About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2011 (2011), Article ID 980873, 14 pages
http://dx.doi.org/10.4061/2011/980873
Research Article

Electroencephalography as a Tool for Assessment of Brain Ischemic Alterations after Open Heart Operations

1Bakulev Scientific Center of Cardiovascular Surgery, Russian Academy of Medical Sciences, Leninsky Prospekt 156-368, Moscow 119571, Russia
2Anaesthesiology and Intensive Care Department, Medical Center of the State Bank of Russia, Moscow 117593, Russia

Received 6 September 2010; Revised 31 March 2011; Accepted 31 March 2011

Academic Editor: Halvor Naess

Copyright © 2011 Elena Z. Golukhova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. N. F. Harris, A. Oatridge, D. Dob, P. L. C. Smith, K. M. Taylor, and G. M. Bydder, “Cerebral swelling after normothermic cardiopulmonary bypass,” Anesthesiology, vol. 88, no. 2, pp. 340–345, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Jacobs, M. Neveling, M. Horst et al., “Alterations of neuropsychological function and cerebral glucose metabolism after cardiac surgery are not related only to intraoperative microembolic events,” Stroke, vol. 29, no. 3, pp. 660–667, 1998. View at Scopus
  3. R. E. Anderson, T. Q. Li, T. Hindmarsh, G. Settergren, and J. Vaage, “Increased extracellular brain water after coronary artery bypass grafting is avoided by off-pump surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 13, no. 6, pp. 698–702, 1999. View at Scopus
  4. M. Bendszus, W. Reents, D. Franke et al., “Brain damage after coronary artery bypass grafting,” Archives of Neurology, vol. 59, no. 7, pp. 1090–1095, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Restrepo, R. J. Wityk, M. A. Grega et al., “Diffusion- and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery,” Stroke, vol. 33, no. 12, pp. 2909–2915, 2002. View at Publisher · View at Google Scholar
  6. S. C. Knipp, N. Matatko, H. Wilhelm et al., “Evaluation of brain injury after coronary artery bypass grafting. A prospective study using neuropsychological assessment and diffusion-weighted magnetic resonance imaging,” European Journal of Cardio-thoracic Surgery, vol. 25, no. 5, pp. 791–800, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. E. Stolz, T. Gerriets, A. Kluge, W. P. Klövekorn, M. Kaps, and G. Bachmann, “Diffusion-weighted magnetic resonance imaging and neurobiochemical markers after aortic valve replacement: implications for future neuroprotective trials?” Stroke, vol. 35, no. 4, pp. 888–892, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. T. F. Floyd, P. N. Shah, C. C. Price et al., “Clinically silent cerebral ischemic events after cardiac surgery: their incidence, regional vascular occurrence, and procedural dependence,” Annals of Thoracic Surgery, vol. 81, no. 6, pp. 2160–2166, 2006. View at Publisher · View at Google Scholar · View at PubMed
  9. K. A. Sotaniemi, “Clinical and prognostic correlates of EEG in open-heart surgery patients,” Journal of Neurology Neurosurgery and Psychiatry, vol. 43, no. 10, pp. 941–947, 1980. View at Scopus
  10. C. Bergh, M. Bäckström, H. Jönsson, L. Havinder, and P. Johnsson, “In the eye of both patient and spouse: memory is poor 1 to 2 years after coronary bypass and angioplasty,” Annals of Thoracic Surgery, vol. 74, no. 3, pp. 689–693, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. L. A. Bokeriia, E. Z. Golukhova, A. G. Polunina, D. M. Davydov, and A. V. Begachev, “Neural correlates of cognitive dysfunction after cardiac surgery,” Brain Research Reviews, vol. 50, no. 2, pp. 266–274, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. J. D. Salazar, R. J. Wityk, M. A. Grega et al., “Stroke after cardiac surgery: short- and long-term outcomes,” Annals of Thoracic Surgery, vol. 72, no. 4, pp. 1195–1201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. R. J. Wityk, M. A. Goldsborough, A. Hillis et al., “Diffusion- and perfusion-weighted brain magnetic resonance imaging in patients with neurologic complications after cardiac surgery,” Archives of Neurology, vol. 58, no. 4, pp. 571–576, 2001. View at Scopus
