About this Journal Submit a Manuscript Table of Contents
Smart Materials Research
Volume 2012 (2012), Article ID 251543, 16 pages
http://dx.doi.org/10.1155/2012/251543
Research Article

Proposed Configurations for the Use of Smart Dampers with Bracings in Tall Buildings

1Department of Mechanical Engineering, Faculty of Engineering, Alexandria University (on leave), Alexandria, Egypt
2Department of Civil and Environmental Engineering, The University of Western Ontario, London, ON, Canada
3Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy

Received 30 June 2011; Revised 15 December 2011; Accepted 15 December 2011

Academic Editor: Marcelo A. Trindade

Copyright © 2012 A. M. Aly Sayed Ahmed et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. T. Soong, Active Structural Control: Theory and Practice, John Wiley & Sons, 1990.
  2. J. C. Wu and B. C. Pan, “Wind tunnel verification of actively controlled high-rise building in along-wind motion,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 90, no. 12–15, pp. 1933–1950, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. L. T. Lu, W. L. Chiang, J. P. Tang, M. Y. Liu, and C. W. Chen, “Active control for a benchmark building under wind excitations,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 91, no. 4, pp. 469–493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. M. Aly, F. Resta, and A. Zasso, “Active control in a high-rise building under multidirectional wind loads,” in Proceedings of the Structures Congress, vol. 314, Vancouver, Canada, April 2008.
  5. A. M. Aly, A. Zasso, and F. Resta, “Dynamics and control of high-rise buildings under multidirectional wind loads,” Smart Materials Research, vol. 2011, Article ID 549621, 15 pages, 2011. View at Publisher · View at Google Scholar
  6. R. J. Smith and M. R. Willford, “The damped outrigger concept for tall buildings,” Structural Design of Tall and Special Buildings, vol. 16, no. 4, pp. 501–517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, “Modeling and control of magnetorheological dampers for seismic response reduction,” Smart Materials and Structures, vol. 5, no. 5, pp. 565–575, 1996. View at Scopus
  8. H. Metwally, B. El-Souhily, and A. Aly, “Reducing vibration effects on buildings due to earthquake using magneto-rheological dampers,” AEJ - Alexandria Engineering Journal, vol. 45, no. 2, pp. 131–140, 2006. View at Scopus
  9. A. M. Aly and R. E. Christenson, “On the evaluation of the efficacy of a smart damper: a new equivalent energy-based probabilistic approach,” Smart Materials and Structures, vol. 17, no. 4, Article ID 045008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. M. Aly, A. Zasso, and F. Resta, “On the dynamics of a very slender building under winds: response reduction using MR dampers with lever mechanism,” Structural Design of Tall and Special Buildings, vol. 20, no. 5, pp. 539–551, 2011. View at Publisher · View at Google Scholar
  11. M. C. Constantinou, P. Tsopelas, and W. Hammel, “Testing and modeling of an improved damper configuration for stiff structural systems,” Tech. Rep., Center for Industrial Effectiveness and Taylor Devices, 1998.
  12. C. H. Huang, “Parametric study for motion amplification device with viscous damper,” in the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
  13. R. J. McNamara and D. P. Taylor, “Fluid viscous dampers for high-rise buildings,” Structural Design of Tall and Special Buildings, vol. 12, no. 2, pp. 145–154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. N. Sigaher and M. C. Constantinou, “Scissor-jack-damper energy dissipation system,” Earthquake Spectra, vol. 19, no. 1, pp. 133–158, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Berton and J. E. Bolander, “Amplification system for supplemental damping devices in seismic applications,” Journal of Structural Engineering, vol. 131, no. 6, pp. 979–983, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S.-H. Lee, K.-W. Min, L. Chung et al., “Bracing systems for installation of MR dampers in a building structure,” Journal of Intelligent Material Systems and Structures, vol. 18, no. 11, pp. 1111–1120, 2007. View at Publisher · View at Google Scholar
  17. K. K. Walsh, K. J. Cronin, M. D. Rambo-Roddenberry, and K. Grupenhof, “Dynamic analysis of seismically excited flexible truss tower with scissor-jack dampers,” Structural Control and Health Monitoring. In press. View at Publisher · View at Google Scholar
  18. N. Satake, K. I. Suda, T. Arakawa, A. Sasaki, and Y. Tamura, “Damping evaluation using full-scale data of buildings in Japan,” Journal of Structural Engineering, vol. 129, no. 4, pp. 470–477, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Tamura and A. Yoshida, “Amplitude dependency of damping in buildings,” in Proceedings of the 18th Analysis and Computation Speciality Conference, vol. 315, Vancouver, Canada, April 2008.
  20. S. Attaway, Matlab: A Practical Introduction to Programming and Problem Solving, Butterworth-Heinemann, Amsterdam, The Netherlands, 2009.
  21. I. Chowdhury and S. P. Dasgupta, “Computation of Rayleigh damping coefficients for large systems,” Electronic Journal of Geotechnical Engineering, vol. 8, 2003. View at Scopus
  22. L. Meirovitch, Analytical Methods in Vibrations, The Macmillan Co., New York, NY, USA, 1967.
  23. G. Diana, S. De Ponte, M. Falco, and A. Zasso, “A new large wind tunnel for civil-environmental and aeronautical applications,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 74–76, pp. 553–565, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. Eurocode 1, “Eurocode 1: Actions on structures — General actions — Part 1-4: Wind actions,” prEN 1991-1-4: European Standard, 2004.
  25. A. M. Aly, On the dynamics of buildings under winds and earthquakes: response prediction and reduction, Ph.D. thesis, Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy, 2009.
  26. F. Yi, S. J. Dyke, J. M. Caicedo, and J. D. Carlson, “Seismic response control using smart dampers,” in Proceedings of the American Control Conference (ACC '99), pp. 1022–1026, June 1999. View at Scopus
  27. A. Khaje-Karamodin, H. Haji-Kazemi, A. R. Rowhanimanesh, and M. R. Akbarzadeh-Tootoonchi, “Semi-active control of structures using a neuro-inverse model of MR dampers,” Scientia Iranica, vol. 16, no. 3, pp. 256–263, 2009. View at Scopus
  28. S. J. Dyke and B. F. Spencer Jr., “A comparison of semi-active control strategies for the MR damper,” in Proceedings of the IASTED International Conference on Intelligent Information Systems (IIS '97), Grand Bahama Island, Bahamas, December 1997. View at Publisher · View at Google Scholar
  29. K. V. Yuen and S. C. Kuok, “Ambient interference in long-term monitoring of buildings,” Engineering Structures, vol. 32, no. 8, pp. 2379–2386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. V. Yuen and S. C. Kuok, “Modeling of environmental influence in structural health assessment for reinforced concrete buildings,” Earthquake Engineering and Engineering Vibration, vol. 9, no. 2, pp. 295–306, 2010. View at Publisher · View at Google Scholar · View at Scopus