Journals of Gerontology A, vol. 64, no. 2, pp. 161–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. M. V. Blagosklonny, “Prospective treatment of age-related diseases by slowing down aging,” The American Journal of Pathology, vol. 181, p. 1142, 2012.
  138. D. S. Evans, P. Kapahi, W.-C. Hsueh, and L. Kockel, “TOR signaling never gets old: aging, longevity and TORC1 activity,” Ageing Research Reviews, vol. 10, no. 2, pp. 225–237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Kaeberlein and B. K. Kennedy, “Protein translation, 2008,” Aging Cell, vol. 7, no. 6, pp. 777–782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  140. M. Cornu, V. Albert, and M. N. Hall, “mTOR in aging, metabolism, and cancer,” Current Opinion in Genetics & Development, vol. 23, p. 53, 2013.
  141. P. Hasty, Z. D. Sharp, T. J. Curiel, and J. Campisi, “mTORC1 and p53: clash of the gods?” Cell Cycle, vol. 12, p. 20, 2013.
  142. F. J. Ramos and M. Kaeberlein, “Ageing: a healthy diet for stem cells,” Nature, vol. 486, p. 477, 2012.
  143. C. Lerner, A. Bitto, D. Pulliam, et al., “Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts,” Aging Cell, 2013.
  144. T. V. Pospelova, “Suppression of replicative senescence by rapamycin in rodent embryonic cells,” Cell Cycle, vol. 11, pp. 2402–2407, 2012.
  145. V. Dulic, “Senescence regulation by mTOR,” Methods in Molecular Biology, vol. 965, p. 15, 2013.
  146. E. Dazert and M. N. Hall, “MTOR signaling in disease,” Current Opinion in Cell Biology, vol. 23, no. 6, pp. 744–755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. Z. Yang and X. F. Ming, “mTOR signalling: the molecular interface connecting metabolic stress, aging and cardiovascular diseases,” Obesity Reviews, vol. 13, supplement 2, p. 58, 2012.
  148. J. Bové, M. Martínez-Vicente, and M. Vila, “Fighting neurodegeneration with rapamycin: mechanistic insights,” Nature Reviews Neuroscience, vol. 12, no. 8, pp. 437–452, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. E. Aso and I. Ferrer, “It may be possible to delay the onset of neurodegenerative diseases with an immunosuppressive drug (rapamycin),” Expert Opinion on Biological Therapy, vol. 13, p. 1215, 2013.
  150. E. Wong and A. M. Cuervo, “Autophagy gone awry in neurodegenerative diseases,” Nature Neuroscience, vol. 13, no. 7, pp. 805–811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  151. D. C. Rubinsztein, “The roles of intracellular protein-degradation pathways in neurodegeneration,” Nature, vol. 443, no. 7113, pp. 780–786, 2006. View at Publisher · View at Google Scholar · View at Scopus
  152. C. Malagelada, Z. H. Jin, V. Jackson-Lewis, S. Przedborski, and L. A. Greene, “Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease,” Journal of Neuroscience, vol. 30, no. 3, pp. 1166–1175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. L. S. Tain, H. Mortiboys, R. N. Tao, E. Ziviani, O. Bandmann, and A. J. Whitworth, “Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss,” Nature Neuroscience, vol. 12, no. 9, pp. 1129–1135, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. K. Liu, N. Shi, Y. Sun, T. Zhang, and X. Sun, “Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice,” Neurochemical Research, vol. 38, p. 201, 2013.
  155. B. Ravikumar, C. Vacher, Z. Berger et al., “Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease,” Nature Genetics, vol. 36, no. 6, pp. 585–595, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. A. Roscic, B. Baldo, C. Crochemore, D. Marcellin, and P. Paganetti, “Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model,” Journal of Neurochemistry, vol. 119, no. 2, pp. 398–407, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Oddo, “The role of mTOR signaling in Alzheimer disease,” Frontiers in Bioscience, vol. 4, p. 941, 2012.
