About this Journal Submit a Manuscript Table of Contents
Scientifica
Volume 2014 (2014), Article ID 681754, 14 pages
http://dx.doi.org/10.1155/2014/681754
Review Article

Themes and Variations: Regulation of RpoN-Dependent Flagellar Genes across Diverse Bacterial Species

Department of Microbiology, University of Georgia, Athens, GA 30602, USA

Received 4 November 2013; Accepted 16 December 2013; Published 2 January 2014

Academic Editors: A. S. Lang, P. Soultanas, and O. Tsodikov

Copyright © 2014 Jennifer Tsang and Timothy R. Hoover. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Minamino, K. Imada, and K. Namba, “Mechanisms of type III protein export for bacterial flagellar assembly,” Molecular BioSystems, vol. 4, no. 11, pp. 1105–1115, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. J. L. McMurry, J. W. Murphy, and B. González-Pedrajo, “The FliN-FliH interaction mediates localization of flagellar export ATPase FliI to the C ring complex,” Biochemistry, vol. 45, no. 39, pp. 11790–11798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. M. Macnab, Ed., Flagella and Motility, ASM Press, 1996.
  4. T. Minamino, K. Imada, and K. Namba, “Molecular motors of the bacterial flagella,” Current Opinion in Structural Biology, vol. 18, no. 6, pp. 693–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. T. G. Smith and T. R. Hoover, “Deciphering bacterial flagellar gene regulatory networks in the genomic era,” Advances in Applied Microbiology, vol. 67, pp. 257–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. K. Anderson, T. G. Smith, and T. R. Hoover, “Sense and sensibility: flagellum-mediated gene regulation,” Trends in Microbiology, vol. 18, no. 1, pp. 30–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. D. Helmann, “Alternative sigma factors and the regulation of flagellar gene expression,” Molecular Microbiology, vol. 5, no. 12, pp. 2875–2882, 1991. View at Scopus
  8. D. L. Popham, D. Szeto, J. Keener, and S. Kustu, “Function of a bacterial activator protein that binds to transcriptional enhancers,” Science, vol. 243, no. 4891, pp. 629–635, 1989. View at Scopus
  9. S. Sasse-Dwight and J. D. Gralla, “Probing the Escherichia coliglnALG upstream activation mechanism in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 23, pp. 8934–8938, 1988. View at Scopus
  10. M. Kihara, T. Minamino, S. Yamaguchi, and R. M. Macnab, “Intergenic suppression between the flagellar MS ring protein FliF of Salmonella and FlhA, a membrane component of its export apparatus,” Journal of Bacteriology, vol. 183, no. 5, pp. 1655–1662, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. S. van Arnam, J. L. McMurry, M. Kihara, and R. M. Macnab, “Analysis of an engineered Salmonella flagellar fusion protein, FliR-FlhB,” Journal of Bacteriology, vol. 186, no. 8, pp. 2495–2498, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. S. Barker, I. V. Meshcheryakova, A. S. Kostyukova, and F. A. Samatey, “FliO regulation of FliP in the formation of the Salmonella enterica flagellum,” PLoS Genetics, vol. 6, no. 9, Article ID e1001143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. C. Lowenthal, M. Hill, L. K. Sycuro, K. Mehmood, N. R. Salama, and K. M. Ottemann, “Functional analysis of the Helicobacter pylori flagellar switch proteins,” Journal of Bacteriology, vol. 191, no. 23, pp. 7147–7156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. R. M. Macnab, “Type III flagellar protein export and flagellar assembly,” Biochimica et Biophysica Acta, vol. 1694, no. 1–3, pp. 207–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. A. Eaton, D. R. Morgan, and S. Krakowka, “Campylobacter pylori virulence factors in gnotobiotic piglets,” Infection and Immunity, vol. 57, no. 4, pp. 1119–1125, 1989. View at Scopus
  16. K. A. Eaton, D. R. Morgan, and S. Krakowka, “Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori,” Journal of Medical Microbiology, vol. 37, no. 2, pp. 123–127, 1992. View at Scopus
  17. D. G. Newell, H. McBride, and J. M. Dolby, “Investigations on the role of flagella in the colonization of infant mice with Campylobacter jejuni and attachment of Campylobacter jejuni to human epithelial cell lines,” Journal of Hygiene, vol. 95, no. 2, pp. 217–227, 1985. View at Scopus
  18. T. Morooka, A. Umeda, and K. Amako, “Motility as an intestinal colonization factor for Campylobacter jejuni,” Journal of General Microbiology, vol. 131, no. 8, pp. 1973–1980, 1985. View at Scopus
