About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2014 (2014), Article ID 231083, 6 pages
http://dx.doi.org/10.1155/2014/231083
Research Article

Biofilm Localization in the Vertical Wall of Shaking 96-Well Plates

LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

Received 20 November 2013; Accepted 19 December 2013; Published 13 April 2014

Academic Editors: M. Rodrigues and A. Sellam

Copyright © 2014 Luciana C. Gomes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318–1322, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annual Review of Microbiology, vol. 56, pp. 187–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Hancock, L. Ferrières, and P. Klemm, “Biofilm formation by asymptomatic and virulent urinary tract infectious Escherichia coli strains,” FEMS Microbiology Letters, vol. 267, no. 1, pp. 30–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Coenye and H. J. Nelis, “In vitro and in vivo model systems to study microbial biofilm formation,” Journal of Microbiological Methods, vol. 83, no. 2, pp. 89–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. S. Teodósio, M. Simões, L. F. Melo, and F. J. Mergulhão, “Platforms for in vitro biofilm studies,” in Biofilms in Bioengineering, M. Simões and F. Mergulhão, Eds., pp. 45–62, Nova Science, New York. NY, USA, 2013.
  6. J. M. R. Moreira, L. C. Gomes, J. D. P. Araújo, et al., “The effect of glucose concentration and shaking conditions on Escherichia coli biofilm formation in microtiter plates,” Chemical Engineering Science, vol. 94, pp. 192–199, 2013. View at Publisher · View at Google Scholar
  7. E. Peeters, H. J. Nelis, and T. Coenye, “Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates,” Journal of Microbiological Methods, vol. 72, no. 2, pp. 157–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Erriu, F. M. G. Pili, E. Tuveri, et al., “Oil essential mouthwashes antibacterial activity against Aggregatibacter actinomycetemcomitans: a comparison between antibiofilm and antiplanktonic effects,” International Journal of Dentistry, vol. 2013, Article ID 164267, 5 pages, 2013. View at Publisher · View at Google Scholar
  9. D. Minardi, O. Cirioni, R. Ghiselli et al., “Efficacy of tigecycline and rifampin alone and in combination against Enterococcus faecalis biofilm infection in a rat model of ureteral stent,” Journal of Surgical Research, vol. 176, no. 1, pp. 1–6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Sanchez, K. Mende, M. Beckius, et al., “Biofilm formation by clinical isolates and the implications in chronic infections,” BMC Infectious Diseases, vol. 13, article 47, 2013. View at Publisher · View at Google Scholar
  11. E. Hell, C. Giske, K. Hultenby, et al., “Attachment and biofilm forming capabilities of Staphylococcus epidermidis strains isolated from preterm infants,” Current Microbiology, vol. 67, no. 6, pp. 712–717, 2013. View at Publisher · View at Google Scholar
  12. M.-H. Lin, F.-R. Chang, M.-Y. Hua, Y.-C. Wu, and S.-T. Liu, “Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose on biofilm formation by Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 3, pp. 1021–1027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. De La Fuente-Núñez, V. Korolik, M. Bains et al., “Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide,” Antimicrobial Agents and Chemotherapy, vol. 56, no. 5, pp. 2696–2704, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. G. D. Christensen, W. A. Simpson, and J. J. Younger, “Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices,” Journal of Clinical Microbiology, vol. 22, no. 6, pp. 996–1006, 1985. View at Scopus
  15. X. Li, Z. Yan, and J. Xu, “Quantitative variation of biofilms among strains in natural populations of Candida albicans,” Microbiology, vol. 149, no. 2, pp. 353–362, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Stepanović, D. Vuković, I. Dakić, B. Savić, and M. Švabić-Vlahović, “A modified microtiter-plate test for quantification of staphylococcal biofilm formation,” Journal of Microbiological Methods, vol. 40, no. 2, pp. 175–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Crémet, S. Corvec, E. Batard, et al., “Comparison of three methods to study biofilm formation by clinical strains of Escherichia coli,” Diagnostic Microbiology and Infectious Disease, vol. 75, no. 3, pp. 252–255, 2013. View at Publisher · View at Google Scholar
