About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2012 (2012), Article ID 187965, 9 pages
http://dx.doi.org/10.1155/2012/187965
Review Article

Seven Capital Devices for the Future of Stroke Rehabilitation

1Clinical Laboratory of Experimental Neurorehabilitation, Santa Lucia Foundation I.R.C.C.S., Via Ardeatina 306, 00179 Rome, Italy
2Operative Unit F, Santa Lucia Foundation I.R.C.C.S., Via Ardeatina 306, 00179 Rome, Italy

Received 26 September 2012; Accepted 12 November 2012

Academic Editor: Stefan Hesse

Copyright © 2012 M. Iosa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Paolucci, M. Bragoni, P. Coiro et al., “Quantification of the probability of reaching mobility independence at discharge from a rehabilitation hospital in nonwalking early ischemic stroke patients: a multivariate study,” Cerebrovascular Diseases, vol. 26, no. 1, pp. 16–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Heller, D. T. Wade, and V. A. Wood, “Arm function after stroke: measurement and recovery over the first three months,” Journal of Neurology Neurosurgery and Psychiatry, vol. 50, no. 6, pp. 714–719, 1987. View at Scopus
  3. D. T. Wade, R. Langton Hewer, and V. A. Wood, “The hemiplegic arm after stroke: measurement and recovery,” Journal of Neurology Neurosurgery and Psychiatry, vol. 46, no. 6, pp. 521–524, 1983. View at Scopus
  4. J. Carr and R. Shepherd, Neurological Rehabilitation: Optimizing Motor Performance, Butterworth-Heinemann, 1998.
  5. J. M. Belda-Lois, S. Mena-Del Horno, I. Bermejo-Bosch, J. C. Moreno, J. L. Pons, D. Farina, et al., “Rehabilitation of gait after stroke: a review towards a top-down approach,” Journal of NeuroEngineering and Rehabilitation, vol. 13, pp. 8–66, 2011.
  6. A. Karni, G. Meyer, C. Rey-Hipolito et al., “The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 3, pp. 861–868, 1998. View at Scopus
  7. J. W. Krakauer, “Motor learning: its relevance to stroke recovery and neurorehabilitation,” Current Opinion in Neurology, vol. 19, no. 1, pp. 84–90, 2006. View at Scopus
  8. M. C. Cirstea and M. F. Levin, “Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors,” Neurorehabilitation and Neural Repair, vol. 21, no. 5, pp. 398–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Xie, Fundamental of Robotics: Linking Perception to Action, World Scientific, Singapore, 2003.
  10. P. Lin, K. Abeny, and G. A. Bekey, Robot Ethics: The Ethical and Social Implications of Robotics, The MIT Press, Cambridge, Mass, USA, 2012.
  11. P. Langhorne, J. Bernhardt, and G. Kwakkel, “Stroke rehabilitation,” The Lancet, vol. 377, no. 9778, pp. 1693–1702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. V. S. Huang and J. W. Krakauer, “Robotic neurorehabilitation: a computational motor learning perspective,” Journal of NeuroEngineering and Rehabilitation, vol. 6, no. 1, article 5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Mehrholz, C. Werner, J. Kugler, and M. Pohl, “Electromechanical-assisted training for walking after stroke,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD006185, 2007. View at Scopus
  14. G. Morone, M. Bragoni, M. Iosa, et al., “Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke,” Neurorehabilitation and Neural Repair, vol. 25, pp. 636–644, 2011.
  15. G. Morone, M. Iosa, M. Bragoni, et al., “Who may have durable benefit from robotic gait training?: a 2-year follow-up randomized controlled trial in patients with subacute stroke,” Stroke, vol. 43, no. 4, pp. 1140–1142, 2012.
  16. A. Clark, Being There: Putting Brain, Body, and World Together Again, MIT Press, Cambridge, Mass, USA, 1998.
  17. M. Iosa, G. Morone, M. Bragoni et al., “Driving electromechanically assisted gait trainer for people with stroke,” Journal of Rehabilitation Research and Development, vol. 48, no. 2, pp. 135–146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Graimann, G. Pfurtsheller, and B. Allison, Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction, Springer, Dordrecht, The Netherlands, 2010.