  19. C. Y. Kao, B. S. Sheu, S. M. Sheu et al., “Higher motility enhances bacterial density and inflammatory response in dyspeptic patients infected with Helicobacter pylori,” Helicobacter, vol. 17, no. 6, pp. 411–416, 2012. View at Publisher · View at Google Scholar
  20. E. Niehus, H. Gressmann, F. Ye et al., “Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori,” Molecular Microbiology, vol. 52, no. 4, pp. 947–961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Balaban, S. N. Joslin, and D. R. Hendrixson, “FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni,” Journal of Bacteriology, vol. 191, no. 21, pp. 6602–6611, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Kusumoto, A. Shinohara, H. Terashima, S. Kojima, T. Yakushi, and M. Homma, “Collaboration of FlhF and FlhG to regulate polarflagella number and localization in Vibrio alginolyticus,” Microbiology, vol. 154, no. 5, pp. 1390–1399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Kusumoto, K. Kamisaka, T. Yakushi, H. Terashima, A. Shinohara, and M. Homma, “Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus,” Journal of Biochemistry, vol. 139, no. 1, pp. 113–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. B. M. Prüß and P. Matsumura, “A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division,” Journal of Bacteriology, vol. 178, no. 3, pp. 668–674, 1996. View at Scopus
  25. B. M. Prüß and P. Matsumura, “Cell cycle regulation of flagellar genes,” Journal of Bacteriology, vol. 179, no. 17, pp. 5602–5604, 1997. View at Scopus
  26. G. Spohn and V. Scarlato, “Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog,” Journal of Bacteriology, vol. 181, no. 2, pp. 593–599, 1999. View at Scopus
  27. M. Schirm, E. C. Soo, A. J. Aubry, J. Austin, P. Thibault, and S. M. Logan, “Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori,” Molecular Microbiology, vol. 48, no. 6, pp. 1579–1592, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Beier and R. Frank, “Molecular characterization of two-component systems of Helicobacter pylori,” Journal of Bacteriology, vol. 182, no. 8, pp. 2068–2076, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Brahmachary, M. G. Dashti, J. W. Olson, and T. R. Hoover, “Helicobacter pylori FlgR is an enhancer-independent activator of σ54-RNA polymerase holoenzyme,” Journal of Bacteriology, vol. 186, no. 14, pp. 4535–4542, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. S. M. Wösten, J. A. Wagenaar, and J. P. M. van Putten, “The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni,” The Journal of Biological Chemistry, vol. 279, no. 16, pp. 16214–16222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Bush and R. Dixon, “The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription,” MicroBiology and Molecular Biology Reviews, vol. 76, no. 3, pp. 497–529, 2012. View at Publisher · View at Google Scholar
  32. J. Schumacher, N. Joly, M. Rappas, X. Zhang, and M. Buck, “Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation,” Journal of Structural Biology, vol. 156, no. 1, pp. 190–199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. N. Joslin and D. R. Hendrixson, “Analysis of the Campylobacter jejuni FlgR response regulator suggests integration of diverse mechanisms to activate an NtrC-like protein,” Journal of Bacteriology, vol. 190, no. 7, pp. 2422–2433, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Boll and D. R. Hendrixson, “A specificity determinant for phosphorylation in a response regulator prevents in vivo cross-talk and modification by acetyl phosphate,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 50, pp. 20160–20165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Porwollik, B. Noonan, and P. W. O'Toole, “Molecular characterization of a flagellar export locus of Helicobacter pylori,” Infection and Immunity, vol. 67, no. 5, pp. 2060–2070, 1999. View at Scopus