  158. Y. X. Sun, X. Ji, X. Mao, et al., “Differential activation of mTOR complex 1 signaling in human brain with mild to severe Alzheimer's disease,” Journal of Alzheimer's Disease, 2013.
  159. S. Majumder, A. Richardson, R. Strong, and S. Oddo, “Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits,” PLoS ONE, vol. 6, no. 9, Article ID e25416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  160. P. Spilman, N. Podlutskaya, M. J. Hart et al., “Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of alzheimer's disease,” PLoS ONE, vol. 5, no. 4, Article ID e9979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. A. L. Lin, W. Zheng, J. J. Halloran, et al., “Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease,” Journal of Cerebral Blood Flow and Metabolism, vol. 33, p. 1412, 2013.
  162. C. A. Hoeffer and E. Klann, “mTOR signaling: at the crossroads of plasticity, memory and disease,” Trends in Neurosciences, vol. 33, no. 2, pp. 67–75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. J. Halloran, S. A. Hussong, R. Burbank, et al., “Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice,” Neuroscience, vol. 223, pp. 102–113, 2012.
  164. S. Majumder, A. Caccamo, D. X. Medina et al., “Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1β and enhancing NMDA signaling,” Aging Cell, vol. 11, no. 2, pp. 326–335, 2012. View at Publisher · View at Google Scholar · View at Scopus
  165. J. Xie and T. P. Herbert, “The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes,” Cellular and Molecular Life Sciences, vol. 69, pp. 1289–1304, 2012. View at Publisher · View at Google Scholar · View at Scopus
  166. K. Garber, “Targeting mTOR: something old, something new,” Journal of the National Cancer Institute, vol. 101, no. 5, pp. 288–290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. M. V. Blagosklonny, “Rapalogs in cancer prevention: anti-aging or anticancer?” Cancer Biology & Therapy, vol. 13, p. 1349, 2012.
  168. Z. D. Sharp and A. Richardson, “Aging and cancer: can mTOR inhibitors kill two birds with one drug?” Targeted Oncology, vol. 6, no. 1, pp. 41–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. E. A. Komarova, M. P. Antoch, L. R. Novototskaya, et al., “Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/- mice,” Aging, vol. 4, pp. 709–714, 2012.
  170. C. B. Livi, R. L. Hardman, B. A. Christy, et al., “Rapamycin extends life span of Rb1+/- mice by inhibiting neuroendocrine tumors,” Aging, vol. 5, pp. 100–110, 2013.
  171. A. Arcella, F. Biagioni, M. Antonietta Oliva, et al., “Rapamycin inhibits the growth of glioblastoma,” Brain Research, vol. 1495, pp. 37–51, 2013. View at Publisher · View at Google Scholar
  172. O. Ekshyyan, T. N. Moore-Medlin, M. C. Raley, et al., “Anti-lymphangiogenic properties of mTOR inhibitors in head and neck squamous cell carcinoma experimental models,” BMC Cancer, vol. 13, article 320, 2013.
  173. J. E. Hartwich, W. S. Orr, and C.Y. Ng, “Rapamycin increases neuroblastoma xenograft and host stromal derived osteoprotegerin inhibiting osteolytic bone disease in a bone metastasis model,” Journal of Pediatric Surgery, vol. 48, pp. 47–55, 2013. View at Publisher · View at Google Scholar
  174. S. Z. Kaylani, J. Xu, R. K. Srivastava, et al., “Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model,” Biochemical and Biophysical Research Communications, vol. 435, pp. 557–561, 2013. View at Publisher · View at Google Scholar
  175. T. Nishikawa, M. Takaoka, T. Ohara, et al., “Antiproliferative effect of a novel mTOR inhibitor temsirolimus contributes to the prolonged survival of orthotopic esophageal cancer-bearing mice,” Cancer Biology & Therapy, vol. 14, pp. 230–236, 2013.
  176. D. Pachow, N. Andrae, N. Kliese, et al., “mTORC1 inhibitors suppress meningioma growth in mouse models,” Clinical Cancer Research, vol. 19, p. 1180, 2013.