  14. D. S. Likosky, C. A. S. Marrin, L. R. Caplan et al., “Determination of etiologic mechanisms of strokes secondary to coronary artery bypass graft surgery,” Stroke, vol. 34, no. 12, pp. 2830–2834, 2003. View at Publisher · View at Google Scholar · View at PubMed
  15. D. Barbut, Y. W. Lo, J. P. Gold et al., “Impact of embolization during coronary artery bypass grafting on outcome and length of stay,” Annals of Thoracic Surgery, vol. 63, no. 4, pp. 998–1002, 1997. View at Publisher · View at Google Scholar
  16. S. Sylivris, C. Levi, G. Matalanis et al., “Pattern and significance of cerebral microemboli during coronary artery bypass grafting,” Annals of Thoracic Surgery, vol. 66, no. 5, pp. 1674–1678, 1998. View at Publisher · View at Google Scholar
  17. L. A. Bokeriia, E. Z. Golukhova, and A. G. Polunina, “Postoperative delirium in cardiac operations: microembolic load is an important factor,” Annals of Thoracic Surgery, vol. 88, no. 1, pp. 349–350, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. S. J. Fearn, R. Pole, K. Wesnes, E. B. Faragher, T. L. Hooper, and C. N. McCollum, “Cardiopulmonary support and physiology. Cerebral injury during cardiopulmonary bypass: emboli impair memory,” Journal of Thoracic and Cardiovascular Surgery, vol. 121, no. 6, pp. 1150–1160, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. D. Lee, S. J. Lee, W. T. Tsushima et al., “Benefits of off-pump bypass on neurologic and clinical morbidity: a prospective randomized trial,” Annals of Thoracic Surgery, vol. 76, no. 1, pp. 18–26, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. L. A. Bokeriia, E. Z. Golukhova, N. Y. Breskina et al., “Asymmetric cerebral embolic load and postoperative cognitive dysfunction in cardiac surgery,” Cerebrovascular Diseases, vol. 23, no. 1, pp. 50–56, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. Stygall, S. P. Newman, G. Fitzgerald et al., “Cognitive Change 5 Years after Coronary Artery Bypass Surgery,” Health Psychology, vol. 22, no. 6, pp. 579–586, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. R. E. Clark, J. Brillman, D. A. Davis, M. R. Lovell, T. R. P. Price, and G. J. Magovern, “Microemboli during coronary artery bypass grafting: genesis and effect on outcome,” Journal of Thoracic and Cardiovascular Surgery, vol. 109, no. 2, pp. 249–258, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Abu-Omar, L. Balacumaraswami, D. W. Pigott, P. M. Matthews, and D. P. Taggart, “Solid and gaseous cerebral microembolization during off-pump, on-pump, and open cardiac surgery procedures,” Journal of Thoracic and Cardiovascular Surgery, vol. 127, no. 6, pp. 1759–1765, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. S. K. Brækken, I. Reinvang, D. Russell, R. Brucher, and J. L. Svennevig, “Association between intraoperative cerebral microembolic signals and postoperative neuropsychological deficit: comparison between patients with cardiac valve replacement and patients with coronary artery bypass grafting,” Journal of Neurology Neurosurgery and Psychiatry, vol. 65, no. 4, pp. 573–576, 1998. View at Scopus
  25. M. J. Neville, J. Butterworth, R. L. James, J. W. Hammon, and D. A. Stump, “Similar neurobehavioral outcome after valve or coronary artery operations despite differing carotid embolic counts,” Journal of Thoracic and Cardiovascular Surgery, vol. 121, no. 1, pp. 125–136, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. J. Bucerius, J. F. Gummert, M. A. Borger et al., “Predictors of delirium after cardiac surgery delirium: effect of beating-heart (off-pump) surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 127, no. 1, pp. 57–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Porjesz, L. Almasy, H. J. Edenberg et al., “Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 6, pp. 3729–3733, 2002. View at Publisher · View at Google Scholar · View at PubMed