  36. E. Allan, N. Dorrell, S. Foynes, M. Anyim, and B. W. Wren, “Mutational analysis of genes encoding the early flagellar components of Helicobacter pylori: evidence for transcriptional regulation of flagellin A biosynthesis,” Journal of Bacteriology, vol. 182, no. 18, pp. 5274–5277, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. T. G. Smith, L. Pereira, and T. R. Hoover, “Helicobacter pylori FlhB processing-deficient variants affect flagellar assembly but not flagellar gene expression,” Microbiology, vol. 155, no. 4, pp. 1170–1180, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. D. R. Hendrixson, B. J. Akerley, and V. J. DiRita, “Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility,” Molecular Microbiology, vol. 40, no. 1, pp. 214–224, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Tsang, T. G. Smith, L. E. Pereira, and T. R. Hoover, “Insertion mutations in Helicobacter pylori flhA reveal strain differences in RpoN-dependent gene expression,” Microbiology, vol. 159, part 1, pp. 58–67, 2013. View at Publisher · View at Google Scholar
  40. J. M. Boll and D. R. Hendrixson, “A regulatory checkpoint during flagellar biogenesis in Campylobacter jejuni initiates signal transduction to activate transcription of flagellar genes,” MBio, vol. 4, no. 5, Article ID e00432-13, 2013. View at Publisher · View at Google Scholar
  41. T. Minamino, H. Doi, and K. Kutsukake, “Substrate specificity switching of the flagellum-specific export apparatus during flagellar morphogenesis in Salmonella typhimurium,” Bioscience, Biotechnology and Biochemistry, vol. 63, no. 7, pp. 1301–1303, 1999. View at Scopus
  42. M. Erhardt, H. M. Singer, D. H. Wee, J. P. Keener, and K. T. Hughes, “An infrequent molecular ruler controls flagellar hook length in Salmonella enterica,” EMBO Journal, vol. 30, no. 14, pp. 2948–2961, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. K. T. Hughes, K. L. Gillen, M. J. Semon, and J. E. Karlinsey, “Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator,” Science, vol. 262, no. 5137, pp. 1277–1280, 1993. View at Scopus
  44. K. A. Ryan, N. Karim, M. Worku, S. A. Moore, C. W. Penn, and P. W. O'Toole, “HP0958 is an essential motility gene in Helicobacter pylori,” FEMS Microbiology Letters, vol. 248, no. 1, pp. 47–55, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Pereira and T. R. Hoover, “Stable accumulation of σ54 in Helicobacter pylori requires the novel protein HP0958,” Journal of Bacteriology, vol. 187, no. 13, pp. 4463–4469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. J. C. Rain, L. Selig, H. de Reuse et al., “The protein-protein interaction map of Helicobacter pylori,” Nature, vol. 409, no. 6817, pp. 211–215, 2001.
  47. F. P. Douillard, K. A. Ryan, D. L. Caly et al., “Posttranscriptional regulation of flagellin synthesis in Helicobacter pylori by the RpoN chaperone HP0958,” Journal of Bacteriology, vol. 190, no. 24, pp. 7975–7984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Josenhans, E. Niehus, S. Amersbach et al., “Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome,” Molecular Microbiology, vol. 43, no. 2, pp. 307–322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Rust, S. Borchert, E. Niehus et al., “The Helicobacter pylori anti-sigma factor FlgM is predominantly cytoplasmic and cooperates with the flagellar basal body protein FlhA,” Journal of Bacteriology, vol. 191, no. 15, pp. 4824–4834, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. D. R. Hendrixson and V. J. DiRita, “Transcription of σ54-dependent but not σ28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus,” Molecular Microbiology, vol. 50, no. 2, pp. 687–702, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. M. M. S. M. Wösten, L. van Dijk, A. K. J. Veenendaal, M. R. de Zoete, N. M. C. Bleumink-Pluijm, and J. P. M. van Putten, “Temperature-dependent FlgM/FliA complex formation regulates Campylobacter jejuni flagella length,” Molecular Microbiology, vol. 75, no. 6, pp. 1577–1591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. G. Prouty, N. E. Correa, and K. E. Klose, “The novel σ54- and σ28-dependent flagellar gene transcription hierarchy of Vibrio cholerae,” Molecular Microbiology, vol. 39, no. 6, pp. 1595–1609, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Srivastava, M. L. Hsieh, A. Khataokar, M. B. Neiditch, and C. M. Waters, “Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production,” Molecular Microbiology, vol. 90, no. 6, pp. 1262–1276, 2013. View at Publisher · View at Google Scholar