  177. R. J. O. Dowling, I. Topisirovic, B. D. Fonseca, and N. Sonenberg, “Dissecting the role of mTOR: lessons from mTOR inhibitors,” Biochimica et Biophysica Acta, vol. 1804, no. 3, pp. 433–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  178. A. Fasolo and C. Sessa, “Targeting mTOR pathways in human malignancies,” Current Pharmaceutical Design, vol. 18, p. 2766, 2012.
  179. J. M. Flynn, “Late-life rapamycin treatment reverses age-related heart dysfunction,” Aging Cell, vol. 12, no. 5, pp. 851–862, 2013.
  180. J. Sadoshima and S. Izumo, “Rapamycin selectively inhibits angiotensin II-induced increase in protein synthesis in cardiac myocytes in vitro: potential role of 70-kD S6 kinase in angiotensin II-induced cardiac hypertrophy,” Circulation Research, vol. 77, no. 6, pp. 1040–1052, 1995. View at Scopus
  181. T. Shioi, J. R. McMullen, O. Tarnavski et al., “Rapamycin attenuates load-induced cardiac hypertrophy in mice,” Circulation, vol. 107, no. 12, pp. 1664–1670, 2003. View at Publisher · View at Google Scholar · View at Scopus
  182. J. R. McMullen, M. C. Sherwood, O. Tarnavski et al., “Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload,” Circulation, vol. 109, no. 24, pp. 3050–3055, 2004. View at Publisher · View at Google Scholar · View at Scopus
  183. J. A. Kuzman, T. D. O'Connell, and A. M. Gerdes, “Rapamycin prevents thyroid hormone-induced cardiac hypertrophy,” Endocrinology, vol. 148, no. 7, pp. 3477–3484, 2007. View at Publisher · View at Google Scholar · View at Scopus
  184. S. A. Khan, F. Salloum, A. Das, L. Xi, G. W. Vetrovec, and R. C. Kukreja, “Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes,” Journal of Molecular and Cellular Cardiology, vol. 41, no. 2, pp. 256–264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  185. A. Das, F. N. Salloum, D. Durrant, R. Ockaili, and R. C. Kukreja, “Rapamycin protects against myocardial ischemia-reperfusion injury through JAK2-STAT3 signaling pathway,” Journal of Molecular and Cellular Cardiology, vol. 53, p. 858, 2012.
  186. T. M. Marin, K. Keith, B. Davies et al., “Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation,” Journal of Clinical Investigation, vol. 121, no. 3, pp. 1026–1043, 2011. View at Publisher · View at Google Scholar · View at Scopus
  187. K. Xie, B. Jin, Y. Li et al., “Modulating autophagy improves cardiac function in a rat model of early-stage dilated cardiomyopathy,” Cardiology, vol. 125, no. 1, pp. 60–68, 2013.
  188. F. J. Ramos, S. C. Chen, M. G. Garelick, et al., “Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival,” Science Translational Medicine, vol. 4, p. 144ra103, 2012. View at Publisher · View at Google Scholar
  189. J. C. Choi and H. J. Worman, “Reactivation of autophagy ameliorates LMNA cardiomyopathy,” Autophagy, vol. 9, p. 110, 2013.
  190. J. C. Choi, A. Muchir, W. Wu, et al., “Temsirolimus activates autophagy and ameliorates cardiomyopathy caused by lamin A/C gene mutation,” Science Translational Medicine, vol. 4, p. 144ra102, 2012. View at Publisher · View at Google Scholar
  191. Y. Ding, X. Sun, W. Huang et al., “Haploinsufficiency of target of rapamycin attenuates cardiomyopathies in adult zebrafish,” Circulation Research, vol. 109, no. 6, pp. 658–669, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. J. M. Carrascosa, M. Ros, A. Andrés, T. Fernández-Agulló, and C. Arribas, “Changes in the neuroendocrine control of energy homeostasis by adiposity signals during aging,” Experimental Gerontology, vol. 44, no. 1-2, pp. 20–25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  193. A. M. Chang and J. B. Halter, “Effects of aging on glucose homeostasis,” in DiabetesMellitus: A Fundamental and Clinical Text, D. Le Roith, S. I. Taylor, and J. M. Olefsky, Eds., pp. 869–877, Lippincott Williams & Wilkins, 2004.
