About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2013 (2013), Article ID 983501, 9 pages
http://dx.doi.org/10.1155/2013/983501
Research Article

Holocarboxylase Synthetase 1 Physically Interacts with Histone H3 in Arabidopsis

1Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
2Department of Computer Science, Iowa State University, Ames, IA 50011, USA

Received 3 December 2012; Accepted 30 December 2012

Academic Editors: J. Koch and J. J. Lazaro

Copyright © 2013 Xi Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Bender, Nutrition and Biochemistry of the Vitamins, Academic Press, New York, NY, USA, 1992.
  2. J. R. Knowles, “The mechanism of biotin-dependent enzymes,” Annual Review of Biochemistry, vol. 58, pp. 195–221, 1989. View at Scopus
  3. B. J. Nikolau, J. B. Ohlrogge, and E. S. Wurtele, “Plant biotin-containing carboxylases,” Archives of Biochemistry and Biophysics, vol. 414, no. 2, pp. 211–222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Chapman-Smith and J. E. Cronan, “The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity,” Trends in Biochemical Sciences, vol. 24, no. 9, pp. 359–363, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Zempleni and T. Kuroishi, “Biotin,” Advances in Nutrition, vol. 3, no. 2, pp. 213–214, 2012.
  6. M. Duval, C. Job, C. Alban, R. Douce, and D. Job, “Developmental patterns of free and protein-bound biotin during maturation and germination of seeds of Pisum sativum: characterization of a novel seed-specific biotinylated protein,” The Biochemical Journal, vol. 299, no. 1, pp. 141–150, 1994. View at Scopus
  7. L. Dehaye, M. Duval, D. Viguier, J. Yaxley, and D. Job, “Cloning and expression of the pea gene encoding SBP65, a seed-specific biotinylated protein,” Plant Molecular Biology, vol. 35, no. 5, pp. 605–621, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Konishi and Y. Sasaki, “Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 9, pp. 3598–3601, 1994. View at Scopus
  9. C. Alban, P. Baldet, and R. Douce, “Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides,” The Biochemical Journal, vol. 300, no. 2, pp. 557–565, 1994. View at Scopus
  10. M. D. Anderson, P. Che, J. Song, B. J. Nikolau, and E. S. Wurtele, “3-Methylcrotonyl-coenzyme A carboxylase is a component of the mitochondrial leucine catabolic pathway in plants,” Plant Physiology, vol. 118, no. 4, pp. 1127–1138, 1998. View at Scopus
  11. X. Guan, T. Diez, T. K. Prasad, B. J. Nikolau, and E. S. Wurtele, “Geranoyl-CoA carboxylase: a novel biotin-containing enzyme in plants,” Archives of Biochemistry and Biophysics, vol. 362, no. 1, pp. 12–21, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Daniel and J. Zempleni, Molecular Nutrition, CABI Publishing, Oxfordshire, UK, 2003.
  13. R. Rodríguez-Meléndez and J. Zempleni, “Regulation of gene expression by biotin,” The The Journal of Nutritional Biochemistry, vol. 14, no. 12, pp. 680–690, 2003.
  14. R. S. Solórzano-Vargas, D. Pacheco-Alvarez, and A. León-Del-Río, “Holocarboxylase synthetase is an obligate participant in biotin-mediated regulation of its own expression and of biotin-dependent carboxylases mRNA levels in human cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 5325–5330, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Che, L. M. Weaver, E. Syrkin Wurtele, and B. J. Nikolau, “The role of biotin in regulating 3-methylcrotonyl-coenzyme a carboxylase expression in Arabidopsis,” Plant Physiology, vol. 131, no. 3, pp. 1479–1486, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Steven Stanley, J. B. Griffin, and J. Zempleni, “Biotinylation of histones in human cells: effects of cell proliferation,” European Journal of Biochemistry, vol. 268, no. 20, pp. 5424–5429, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Narang, R. Dumas, L. M. Ayer, and R. A. Gravel, “Reduced histone biotinylation in multiple carboxylase deficiency patients: a nuclear role for holocarboxylase synthetase,” Human Molecular Genetics, vol. 13, no. 1, pp. 15–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Kothapalli, G. Sarath, and J. Zempleni, “Biotinylation of K12 in histone H4 decreases in response to DNA double-strand breaks in human JAr choriocarcinoma cells,” Journal of Nutrition, vol. 135, no. 10, pp. 2337–2342, 2005. View at Scopus
  19. L. Rios-Avila, V. Pestinger, and J. Zempleni, “K16-biotinylated histone H4 is overrepresented in repeat regions and participates in the repression of transcriptionally competent genes in human Jurka,” The Journal of Nutritional Biochemistry, vol. 23, no. 12, pp. 1559–1564, 2012.