  19. S. M. Coyle, T. E. Ward, and C. M. Markham, “Brain-computer interface using a simplified functional near-infrared spectroscopy system,” Journal of Neural Engineering, vol. 4, no. 3, pp. 219–226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Buch, C. Weber, L. G. Cohen et al., “Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke,” Stroke, vol. 39, no. 3, pp. 910–917, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Fuchino, M. Nagao, T. Katura et al., “High cognitive function of an ALS patient in the totally locked-in state,” Neuroscience Letters, vol. 435, no. 2, pp. 85–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Pfurtscheller, G. R. Müller-Putz, R. Scherer, and C. Neuper, “Rehabilitation with brain-computer interface systems,” Computer, vol. 41, no. 10, pp. 58–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Enzinger, S. Ropele, F. Fazekas et al., “Brain motor system function in a patient with complete spinal cord injury following extensive brain-computer interface training,” Experimental Brain Research, vol. 190, no. 2, pp. 215–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. J. Matarić, J. Eriksson, D. J. Feil-Seifer, and C. J. Winstein, “Socially assistive robotics for post-stroke rehabilitation,” Journal of NeuroEngineering and Rehabilitation, vol. 4, article 5, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Paolucci, A. Di Vita, R. Massicci, et al., “Impact of participation on rehabilitation results: a multivariate study,” European Journal of Physical and Rehabilitation Medicine, vol. 48, no. 3, pp. 455–466, 2012.
  26. V. Kaiser, I. Daly, F. Pichiorri, D. Mattia, G. R. Müller-Putz, and C. Neuper, “Relationship between electrical brain responses to motor imagery and motor impairment in stroke,” Stroke, vol. 43, no. 10, pp. 2735–2740, 2012.
  27. K. K. Ang, C. Guan, K. S. Chua, et al., “A large clinical study on the ability of stroke patients to use an EEG-based motor imagery brain-computer interface,” Clinical EEG & Neuroscience, vol. 42, no. 4, pp. 253–258, 2011.
  28. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” Journal of Physiology, vol. 527, no. 3, pp. 633–639, 2000. View at Scopus
  29. E. M. Wassermann and S. H. Lisanby, “Therapeutic application of repetitive transcranial magnetic stimulation: a review,” Clinical Neurophysiology, vol. 112, no. 8, pp. 1367–1377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. D. P. Purpura and J. G. Mcmurtry, “Intracellular activities and evoked potential changes during,” Journal of Neurophysiology, vol. 28, pp. 166–185, 1965. View at Scopus
  31. T. Wagner, F. Fregni, S. Fecteau, A. Grodzinsky, M. Zahn, and A. Pascual-Leone, “Transcranial direct current stimulation: a computer-based human model study,” NeuroImage, vol. 35, no. 3, pp. 1113–1124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. P. Arul-Anandam, C. Loo, and P. Sachdev, “Transcranial direct current stimulation—what is the evidence for its efficacy and safety?” F1000 Medicine Reports, vol. 1, article 58, 2009.
  33. M. A. Nitsche and W. Paulus, “Transcranial direct current stimulation—update 2011,” Restorative Neurology and Neuroscience, vol. 29, no. 6, pp. 463–492, 2011.
  34. J. Reis, H. M. Schambra, L. G. Cohen et al., “Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 5, pp. 1590–1595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. Nitsche, A. Schauenburg, N. Lang et al., “Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human,” Journal of Cognitive Neuroscience, vol. 15, no. 4, pp. 619–626, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. F. C. Hummel and L. G. Cohen, “Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?” The Lancet Neurology, vol. 5, no. 8, pp. 708–712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. Nitsche, L. G. Cohen, E. M. Wassermann et al., “Transcranial direct current stimulation: state of the art 2008,” Brain Stimulation, vol. 1, no. 3, pp. 206–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. W. Yook, S. H. Park, J. H. Seo, S. J. Kim, and M. H. Ko, “Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient—a case report,” Annals of Rehabilitation Medicine, vol. 35, no. 4, pp. 579–582, 2011.