  194. J. Chen, “Multiple signal pathways in obesity-associated cancer,” Obesity Reviews, vol. 12, no. 12, pp. 1063–1070, 2011. View at Publisher · View at Google Scholar · View at Scopus
  195. I. Bakan and M. Laplante, “Connecting mTORC1 signaling to SREBP-1 activation,” Current Opinion in Lipidology, vol. 2, p. 226, 2012.
  196. M. Pende, S. C. Kozma, M. Jaquet et al., “Hypoinsulinaemia, glucose intolerance and diminished β-cell size in S6K1-deficient mice,” Nature, vol. 408, no. 6815, pp. 994–997, 2000. View at Publisher · View at Google Scholar · View at Scopus
  197. P. Polak, N. Cybulski, J. N. Feige, J. Auwerx, M. A. Rüegg, and M. N. Hall, “Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration,” Cell Metabolism, vol. 8, no. 5, pp. 399–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. S. H. Um, F. Frigerio, M. Watanabe, et al., “Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity,” Nature, vol. 431, pp. 200–205, 2004.
  199. A. D. Barlow, M. L. Nicholson, and T. P. Herbert, “Evidence for rapamycin toxicity in pancreatic beta-cells and a review of the underlying molecular mechanisms,” Diabetes, vol. 62, p. 2674, 2013.
  200. S. S. Deepa, M. E. Walsh, R. T. Hamilton, et al., “Rapamycin modulates markers of mitochondrial biogenesis and fatty acid oxidation in the adipose tissue of db/db mice,” Journal of Biochemical and Pharmacological Research, vol. 1, pp. 114–123, 2013.
  201. M. V. Blagosklonny, “Once again on rapamycin-induced insulin resistance and longevity: despite of or owing to,” Aging, vol. 4, p. 350, 2012.
  202. C. Jagannath and P. Bakhru, “Rapamycin-induced enhancement of vaccine efficacy in mice,” Methods in Molecular Biology, vol. 821, pp. 295–303, 2012. View at Publisher · View at Google Scholar · View at Scopus
  203. E. Amiel, B. Everts, and T. C. Freitas, “Inhibition of mechanistic target of rapamycin promotes dendritic cell activation and enhances therapeutic autologous vaccination in mice,” Journal of Immunology, vol. 189, no. 5, pp. 2151–2158, 2012.
  204. K. Araki, A. P. Turner, V. O. Shaffer et al., “mTOR regulates memory CD8 T-cell differentiation,” Nature, vol. 460, no. 7251, pp. 108–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  205. S. Anand, K. L. Johansen, and M. Kurella Tamura, “Aging and chronic kidney disease: the impact on physical function and cognition,” Journal of Gerontology, 2013.
  206. P. Stenvinkel and T. E. Larsson, “Chronic kidney disease: a clinical model of premature aging,” American Journal of Kidney Diseases, vol. 62, p. 339, 2013.
  207. W. Lieberthal and J. S. Levine, “Mammalian target of rapamycin and the kidney—II. Pathophysiology and therapeutic implications,” American Journal of Physiology: Renal Physiology, vol. 303, p. F180, 2012.
  208. E. Leung and G. Landa, “Update on current and future novel therapies for dry age-related macular degeneration,” Expert Review of Clinical Pharmacology, 2013.