  20. J. Fuchs, D. Demidov, A. Houben, and I. Schubert, “Chromosomal histone modification patterns—from conservation to diversity,” Trends in Plant Science, vol. 11, no. 4, pp. 199–208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Puyaubert, L. Denis, and C. Alban, “Dual targeting of Arabidopsis holocarboxylase synthetase1: a small upstream open reading frame regulates translation initiation and protein targeting,” Plant Physiology, vol. 146, no. 2, pp. 478–491, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. P. Wilson, L. M. Shewchuk, R. G. Brennan, A. J. Otsuka, and B. W. Matthews, “Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 19, pp. 9257–9261, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Campeau and R. A. Gravel, “Expression in Escherichia coli of N- and C-terminally deleted human holocarboxylase synthetase. Influence of the N-terminus on biotinylation and identification of a minimum functional protein,” Journal of Biological Chemistry, vol. 276, no. 15, pp. 12310–12316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Chapman-Smith, T. D. Mulhern, F. Whelan, J. E. Cronan, and J. C. Wallace, “The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity,” Protein Science, vol. 10, no. 12, pp. 2608–2617, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. J. L. K. Van Hove, S. Josefsberg, C. Freehauf et al., “Management of a patient with holocarboxylase synthetase deficiency,” Molecular Genetics and Metabolism, vol. 95, no. 4, pp. 201–205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Chen, The analysis of HCS1 in arabidopsis [Ph.D. thesis], Iowa State University, 2011.
  27. M. A. Larkin, G. Blackshields, N. P. Brown et al., “Clustal W and Clustal X version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Camporeale, E. E. Shubert, G. Sarath, R. Cerny, and J. Zempleni, “K8 and K12 are biotinylated in human histone H4,” European Journal of Biochemistry, vol. 271, no. 11, pp. 2257–2263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Kobza, G. Camporeale, B. Rueckert et al., “K4, K9 and K18 in human histone H3 are targets for biotinylation by biotinidase,” The FEBS Journal, vol. 272, no. 16, pp. 4249–4259, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. C. Chew, G. Camporeale, N. Kothapalli, G. Sarath, and J. Zempleni, “Lysine residues in N-terminal and C-terminal regions of human histone H2A are targets for biotinylation by biotinidase,” The Journal of Nutritional Biochemistry, vol. 17, no. 4, pp. 225–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Camporeale, C. C. Yap, A. Kueh, G. Sarath, and J. Zempleni, “Use of synthetic peptides for identifying biotinylation sites in human histones,” Methods in Molecular Biology, vol. 418, pp. 139–148, 2008. View at Scopus
  32. K. Kobza, G. Sarath, and J. Zempleni, “Prokaryotic BirA ligase biotinylates K4, K9, K18 and K23 in histone H3,” Biochemistry and Molecular Biology Reports, vol. 41, no. 4, pp. 310–315, 2008. View at Scopus
  33. S. Healy, T. D. Heightman, L. Hohmann, D. Schriemer, and R. A. Gravel, “Nonenzymatic biotinylation of histone H2A,” Protein Science, vol. 18, no. 2, pp. 314–328, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Alban, D. Job, and R. Douce, “Biotin metabolism in plants,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 51, pp. 17–47, 2000.
  35. S. Healy, B. Perez-Cadahia, D. Jia, M. K. McDonald, J. R. Davie, and R. A. Gravel, “Biotin is not a natural histone modification,” Biochimica et Biophysica Acta, vol. 1789, no. 11-12, pp. 719–733, 2009. View at Scopus
  36. L. M. Bailey, R. A. Ivanov, J. C. Wallace, and S. W. Polyak, “Artifactual detection of biotin on histones by streptavidin,” Analytical Biochemistry, vol. 373, no. 1, pp. 71–77, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Li, C. M. Foster, Q. Gan et al., “Identification of the novel protein QQS as a component of the starch metabolic network in Arabidopsis leaves,” Plant Journal, vol. 58, no. 3, pp. 485–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Karimi, D. Inzé, and A. Depicker, “GATEWAY vectors for Agrobacterium-mediated plant transformation,” Trends in Plant Science, vol. 7, no. 5, pp. 193–195, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Ke, J. K. Choi, M. Smith, H. T. Horner, B. J. Nikolau, and E. S. Wurtele, “Structure of the CAC1 gene and in situ characterization of its expression: the Arabidopsis thaliana gene coding for the biotin-containing subunit of the plastidic acetyl-coenzyme a carboxylase,” Plant Physiology, vol. 113, no. 2, pp. 357–365, 1997. View at Scopus
  41. B. L. Fatland, B. J. Nikolau, and E. S. Wurtele, “Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis,” The Plant Cell, vol. 17, no. 1, pp. 182–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. J. N. Rybak, S. B. Scheurer, D. Neri, and G. Elia, “Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution,” Proteomics, vol. 4, no. 8, pp. 2296–2299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. C. R. Xu, C. Liu, Y. L. Wang et al., “Histone acetylation affects expression of cellular patterning genes in the Arabidopsis root epidermis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 40, pp. 14469–14474, 2005. View at Publisher · View at Google Scholar · View at Scopus