  54. N. E. Correa, C. M. Lauriano, R. McGee, and K. E. Klose, “Phosphorylation of the flagellar regulatory protein FlrC is necessary for Vibrio cholerae motility and enhanced colonization,” Molecular Microbiology, vol. 35, no. 4, pp. 743–755, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. N. E. Correa, J. R. Barker, and K. E. Klose, “The Vibrio cholerae FlgM homologue is an anti-σ28 factor that is secreted through the sheathed polar flagellum,” Journal of Bacteriology, vol. 186, no. 14, pp. 4613–4619, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Moisi, C. Jenul, S. M. Butler et al., “A novel regulatory protein involved in motility of Vibrio cholerae,” Journal of Bacteriology, vol. 191, no. 22, pp. 7027–7038, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Aravind and C. P. Ponting, “The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins,” FEMS Microbiology Letters, vol. 176, no. 1, pp. 111–116, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Merino, J. G. Shaw, and J. M. Tomás, “Bacterial lateral flagella: an inducible flagella system,” FEMS Microbiology Letters, vol. 263, no. 2, pp. 127–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. L. L. McCarter, “Dual flagellar systems enable motility under different circumstances,” Journal of Molecular Microbiology and Biotechnology, vol. 7, no. 1-2, pp. 18–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Ulitzur, “Induction of swarming in Vibrio parahaemolyticus,” Archives of Microbiology, vol. 101, no. 4, pp. 357–363, 1974. View at Scopus
  61. K. S. Park, M. Arita, T. Iida, and T. Honda, “vpaH, a gene encoding a novel histone-like nucleoid structure-like protein that was possibly horizontally acquired, regulates the biogenesis of lateral flagella in trh-positive Vibrio parahaemolyticus TH3996,” Infection and Immunity, vol. 73, no. 9, pp. 5754–5761, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. L. McCarter and M. Silverman, “Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus,” Journal of Bacteriology, vol. 171, no. 2, pp. 731–736, 1989. View at Scopus
  63. B. J. Stewart and L. L. McCarter, “Lateral flagellar gene system of Vibrio parahaemolyticus,” Journal of Bacteriology, vol. 185, no. 15, pp. 4508–4518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. C. J. Gode-Potratz, R. J. Kustusch, P. J. Breheny, D. S. Weiss, and L. L. McCarter, “Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence,” Molecular Microbiology, vol. 79, no. 1, pp. 240–263, 2011. View at Scopus
  65. J. L. Veesenmeyer, A. R. Hauser, T. Lisboa, and J. Rello, “Pseudomonas aeruginosa virulence and therapy: evolving translational strategies,” Critical Care Medicine, vol. 37, no. 5, pp. 1777–1786, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Balasubramanian, L. Schneper, H. Kumari, and K. Mathee, “A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence,” Nucleic Acids Research, vol. 41, no. 1, pp. 1–20, 2013. View at Publisher · View at Google Scholar
  67. T. C. Montie, D. D. Huntzinger, R. C. Craven, and I. A. Holder, “Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-mouse model,” Infection and Immunity, vol. 38, no. 3, pp. 1296–1298, 1982. View at Scopus
  68. Y. R. Patankar, R. R. Lovewell, M. E. Poynter, J. Jyot, B. I. Kazmierczak, and B. Berwin, “Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa,” Infection and Immunity, vol. 81, no. 6, pp. 2043–2052, 2013. View at Publisher · View at Google Scholar
  69. G. A. O'Toole and R. Kolter, “Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development,” Molecular Microbiology, vol. 30, no. 2, pp. 295–304, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. K. B. Barken, S. J. Pamp, L. Yang et al., “Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms,” Environmental Microbiology, vol. 10, no. 9, pp. 2331–2343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Leeman, J. A. van Pelt, F. M. den Ouden, M. Heinsbroek, P. A. Bakker, and B. Schippers, “Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens,” Phytopathology, vol. 85, no. 9, pp. 1021–1027, 1995. View at Scopus
  72. P. Hsueh, L. Teng, H. Pan et al., “Outbreak of Pseudomonas fluorescens bacteremia among oncology patients,” Journal of Clinical Microbiology, vol. 36, no. 10, pp. 2914–2917, 1998. View at Scopus
