About this Journal Submit a Manuscript Table of Contents
Smart Materials Research
Volume 2012 (2012), Article ID 621364, 8 pages
http://dx.doi.org/10.1155/2012/621364
Research Article

Preliminary Study of Optimum Piezoelectric Cross-Ply Composites for Energy Harvesting

Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Received 24 November 2011; Accepted 29 January 2012

Academic Editor: Sontipee Aimmanee

Copyright © 2012 David N. Betts et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Erturk and D. J. Inman, “An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations,” Smart Materials and Structures, vol. 18, no. 2, pp. 1–18, 2009.
  2. S. C. Stanton, C. C. McGehee, and B. P. Mann, “Reversible hysteresis for broadband magnetopiezoelastic energy harvesting,” Applied Physics Letters, vol. 95, no. 17, Article ID 174103, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. A. F. Arrieta, P. Hagedorn, A. Erturk, and D. J. Inman, “A piezoelectric bistable plate for nonlinear broadband energy harvesting,” Applied Physics Letters, vol. 97, no. 10, Article ID 104102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. W. Hyer, “Calculations of the room-temperature shapes of unsymmetric laminates,” Journal of Composite Materials, vol. 15, pp. 296–310, 1981. View at Scopus
  5. M. L. Dano and M. W. Hyer, “Thermally-induced deformation behavior of unsymmetric laminates,” International Journal of Solids and Structures, vol. 35, no. 17, pp. 2101–2120, 1998. View at Scopus
  6. S. A. Tawfik, D. Stefan Dancila, and E. Armanios, “Planform effects upon the bistable response of cross-ply composite shells,” Composites A, vol. 42, no. 7, pp. 825–833, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Gude, W. Hufenbach, and C. Kirvel, “Piezoelectrically driven morphing structures based on bistable unsymmetric laminates,” Composite Structures, vol. 93, no. 2, pp. 377–382, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. D. N. Betts, H. A. Kim, and C. R. Bowen, “Optimization of stiffness characteristics for the design of bistable laminates,” AIAA Journal. In press.
  9. D. N. Betts, H. A. Kim, and C. R. Bowen, “Modeling and optimization of bistable composite laminates for piezoelectric actuation,” Journal of Intelligent Material Systems and Structures, vol. 22, no. 18, pp. 2181–2191, 2011.
  10. W. J. Jun and C. S. Hong, “Effect of residual shear strain on the cured shape of unsymmetric cross-ply thin laminates,” Composites Science and Technology, vol. 38, no. 1, pp. 55–67, 1990. View at Scopus
  11. D. N. Betts, A. I. T. Salo, C. R. Bowen, and H. A. Kim, “Characterisation and modelling of the cured shapes of arbitrary layup bistable composite laminates,” Composite Structures, vol. 92, no. 7, pp. 1694–1700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. P. F. Giddings, H. A. Kim, A. I. T. Salo, and C. R. Bowen, “Modelling of piezoelectrically actuated bistable composites,” Materials Letters, vol. 65, no. 9, pp. 1261–1263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. Smart Material Corp, 2011, http://www.smart-material.com/MFC-product-main.html.