  39. M. B. Iyer, U. Mattu, J. Grafman, M. Lomarev, S. Sato, and E. M. Wassermann, “Safety and cognitive effect of frontal DC brain polarization in healthy individuals,” Neurology, vol. 64, no. 5, pp. 872–875, 2005. View at Scopus
  40. F. Hummel and L. G. Cohen, “Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke,” Neurorehabilitation and Neural Repair, vol. 19, no. 1, pp. 14–19, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Hesse, A. Waldner, J. Mehrholz, C. Tomelleri, M. Pohl, and C. Werner, “Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 838–846, 2011.
  42. C. Rossi, F. Sallustio, S. Di Legge, P. Stanzione, and G. Koch, “Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients,” European Journal of Neurology. In press. View at Publisher · View at Google Scholar
  43. A. Pascual-Leone, J. Valls-Sole, E. M. Wassermann, and M. Hallett, “Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex,” Brain, vol. 117, no. 4, pp. 847–858, 1994. View at Scopus
  44. A. Hiscock, S. Miller, J. Rothwell, R. C. Tallis, and V. M. Pomeroy, “Informing dose-finding studies of repetitive transcranial magnetic stimulation to enhance motor function: a qualitative systematic review,” Neurorehabilitation and Neural Repair, vol. 22, no. 3, pp. 228–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. M. A. Naeser, P. I. Martin, E. Treglia et al., “Research with rTMS in the treatment of aphasia,” Restorative Neurology and Neuroscience, vol. 28, no. 4, pp. 511–529, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. C. G. Mansur, F. Fregni, P. S. Boggio et al., “A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients,” Neurology, vol. 64, no. 10, pp. 1802–1804, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. D. G. Everaert, A. K. Thompson, Su Ling Chong, and R. B. Stein, “Does functional electrical stimulation for foot drop strengthen corticospinal connections?” Neurorehabilitation and Neural Repair, vol. 24, no. 2, pp. 168–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. D. J. Weber, R. B. Stein, K. M. Chan, et al., “BIONic WalkAide for correcting foot drop,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 6, pp. 4189–4192, 2004.
  49. J. M. Hausdorff and H. Ring, “The effect of the L300 neuroprosthesis on gait stability and symmetry,” Journal of Neurologic Physical Therapy, vol. 30, no. 4, article 198, 2006.
  50. R. B. Stein, S. Chong, D. G. Everaert et al., “A multicenter trial of a footdrop stimulator controlled by a tilt sensor,” Neurorehabilitation and Neural Repair, vol. 20, no. 3, pp. 371–379, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. S. K. Sabut, C. Sikdar, R. Kumar, and M. Mahadevappa, “Improvement of gait and muscle strength with functional electrical stimulation in sub-acute & chronic stroke patients,” in Proceedings of the IEEE Engineering in Medicine and Biology Society, vol. 2011, pp. 2085–2088, 2011.
  52. S. K. Sabut, C. Sikdar, R. Kumar, and M. Mahadevappa, “Functional electrical stimulation of dorsiflexor muscle: effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients,” NeuroRehabilitation, vol. 29, no. 4, pp. 393–400, 2011.
  53. G. Morone, A. Fusco, P. Di Capua, et al., “Walking training with foot drop stimulator controlled by a Tilt Sensor to improve walking outcomes: a randomized controlled pilot study in patients with stroke in subacute phase,” Stroke Research and Treatment. In press.
  54. R. van Swigchem, H. J. van Duijnhoven, J. den Boer, A. C. Geurts, and V. Weerdesteyn, “Effect of peroneal electrical stimulation versus an ankle-foot orthosis on obstacle avoidance ability in people with stroke-related foot drop,” Physical Therapy, vol. 92, no. 3, pp. 398–406, 2012.