  73. V. Wong, K. Levi, B. Baddal, J. Turton, and T. C. Boswell, “Spread of Pseudomonas fluorescens due to contaminated drinking water in a bone marrow transplant unit,” Journal of Clinical Microbiology, vol. 49, no. 6, pp. 2093–2096, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. J. W. Hickman and C. S. Harwood, “Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor,” Molecular Microbiology, vol. 69, no. 2, pp. 376–389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. N. Dasgupta, M. C. Wolfgang, A. L. Goodman et al., “A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa,” Molecular Microbiology, vol. 50, no. 3, pp. 809–824, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. S. K. Arora, B. W. Ritchings, E. C. Almira, S. Lory, and R. Ramphal, “A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner,” Journal of Bacteriology, vol. 179, no. 17, pp. 5574–5581, 1997. View at Scopus
  77. N. Dasgupta and R. Ramphal, “Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa,” Journal of Bacteriology, vol. 183, no. 22, pp. 6636–6644, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Dasgupta, S. K. Arora, and R. Ramphal, “fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa,” Journal of Bacteriology, vol. 182, no. 2, pp. 357–364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Malakooti and B. Ely, “Principal sigma subunit of the Caulobacter crescentus RNA polymerase,” Journal of Bacteriology, vol. 177, no. 23, pp. 6854–6860, 1995. View at Scopus
  80. M. T. Laub, H. H. McAdams, T. Feldblyum, C. M. Fraser, and L. Shapiro, “Global analysis of the genetic network controlling a bacterial cell cycle,” Science, vol. 290, no. 5499, pp. 2144–2148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  81. A. K. Benson, G. Ramakrishnan, N. Ohta, J. Feng, A. J. Ninfa, and A. Newton, “The Caulobacter crescentus FlbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 11, pp. 4989–4993, 1994. View at Publisher · View at Google Scholar · View at Scopus
  82. D. A. Mullin, S. M. van Way, C. A. Blankenship, and A. H. Mullin, “FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus,” Journal of Bacteriology, vol. 176, no. 19, pp. 5971–5981, 1994. View at Scopus
  83. R. J. Dutton, Z. Xu, and J. W. Gober, “Linking structural assembly to gene expression: a novel mechanism for regulating the activity of a σ54 transcription factor,” Molecular Microbiology, vol. 58, no. 3, pp. 743–757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. R. E. Muir, J. Easter, and J. W. Gober, “The trans-acting flagellar regulatory proteins, FliX and FlbD, play a central role in linking flagellar biogenesis and cytokinesis in Caulobacter crescentus,” Microbiology, vol. 151, no. 11, pp. 3699–3711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. P. E. Anderson and J. W. Gober, “FlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5′ untranslated region of flagellin mRNA,” Molecular Microbiology, vol. 38, no. 1, pp. 41–52, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. A. T. Nielsen, N. A. Dolganov, G. Otto, M. C. Miller, C. Y. Wu, and G. K. Schoolnik, “RpoS controls the Vibrio cholerae mucosal escape response,” PLoS Pathogens, vol. 2, no. 10, article e109, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. M. T. Laub, S. L. Chen, L. Shapiro, and H. H. McAdams, “Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 7, pp. 4632–4637, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. A. J. Kelly, M. J. Sackett, N. Din, E. Quardokus, and Y. V. Brun, “Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter,” Genes and Development, vol. 12, no. 6, pp. 880–893, 1998. View at Scopus
  89. M. Wortinger, M. J. Sackett, and Y. V. Brun, “CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus,” EMBO Journal, vol. 19, no. 17, pp. 4503–4512, 2000. View at Scopus
  90. R. E. Muir, T. M. O'Brien, and J. W. Gober, “The Caulobacter crescentus flagellar gene, fliX, encodes a novel trans-acting factor that couples flagellar assembly to transcription,” Molecular Microbiology, vol. 39, no. 6, pp. 1623–1637, 2001. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Llewellyn, R. J. Dutton, J. Easter, D. O'Donnol, and J. W. Gober, “The conserved flaF gene has a critical role in coupling flagellin translation and assembly in Caulobacter crescentus,” Molecular Microbiology, vol. 57, no. 4, pp. 1127–1142, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. S. M. Kim, D. H. Lee, and S. H. Choi, “Evidence that the Vibrio vulnificus flagellar regulator FlhF is regulated by a quorum sensing master regulator SmcR,” Microbiology, vol. 158, part 8, pp. 2017–2025, 2012. View at Publisher · View at Google Scholar