  209. A. Stahl, L. Paschek, G. Martin et al., “Rapamycin reduces VEGF expression in retinal pigment epithelium (RPE) and inhibits RPE-induced sprouting angiogenesis in vitro,” FEBS Letters, vol. 582, no. 20, pp. 3097–3102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  210. N. G. Kolosova, N. A. Muraleva, A. A. Zhdankina, N. A. Stefanova, A. Z. Fursova, and M. V. Blagosklonny, “Prevention of age-related macular degeneration-like retinopathy by rapamycin in rats,” American Journal of Pathology, vol. 181, pp. 472–477, 2012.
  211. R. B. Nussenblatt, G. Byrnes, H. N. Sen et al., “A randomized pilot study of systemic immunosuppression in the treatment of age-related macular degeneration with choroidal neovascularization,” Retina, vol. 30, no. 10, pp. 1579–1587, 2010. View at Publisher · View at Google Scholar · View at Scopus
  212. C. R. Burtner and B. K. Kennedy, “Progeria syndromes and ageing: what is the connection?” Nature Reviews Molecular Cell Biology, vol. 11, no. 8, pp. 567–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  213. K. Cao, J. J. Graziotto, C. D. Blair et al., “Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells,” Science Translational Medicine, vol. 3, no. 89, p. 89ra58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  214. J. J. Graziotto, K. Cao, F. S. Collins, and D. Krainc, “Rapamycin activates autophagy in Hutchinson-Gilford progeria syndrome: implications for normal aging and age-dependent neurodegenerative disorders,” Autophagy, vol. 8, no. 1, pp. 147–151, 2012. View at Publisher · View at Google Scholar · View at Scopus
  215. P. Curatolo, R. Bombardieri, and S. Jozwiak, “Tuberous sclerosis,” The Lancet, vol. 372, no. 9639, pp. 657–668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  216. J. P. Osborne, A. Fryer, and D. Webb, “Epidemiology of tuberous sclerosis,” Annals of the New York Academy of Sciences, vol. 615, pp. 125–127, 1991. View at Scopus
  217. P. B. Crino, K. L. Nathanson, and E. P. Henske, “The tuberous sclerosis complex,” The New England Journal of Medicine, vol. 355, no. 13, pp. 1345–1356, 2006. View at Publisher · View at Google Scholar · View at Scopus
  218. K. Ridler, J. Suckling, N. J. Higgins et al., “Neuroanatomical correlates of memory deficits in tuberous sclerosis complex,” Cerebral Cortex, vol. 17, no. 2, pp. 261–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  219. S. L. Smalley, “Autism and tuberous sclerosis,” Journal of Autism and Developmental Disorders, vol. 28, no. 5, pp. 407–414, 1998. View at Publisher · View at Google Scholar · View at Scopus
  220. P. Prather and P. J. de Vries, “Behavioral and cognitive aspects of tuberous sclerosis complex,” Journal of Child Neurology, vol. 19, no. 9, pp. 666–674, 2004. View at Scopus
  221. P. Curatolo and R. Moavero, “mTOR inhibitors as a new therapeutic option for epilepsy,” Expert Review of Neurotherapeutics, vol. 13, p. 627, 2013.
  222. J. R. Sampson, “Therapeutic targeting of mTOR in tuberous sclerosis,” Biochemical Society Transactions, vol. 37, no. 1, pp. 259–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  223. L. Meikle, K. Pollizzi, A. Egnor et al., “Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function,” Journal of Neuroscience, vol. 28, no. 21, pp. 5422–5432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  224. N. Lee, C. L. Woodrum, A. M. Nobil, A. E. Rauktys, M. P. Messina, and S. L. Dabora, “Rapamycin weekly maintenance dosing and the potential efficacy of combination sorafenib plus rapamycin but not atorvastatin or doxycycline in tuberous sclerosis preclinical models,” BMC Pharmacology, vol. 9, p. 8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  225. M. Wong, “A critical review of mTOR inhibitors and epilepsy: from basic science to clinical trials,” Expert Review of Neurotherapeutics, vol. 13, p. 657, 2013.