  28. E. Başar, C. Başar-Eroglu, S. Karakaş, and M. Schürmann, “Gamma, alpha, delta, and theta oscillations govern cognitive processes,” International Journal of Psychophysiology, vol. 39, no. 2-3, pp. 241–248, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. J. L. Cantero, M. Atienza, and R. M. Salas, “Human alpha oscillations in wakefulness, drowsiness period, and REM sleep: different electroencephalographic phenomena within the alpha band,” Neurophysiologie Clinique, vol. 32, no. 1, pp. 54–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Harmony, T. Fernández, J. Silva et al., “EEG delta activity: an indicator of attention to internal processing during performance of mental tasks,” International Journal of Psychophysiology, vol. 24, no. 1-2, pp. 161–171, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. R. W. Thatcher, D. North, and C. Biver, “EEG and intelligence: relations between EEG coherence, EEG phase delay and power,” Clinical Neurophysiology, vol. 116, no. 9, pp. 2129–2141, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. E. Marosi, H. Rodrìguez, T. Harmony et al., “Broad band spectral EEG parameters correlated with different IQ measurements,” International Journal of Neuroscience, vol. 97, no. 1-2, pp. 17–27, 1999. View at Scopus
  33. A. G. Polunina and D. M. Davydov, “EEG correlates of Wechsler Adult Intelligence Scale,” International Journal of Neuroscience, vol. 116, no. 10, pp. 1231–1248, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. H. Laufs, K. Krakow, P. Sterzer et al., “Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11053–11058, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. L. L. Beason-Held, M. A. Kraut, and S. M. Resnick, “Stability of default-mode network activity in the aging brain,” Brain Imaging and Behavior, vol. 3, no. 2, pp. 123–131, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Sadaghiani, R. Scheeringa, K. Lehongre, B. Morillon, A. L. Giraud, and A. Kleinschmidt, “Intrinsic connectivity networks, alpha oscillations, and tonic alertness: a simultaneous electroencephalography/functional magnetic resonance imaging study,” Journal of Neuroscience, vol. 30, no. 30, pp. 10243–10250, 2010. View at Publisher · View at Google Scholar · View at PubMed
  37. G. Florence, J. M. Guerit, and B. Gueguen, “Electroencephalography (EEG) and somatosensory evoked potentials (SEP) to prevent cerebral ischaemia in the operating room,” Neurophysiologie Clinique, vol. 34, no. 1, pp. 17–32, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. L. D. Gugino, L. S. Aglio, and A. Yli-Hankala, “Monitoring the electroencephalogram during bypass procedures,” Seminars in Cardiothoracic and Vascular Anesthesia, vol. 8, no. 2, pp. 61–83, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. L. D. Gugino, R. J. Chabot, L. S. Aglio, S. Aranki, R. Dekkers, and R. Maddi, “QEEG changes during cardiopulmonary bypass: relationship to postoperative neuropsychological function,” Clinical EEG Electroencephalography, vol. 30, no. 2, pp. 53–63, 1999. View at Scopus
  40. I. Toner, K. M. Taylor, S. Newman, and P. L. C. Smith, “Cerebral functional deficit in cardiac surgical patients investigated with P300 and neuropsychological tests,” in Functional Neuroscience, C. Barber, Ed., Suppement 46, pp. 243–251, Elsevier, Amsterdam, The Netherlands, 1996.
  41. J. Kilo, M. Czerny, M. Gorlitzer et al., “Cardiopulmonary bypass affects cognitive brain function after coronary artery bypass grafting,” Annals of Thoracic Surgery, vol. 72, no. 6, pp. 1926–1932, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Zimpfer, M. Czerny, J. Kilo et al., “Cognitive deficit after aortic valve replacement,” Annals of Thoracic Surgery, vol. 74, no. 2, pp. 407–412, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Grimm, D. Zimpfer, M. Czerny et al., “Neurocognitive deficit following mitral valve surgery,” European Journal of Cardio-thoracic Surgery, vol. 23, no. 3, pp. 265–271, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Zeitlhofer, B. Saletu, P. Anderer, et al., “Topographic brain mapping of EEG before and after open-heart surgery,” Neuropsychobiology, vol. 20, no. 1, pp. 51–56, 1988.