  18. L. R. Martinez and A. Casadevall, “Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy,” Infection and Immunity, vol. 73, no. 10, pp. 6350–6362, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Bridier, D. Le Coq, F. Dubois-Brissonnet, V. Thomas, S. Aymerich, and R. Briandet, “The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging,” PLoS ONE, vol. 6, no. 1, Article ID e16177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Kostenko, M. M. Salek, P. Sattari, and R. J. Martinuzzi, “Staphylococcus aureus biofilm formation and tolerance to antibiotics in response to oscillatory shear stresses of physiological levels,” FEMS Immunology and Medical Microbiology, vol. 59, no. 3, pp. 421–431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. S. Teodósio, M. Simões, and F. J. Mergulhão, “The influence of nonconjugative Escherichia coli plasmids on biofilm formation and resistance,” Journal of Applied Microbiology, vol. 113, no. 2, pp. 373–382, 2012. View at Publisher · View at Google Scholar
  22. J. S. Teodósio, M. Simões, L. F. Melo, and F. J. Mergulhão, “Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow,” Biofouling, vol. 27, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Shakeri, R. K. Kermanshahi, M. M. Moghaddam, and G. Emtiazi, “Assessment of biofilm cell removal and killing and biocide efficacy using the microtiter plate test,” Biofouling, vol. 23, no. 2, pp. 79–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Gomes, J. M. R. Moreira, J. M. Miranda, et al., “Macroscale versus microscale methods for physiological analysis of biofilms formed in 96-well microtiter plates,” Journal of Microbiological Methods, vol. 95, no. 3, pp. 342–349, 2013. View at Publisher · View at Google Scholar
  25. Y. Liu and J.-H. Tay, “The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge,” Water Research, vol. 36, no. 7, pp. 1653–1665, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Stoodley, S. Wilson, L. Hall-Stoodley, J. D. Boyle, H. M. Lappin-Scott, and J. W. Costerton, “Growth and detachment of cell clusters from mature mixed-species biofilms,” Applied and Environmental Microbiology, vol. 67, no. 12, pp. 5608–5613, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Wäsche, H. Horn, and D. C. Hempel, “Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface,” Water Research, vol. 36, no. 19, pp. 4775–4784, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. H. J. Busscher and H. C. van der Mei, “Microbial adhesion in flow displacement systems,” Clinical Microbiology Reviews, vol. 19, no. 1, pp. 127–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Simões, M. O. Pereira, S. Sillankorva, J. Azeredo, and M. J. Vieira, “The effect of hydrodynamic conditions on the phenotype of Pseudomonas fluorescens biofilms,” Biofouling, vol. 23, no. 4, pp. 249–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Teodósio, F. C. Silva, J. M. R. Moreira, et al., “Flow cells as quasi ideal systems for biofouling simulation of industrial piping systems,” Biofouling, vol. 29, no. 8, pp. 953–966, 2013. View at Publisher · View at Google Scholar
  31. M. C. M. Van Loosdrecht, D. Eikelboom, A. Gjaltema, A. Mulder, L. Tijhuis, and J. J. Heijnen, “Biofilm structures,” Water Science and Technology, vol. 32, no. 8, pp. 35–43, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M. R. Moreira, J. S. Teodósio, F. C. Silva, et al., “Influence of flow rate variation on the development of Escherichia coli biofilms,” Bioprocess and Biosystems Engineering, vol. 36, no. 11, pp. 1787–1796, 2013. View at Publisher · View at Google Scholar
  33. W. K. Kwok, C. Picioreanu, S. L. Ong, et al., “Influence of biomass production and detachment forces on biofilm structures in a biofilm airlift suspension reactor,” Biotechnology and Bioengineering, vol. 58, no. 4, pp. 400–407, 1998.