  226. D. A. Krueger, M. M. Care, K. Holland et al., “Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis,” New England Journal of Medicine, vol. 363, no. 19, pp. 1801–1811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  227. R. Moavero, M. Pinci, R. Bombardieri, and P. Curatolo, “The management of subependymal giant cell tumors in tuberous sclerosis: a clinician's perspective,” Child's Nervous System, vol. 27, no. 8, pp. 1203–1210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  228. J. J. Bissler, F. X. McCormack, L. R. Young et al., “Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis,” New England Journal of Medicine, vol. 358, no. 2, pp. 140–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  229. D. M. Davies, P. J. De Vries, S. R. Johnson et al., “Sirolimus therapy for angiomyolipoma in tuberous sclerosis and sporadic lymphangioleiomyomatosis: a phase 2 trial,” Clinical Cancer Research, vol. 17, no. 12, pp. 4071–4081, 2011. View at Publisher · View at Google Scholar · View at Scopus
  230. D. M. Davies, S. R. Johnson, A. E. Tattersfield et al., “Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis,” New England Journal of Medicine, vol. 358, no. 2, pp. 200–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  231. T. T. Gipson and M. V. Johnston, “Plasticity and mTOR: towards restoration of impaired synaptic plasticity in mTOR-related neurogenetic disorders,” Neural Plasticity, vol. 2012, Article ID 486402, 10 pages, 2012. View at Publisher · View at Google Scholar
  232. X. F. Meng, J. T. Yu, J. H. Song, S. Chi, and L. Tan, “Role of the mTOR signaling pathway in epilepsy,” Journal of the Neurological Sciences, vol. 332, p. 4, 2013.
  233. M. Wong and P. B. Crino, Jasper's Basic Mechanisms of the Epilepsies, edited by J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, A. V. Delgado-Escueta, Bethesda, Md, USA, 2012.
  234. C.-H. Kwon, X. Zhu, J. Zhang, and S. J. Baker, “mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12923–12928, 2003. View at Publisher · View at Google Scholar · View at Scopus
  235. A. S. Galanopoulou, J. A. Gorter, and C. Cepeda, “Finding a better drug for epilepsy: the mTOR pathway as an antiepileptogenic target,” Epilepsia, vol. 53, p. 1119, 2012.
  236. K. Heng, M. M. Haney, and P. S. Buckmaster, “High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy,” Epilepsia, vol. 54, p. 1535, 2013.
  237. P. F. Bolton, R. J. Park, J. N. P. Higgins, P. D. Griffiths, and A. Pickles, “Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex,” Brain, vol. 125, no. 6, pp. 1247–1255, 2002. View at Scopus
  238. E. Fombonne, “Epidemiological surveys of autism and other pervasive developmental disorders: an update,” Journal of Autism and Developmental Disorders, vol. 33, no. 4, pp. 365–382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  239. M. G. Butler, M. J. Dazouki, X.-P. Zhou et al., “Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations,” Journal of Medical Genetics, vol. 42, no. 4, pp. 318–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  240. M. Neves-Pereira, B. Müller, D. Massie et al., “Deregulation of EIF4E: a novel mechanism for autism,” Journal of Medical Genetics, vol. 46, no. 11, pp. 759–765, 2009. View at Publisher · View at Google Scholar · View at Scopus
  241. D. Ehninger and A. J. Silva, “Rapamycin for treating Tuberous sclerosis and Autism spectrum disorders,” Trends in Molecular Medicine, vol. 17, no. 2, pp. 78–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  242. J. Hughes, C. J. Ward, B. Peral et al., “The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains,” Nature Genetics, vol. 10, no. 2, pp. 151–160, 1995. View at Publisher · View at Google Scholar · View at Scopus
  243. T. Weimbs, “Regulation of mTOR by polycystin-1: is polycystic kidney disease a case of futile repair?” Cell Cycle, vol. 5, no. 21, pp. 2425–2429, 2006. View at Scopus