  45. E. Hauser, R. Seidl, D. Rohrbach, I. Hartl, M. Marx, and M. Wimmer, “Quantitative EEG before and after open heart surgery in children. A significant decrease in the beta and alpha bands postoperatively,” Electroencephalography and Clinical Neurophysiology, vol. 87, no. 5, pp. 284–290, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Toner, K. M. Taylor, S. Newman, and P. L. C. Smith, “Cerebral functional changes following cardiac surgery: neuropsychological and EEG assessment,” European Journal of Cardio-thoracic Surgery, vol. 13, no. 1, pp. 13–20, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Vanninen, M. Äikiä, M. Könönen et al., “Subclinical cerebral complications after coronary artery bypass grafting: prospective analysis with magnetic resonance imaging, quantitative electroencephalography, and neuropsychological assessment,” Archives of Neurology, vol. 55, no. 5, pp. 618–627, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Polich and A. Kok, “Cognitive and biological determinants of P300: an integrative review,” Biological Psychology, vol. 41, no. 2, pp. 103–146, 1995. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Ranganath and G. Rainer, “Neural mechanisms for detecting and remembering novel events,” Nature Reviews Neuroscience, vol. 4, no. 3, pp. 193–202, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. M. Corsi-Cabrera, L. Galindo-Vilchis, Y. del-Río-Portilla, C. Arce, and J. Ramos-Loyo, “Within-subject reliability and inter-session stability of EEG power and coherent activity in women evaluated monthly over nine months,” Clinical Neurophysiology, vol. 118, no. 1, pp. 9–21, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. E. Angelakis, J. F. Lubar, S. Stathopoulou, and J. Kounios, “Peak alpha frequency: an electroencephalographic measure of cognitive preparedness,” Clinical Neurophysiology, vol. 115, no. 4, pp. 887–897, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. A. G. Polunina, N. P. Lefterova, and A. V. Begachev, “Changes of spectral EEG parameters in normals at two week follow-up,” Zh Nevrol Psyikhiatr Im SS Korsakova, vol. 111, no. 2, pp. 64–71, 2011.
  53. H. Petsche, S. Kaplan, A. Von Stein, and O. Filz, “The possible meaning of the upper and lower alpha frequency ranges for cognitive and creative tasks,” International Journal of Psychophysiology, vol. 26, no. 1–3, pp. 77–97, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Research Reviews, vol. 29, no. 2-3, pp. 169–195, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. N. P. Lefterova and A. V. Begachev, “Size of left cardiac chambers correlates with cerebral microembolic load in open heart operations,” Cardiology Research and Practice, vol. 2010, Article ID 143679, 2010.
  56. L. D. Gugino, R. J. Chabot, L. S. Prichep, E. R. John, V. Formanek, and L. S. Aglio, “Quantitative EEG changes associated with loss and return of consciousness in healthy adult volunteers anaesthetized with propofol or sevoflurane,” British Journal of Anaesthesia, vol. 87, no. 3, pp. 421–428, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. G. B. Kaplan, D. J. Greenblatt, B. L. Ehrenberg, J. E. Goddard, J. S. Harmatz, and R. I. Shader, “Differences in pharmacodynamics but not pharmacokinetics between subjects with panic disorder and healthy subjects after treatment with a single dose of alprazolam,” Journal of Clinical Psychopharmacology, vol. 20, no. 3, pp. 338–346, 2000. View at Publisher · View at Google Scholar
  58. L. M. Lucchesi, S. Pompéia, G. M. Manzano et al., “Flunitrazepam-induced changes in neurophysiological, behavioural, and subjective measures used to assess sedation,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 27, no. 3, pp. 525–533, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. A. G. Polunina and D. M. Davydov, “EEG spectral power and mean frequencies in early heroin abstinence,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 1, pp. 73–82, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. T. Fernández, T. Harmony, M. Rodríguez, A. Reyes, E. Marosi, and J. Bernal, “Test-retest reliability of EEG spectral parameters during cognitive tasks: I. Absolute and relative power,” International Journal of Neuroscience, vol. 68, no. 3-4, pp. 255–261, 1993. View at Scopus