  93. F. Martínez-Granero, A. Navazo, E. Barahona, M. Redondo-Nieto, R. Rivilla, and M. Martín, “The Gac-Rsm and SadB signal transduction pathways converge on Algu to downregulate motility in Pseudomonas fluorescens,” PLoS ONE, vol. 7, no. 2, Article ID e31765, 2012. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Reimmann, M. Beyeler, A. Latifi et al., “The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase,” Molecular Microbiology, vol. 24, no. 2, pp. 309–319, 1997. View at Scopus
  95. J. Dubern and G. V. Bloemberg, “Influence of environmental conditions on putisolvins I and II production in Pseudomonas putida strain PCL1445,” FEMS Microbiology Letters, vol. 263, no. 2, pp. 169–175, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. M. G. Surette, M. B. Miller, and B. L. Bassler, “Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 4, pp. 1639–1644, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. B. A. Rader, S. R. Campagna, M. F. Semmelhack, B. L. Bassler, and K. Guillemin, “The quorum-sensing molecule autoinducer 2 regulates motility and flagellar morphogenesis in Helicobacter pylori,” Journal of Bacteriology, vol. 189, no. 17, pp. 6109–6117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. He, J. G. Frye, T. P. Strobaugh Jr., and C. Chen, “Analysis of AI-2/LuxS-dependent transcription in Campylobacter jejuni strain 81-176,” Foodborne Pathogens and Disease, vol. 5, no. 4, pp. 399–415, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. B. Jeon, K. Itoh, N. Misawa, and S. Ryu, “Effects of quorum sensing on flaA transcription and autoagglutination in Campylobacter jejuni,” Microbiology and Immunology, vol. 47, no. 11, pp. 833–839, 2003. View at Scopus
  100. N. Dasgupta, E. P. Ferrell, K. J. Kanack, S. E. H. West, and R. Ramphal, “fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is σ70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein,” Journal of Bacteriology, vol. 184, no. 19, pp. 5240–5250, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Zhu, M. B. Miller, R. E. Vance, M. Dziejman, B. L. Bassler, and J. J. Mekalanos, “Quorum-sensing regulators control virulence gene expression in Vibrio cholerae,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 5, pp. 3129–3134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. Z. Liu, T. Miyashiro, A. Tsou, A. Hsiao, M. Goulian, and J. Zhu, “Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 28, pp. 9769–9774, 2008. View at Publisher · View at Google Scholar · View at Scopus
  103. K. E. Klose, V. Novik, and J. J. Mekalanos, “Identification of multiple σ54-dependent transcriptional activators in Vibrio cholerae,” Journal of Bacteriology, vol. 180, no. 19, pp. 5256–5259, 1998. View at Scopus
  104. I. Kawagishi, M. Imagawa, Y. Imae, L. McCarter, and M. Homma, “The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression,” Molecular Microbiology, vol. 20, no. 4, pp. 693–699, 1996. View at Publisher · View at Google Scholar · View at Scopus
  105. T. J. Kirn, B. A. Jude, and R. K. Taylor, “A colonization factor links Vibrio cholerae environmental survival and human infection,” Nature, vol. 438, no. 7069, pp. 863–866, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. Z. Kuang, Y. Hao, S. Hwang et al., “The Pseudomonas aeruginosa flagellum confers resistance to pulmonary surfactant protein-A by impacting the production of exoproteases through quorum-sensing,” Molecular Microbiology, vol. 79, no. 5, pp. 1220–1235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. S. Zhang, F. X. McCormack, R. C. Levesque, G. A. O'Toole, and G. W. Lau, “The flagellum of Pseudomonas aeruginosa is required for resistance to clearance by surfactant protein A,” PLoS ONE, vol. 2, no. 6, article e564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. G. W. Lau, D. J. Hassett, H. Ran, and F. Kong, “The role of pyocyanin in Pseudomonas aeruginosa infection,” Trends in Molecular Medicine, vol. 10, no. 12, pp. 599–606, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. G. W. Lau, H. Ran, F. Kong, D. J. Hassett, and D. Mavrodi, “Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice,” Infection and Immunity, vol. 72, no. 7, pp. 4275–4278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. D. S. Merrell, M. L. Goodrich, G. Otto, L. S. Tompkins, and S. Falkow, “pH-regulated gene expression of the gastric pathogen Helicobacter pylori,” Infection and Immunity, vol. 71, no. 6, pp. 3529–3539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. K. J. Allen and M. W. Griffiths, “Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaAσ28 promoter,” FEMS Microbiology Letters, vol. 205, no. 1, pp. 43–48, 2001. View at Publisher · View at Google Scholar · View at Scopus