  244. J. M. Shillingford, N. S. Murcia, C. H. Larson et al., “The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 14, pp. 5466–5471, 2006. View at Publisher · View at Google Scholar · View at Scopus
  245. S. M. Flechner, D. Goldfarb, C. Modlin et al., “Kidney transplantation without calcineurin inhibitor drugs: a prospective, randomized trial of sirolimus versus cyclosporine,” Transplantation, vol. 74, no. 8, pp. 1070–1076, 2002. View at Scopus
  246. G. Stallone, B. Infante, G. Grandaliano, et al., “Rapamycin for treatment of type I autosomal dominant polycystic kidney disease (RAPYD-study): a randomized, controlled study,” Nephrology, Dialysis, Transplantation, vol. 27, pp. 3560–3567, 2012. View at Publisher · View at Google Scholar
  247. N. Perico and G. Remuzzi, “Do mTOR inhibitors still have a future in ADPKD?” Nature Reviews, vol. 6, no. 12, pp. 696–698, 2010. View at Scopus
  248. N. Perico, L. Antiga, A. Caroli et al., “Sirolimus therapy to halt the progression of ADPKD,” Journal of the American Society of Nephrology, vol. 21, no. 6, pp. 1031–1040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  249. I. Obara, S. M. Géranton, and S. P. Hunt, “Axonal protein synthesis: a potential target for pain relief?” Current Opinion in Pharmacology, vol. 12, no. 1, pp. 42–48, 2012. View at Publisher · View at Google Scholar · View at Scopus
  250. S. M. Géranton, L. Jiménez-Díaz, C. Torsney et al., “A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states,” Journal of Neuroscience, vol. 29, no. 47, pp. 15017–15027, 2009. View at Publisher · View at Google Scholar · View at Scopus
  251. E. Norsted Gregory, S. Codeluppi, J. A. Gregory, J. Steinauer, and C. I. Svensson, “Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation,” Neuroscience, vol. 169, no. 3, pp. 1392–1402, 2010. View at Publisher · View at Google Scholar · View at Scopus
  252. I. Obara, K. K. Tochiki, S. M. Géranton et al., “Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice,” Pain, vol. 152, no. 11, pp. 2582–2595, 2011. View at Publisher · View at Google Scholar · View at Scopus
  253. W. Zhang, X. F. Sun, and J. H. Bo, “Activation of mTOR in the spinal cord is required for pain hypersensitivity induced by chronic constriction injury in mice,” Pharmacology, Biochemistry, and Behavior, vol. 111, pp. 64–70, 2013.
  254. L. Jiménez-Díaz, S. M. Géranton, G. M. Passmore et al., “Local translation in primary afferent fibers regulates nociception,” PLoS ONE, vol. 3, no. 4, Article ID e1961, 2008. View at Publisher · View at Google Scholar · View at Scopus
  255. D. Guo, L. Zeng, D. L. Brody, and M. Wong, “Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury,” PLoS ONE, vol. 8, Article ID e64078, 2013.
  256. A. S. Don, C. K. Tsang, et al., “Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries,” Drug Discovery Today, vol. 17, pp. 861–868, 2012. View at Publisher · View at Google Scholar
  257. J. Park, J. Zhang, J. Qiu et al., “Combination therapy targeting Akt and mammalian target of rapamycin improves functional outcome after controlled cortical impact in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 2, pp. 330–340, 2012. View at Publisher · View at Google Scholar · View at Scopus
  258. S. Erlich, A. Alexandrovich, E. Shohami, and R. Pinkas-Kramarski, “Rapamycin is a neuroprotective treatment for traumatic brain injury,” Neurobiology of Disease, vol. 26, no. 1, pp. 86–93, 2007. View at Publisher · View at Google Scholar · View at Scopus
  259. J. Wang, K. Lu, F. Liang, et al., “Decreased autophagy contributes to myocardial dysfunction in rats subjected to nonlethal mechanical trauma,” PLoS ONE, vol. 8, Article ID e71400, 2013.
  260. P. Tang, H. Hou, L. Zhang, et al., “Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats,” Molecular Neurobiology, 2013.