  61. I. Kondakor, D. Brandeis, J. Wackermann et al., “Multichannel EEG fields during and without visual input: frequency domain model source locations and dimensional complexities,” Neuroscience Letters, vol. 226, no. 1, pp. 49–52, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Schürmann and E. Başar, “Functional aspects of alpha oscillations in the EEG,” International Journal of Psychophysiology, vol. 39, no. 2-3, pp. 151–158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. Z. Wu and D. Yao, “The influence of cognitive tasks on different frequencies steady-state visual evoked potentials,” Brain Topography, vol. 20, no. 2, pp. 97–104, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. V. Kolev, J. Yordanova, M. Schürmann, and E. Başar, “Increased frontal phase-locking of event-related alpha oscillations during task processing,” International Journal of Psychophysiology, vol. 39, no. 2-3, pp. 159–165, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. W. R. Gruber, W. Klimesch, P. Sauseng, and M. Doppelmayr, “Alpha phase synchronization predicts P1 end N1 latency and amplitude size,” Cerebral Cortex, vol. 15, no. 4, pp. 371–377, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. I. V. Maltseva and Y. P. Masloboev, “Alpha rhythm parameters and short-term memory span,” International Journal of Psychophysiology, vol. 26, no. 1–3, pp. 369–380, 1997. View at Publisher · View at Google Scholar
  67. C. R. Clark, M. D. Veltmeyer, R. J. Hamilton et al., “Spontaneous alpha peak frequency predicts working memory performance across the age span,” International Journal of Psychophysiology, vol. 53, no. 1, pp. 1–9, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. H. Laufs, K. Krakow, P. Sterzer et al., “Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11053–11058, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. G. S. Weinstein, “Left hemispheric strokes in coronary surgery: implications for end-hole aortic cannulas,” Annals of Thoracic Surgery, vol. 71, no. 1, pp. 128–132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Barbut, D. Grassineau, E. Lis, L. Heier, G. S. Hartman, and O. W. Isom, “Posterior distribution of infarcts in strokes related to cardiac operations,” Annals of Thoracic Surgery, vol. 65, no. 6, pp. 1656–1659, 1998. View at Scopus
  71. R. R. Leker, A. Pollak, O. Abramsky, and T. Ben-Hur, “Abundance of left hemispheric embolic strokes complicating coronary angiography and PTCA,” Journal of Neurology Neurosurgery and Psychiatry, vol. 66, no. 1, pp. 116–117, 1999. View at Scopus
  72. L. S. Rasmussen, B. Sperling, H. H. Abildstrøm, and J. T. Moller, “Neuron loss after coronary artery bypass detected by SPECT estimation of benzodiazepine receptors,” Annals of Thoracic Surgery, vol. 74, no. 5, pp. 1576–1580, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Research Reviews, vol. 29, no. 2-3, pp. 169–195, 1999. View at Publisher · View at Google Scholar · View at Scopus
  74. J. A. González-Hernández, C. Pita-Alcorta, I. Cedeño et al., “Wisconsin card sorting test synchronizes the prefrontal, temporal and posterior association cortex in different frequency ranges and extensions,” Human Brain Mapping, vol. 17, no. 1, pp. 37–47, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. I. J. Kirk and J. C. Mackay, “The role of theta-range oscillations in synchronising and integrating activity in distributed mnemonic networks,” Cortex, vol. 39, no. 4-5, pp. 993–1008, 2003. View at Scopus
  76. B. Voytek, R. T. Canolty, A. Shestyuk, N. E. Crone, J. Parvizi, and R. T. Knight, “Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks,” Frontiers in Human Neuroscience, vol. 4, article 191, 2010. View at Publisher · View at Google Scholar · View at PubMed
  77. A. Fernández-Bouzas, T. Harmony, J. Bosch et al., “Sources of abnormal EEG activity in the presence of brain lesions,” Clinical EEG Electroencephalography, vol. 30, no. 2, pp. 46–52, 1999. View at Scopus