  112. Y. Wen, J. Feng, D. R. Scott, E. A. Marcus, and G. Sachs, “The pH-responsive regulon of HP0244 (FlgS), the cytoplasmic histidine kinase of Helicobacter pylori,” Journal of Bacteriology, vol. 191, no. 2, pp. 449–460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. D. R. Hendrixson, “A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism,” Molecular Microbiology, vol. 61, no. 6, pp. 1646–1659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. D. R. Hendrixson, “Restoration of flagellar biosynthesis by varied mutational events in Campylobacter jejuni,” Molecular Microbiology, vol. 70, no. 2, pp. 519–536, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. P. Lertsethtakarn, K. M. Ottemann, and D. R. Hendrixson, “Motility and chemotaxis in Campylobacter and Helicobacter,” Annual Review of Microbiology, vol. 65, pp. 389–410, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. S. F. Park, D. Purdy, and S. Leach, “Localized reversible frameshift mutation in the flhA gene confers phase variability to flagellin gene expression in Campylobacter coli,” Journal of Bacteriology, vol. 182, no. 1, pp. 207–210, 2000. View at Scopus
  117. C. Josenhans, K. A. Eaton, T. Thevenot, and S. Suerbaum, “Switching of flagellar motility in Helicobacter pylori by reversible length variation of a short homopolymeric sequence repeat in fliP, a gene encoding a basal body protein,” Infection and Immunity, vol. 68, no. 8, pp. 4598–4603, 2000. View at Publisher · View at Google Scholar · View at Scopus
  118. N. de Vries, D. Duinsbergen, E. J. Kuipers et al., “Transcriptional phase variation of a type III restriction-modification system in Helicobacter pylori,” Journal of Bacteriology, vol. 184, no. 23, pp. 6615–6623, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. N. Srikhanta, R. J. Gorrell, J. A. Steen et al., “Phasevarion mediated epigenetic gene regulation in Helicobacter pylori,” PLoS ONE, vol. 6, no. 12, Article ID e27569, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. K. L. Fox, Y. N. Srikhanta, and M. P. Jennings, “Phase variable type III restriction-modification systems of host-adapted bacterial pathogens,” Molecular Microbiology, vol. 65, no. 6, pp. 1375–1379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  121. S. K. Lee, A. Stack, E. Katzowitsch, S. I. Aizawa, S. Suerbaum, and C. Josenhans, “Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5,” Microbes and Infection, vol. 5, no. 15, pp. 1345–1356, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. L. F. Lin, J. Posfai, R. J. Roberts, and H. Kong, “Comparative genomics of the restriction-modification systems in Helicobacter pylori,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2740–2745, 2001. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. Zheng, J. Posfai, R. D. Morgan, T. Vincze, and R. J. Roberts, “Using shotgun sequence data to find active restriction enzyme genes,” Nucleic Acids Research, vol. 37, no. 1, article e1, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. R. Kumar, A. K. Mukhopadhyay, P. Ghosh, and D. N. Rao, “Comparative transcriptomics of H. pylori strains AM5, SS1 and their hpyAVIBM deletion mutants: possible roles of cytosine methylation,” PLoS ONE, vol. 7, no. 8, Article ID e42303, 2012. View at Publisher · View at Google Scholar
  125. E. Déziel, Y. Comeau, and R. Villemur, “Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities,” Journal of Bacteriology, vol. 183, no. 4, pp. 1195–1204, 2001. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Sánchez-Contreras, M. Martín, M. Villacieros, F. O'Gara, I. Bonilla, and R. Rivilla, “Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113,” Journal of Bacteriology, vol. 184, no. 6, pp. 1587–1596, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. C. M. Sharma, S. Hoffmann, F. Darfeuille et al., “The primary transcriptome of the major human pathogen Helicobacter pylori,” Nature, vol. 464, no. 7286, pp. 250–255, 2010. View at Publisher · View at Google Scholar · View at Scopus