  34. A. Rochex, J.-J. Godon, N. Bernet, and R. Escudié, “Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities,” Water Research, vol. 42, no. 20, pp. 4915–4922, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Bridier, T. Meylheuc, and R. Briandet, “Realistic representation of Bacillus subtilis biofilms architecture using combined microscopy (CLSM, ESEM and FESEM),” Micron, vol. 48, pp. 65–69, 2013. View at Publisher · View at Google Scholar
  36. M. G. White, S. Piccirillo, V. Dusevich, D. J. Law, T. Kapros, and S. M. Honigberg, “Flo11p adhesin required for meiotic differentiation in Saccharomyces cerevisiae minicolonies grown on plastic surfaces,” FEMS Yeast Research, vol. 11, no. 2, pp. 223–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. C. L. Quave, M. Estévez-Carmona, C. M. Compadre et al., “Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics,” PLoS ONE, vol. 7, no. 1, Article ID e28737, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Lizcano, T. Chin, K. Sauer, E. I. Tuomanen, and C. J. Orihuela, “Early biofilm formation on microtiter plates is not correlated with the invasive disease potential of Streptococcus pneumoniae,” Microbial Pathogenesis, vol. 48, no. 3-4, pp. 124–130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. A. S. Melo, A. L. Colombo, and B. A. Arthington-Skaggs, “Paradoxical growth effect of caspofungin observed on biofilms and planktonic cells of five different Candida species,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 9, pp. 3081–3088, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. W. A. Duetz, “Microtiter plates as mini-bioreactors: miniaturization of fermentation methods,” Trends in Microbiology, vol. 15, no. 10, pp. 469–475, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Honraet, E. Goetghebeur, and H. J. Nelis, “Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms,” Journal of Microbiological Methods, vol. 63, no. 3, pp. 287–295, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Kumar, C. Wittmann, and E. Heinzle, “Review: minibioreactors,” Biotechnology Letters, vol. 26, no. 1, pp. 1–10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. N. F. Azevedo, S. P. Lopes, C. W. Keevil, M. O. Pereira, and M. J. Vieira, “Time to “go large” on biofilm research: advantages of an omics approach,” Biotechnology Letters, vol. 31, no. 4, pp. 477–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Toté, D. V. Berghe, L. Maes, and P. Cos, “A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms,” Letters in Applied Microbiology, vol. 46, no. 2, pp. 249–254, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. T. A. Norton, R. C. Thompson, J. Pope et al., “Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms,” Aquatic Microbial Ecology, vol. 16, no. 2, pp. 199–204, 1998. View at Scopus
  46. D. O. Serra, A. M. Richter, G. Klauck, et al., “Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm,” mBio, vol. 4, no. 2, pp. e100103–e100113, 2013.
  47. P. S. Stewart, R. Murga, R. Srinivasan, and D. De Beer, “Biofilm structural heterogeneity visualized by three microscopic methods,” Water Research, vol. 29, no. 8, pp. 2006–2009, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. S. B. Surman, J. T. Walker, D. T. Goddard et al., “Comparison of microscope techniques for the examination of biofilms,” Journal of Microbiological Methods, vol. 25, no. 1, pp. 57–70, 1996. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Hannig, M. Follo, E. Hellwig, and A. Al-Ahmad, “Visualization of adherent micro-organisms using different techniques,” Journal of Medical Microbiology, vol. 59, no. 1, pp. 1–7, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Bridier, F. Dubois-Brissonnet, A. Boubetra, V. Thomas, and R. Briandet, “The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method,” Journal of Microbiological Methods, vol. 82, no. 1, pp. 64–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Fedel, P. Caciagli, V. Chistè, et al., “Microbial biofilm imaging ESEM vs. HVSEM,” Imaging & Microscopy, vol. 9, no. 2, pp. 44–47, 2007. View at Publisher · View at Google Scholar
  52. R. J. Palmer Jr., J. J. Haagensen, T. Neu, and C. Sternberg, “Confocal microscopy of biofilms—spatiotemporal approaches,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, Ed., pp. 870–888, Springer, New York, NY, USA, 2006.