  55. C. Bulley, J. Shiels, K. Wilkie, and L. Salisbury, “User experiences, preferences and choices relating to functional electrical stimulation and ankle foot orthoses for foot-drop after stroke,” Physiotherapy, vol. 97, no. 3, pp. 226–233, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. G. C. Burdea and P. Coiffet, Virtual Reality Technology, John Wiley & Sons, Hoboken, NJ, USA, 2nd edition, 2003.
  57. M. K. Holden, “Virtual environments for motor rehabilitation: review,” Cyberpsychology and Behavior, vol. 8, no. 3, pp. 187–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. F. D. Rose, B. M. Brooks, and A. A. Rizzo, “Virtual reality in brain damage rehabilitation: review,” Cyberpsychology and Behavior, vol. 8, no. 3, pp. 241–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. D. Holden and T. Dyar, “Virtual environment training: a new tool for neurorehabilitation,” Neurology Report, vol. 26, pp. 62–71, 2002.
  60. L. Piron, T. Paolo, F. Piccione, V. Laia, E. Trivello, and M. Dam, “Virtual environment training therapy for arm motor rehabilitation,” Presence, vol. 14, pp. 732–740, 2005.
  61. J. Broeren, M. Rydmark, A. Björkdahl, and K. S. Sunnerhagen, “Assessment and training in a 3-dimensional virtual environment with haptics: a report on 5 cases of motor rehabilitation in the chronic stage after stroke,” Neurorehabilitation and Neural Repair, vol. 21, no. 2, pp. 180–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. A. S. Merians, H. Poizner, R. Boian, G. Burdea, and S. Adamovich, “Sensorimotor training in a virtual reality environment: does it improve functional recovery poststroke?” Neurorehabilitation and Neural Repair, vol. 20, no. 2, pp. 252–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Jack, R. Boian, A. S. Merians et al., “Virtual reality-enhanced stroke rehabilitation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 9, no. 3, pp. 308–318, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Gaggioli, F. Morganti, R. Walker et al., “Training with computer-supported motor imagery in post-stroke rehabilitation,” Cyberpsychology and Behavior, vol. 7, no. 3, pp. 327–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. H. J. Sung, S. H. You, M. Hallett et al., “Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 11, pp. 2218–2223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. K. E. Laver, S. George, S. Thomas, J. E. Deutsch, and M. Crotty, “Virtual reality for stroke rehabilitation,” Cochrane Database of Systematic Reviews, vol. 7, no. 9, Article ID CD008349, 2011.
  67. B. Lange, C. Y. Chang, E. Suma, B. Newman, A. S. Rizzo, and M. Bolas, “Development and evaluation of low cost game-based balance rehabilitation tool using the Microsoft Kinect sensor,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2011, pp. 1831–1834, 2011.
  68. G. Saposnik, R. Teasell, M. Mamdani et al., “Effectiveness of virtual reality using wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle,” Stroke, vol. 41, no. 7, pp. 1477–1484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Perry, Gait Analysis: Normal and Pathological Function, Slack Incorporated, 1992.
  70. S. Ghoussayni, C. Stevens, S. Durham, and D. Ewins, “Assessment and validation of a simple automated method for the detection of gait events and intervals,” Gait and Posture, vol. 20, no. 3, pp. 266–272, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Iosa, C. Mazzà, R. Frusciante et al., “Mobility assessment of patients with facioscapulohumeral dystrophy,” Clinical Biomechanics, vol. 22, no. 10, pp. 1074–1082, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. D. M. Gavrila and L. S. Davis, “3-D model-based tracking of humans in action: a multi-view approach,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 73–80, San Francisco, Calif, USA, June 1996. View at Scopus
  73. A. Cappozzo, U. Della Croce, A. Leardini, and L. Chiari, “Human movement analysis using stereophotogrammetry. Part 1: theoretical background,” Gait and Posture, vol. 21, no. 2, pp. 186–196, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Chiari, U. Della Croce, A. Leardini, and A. Cappozzo, “Human movement analysis using stereophotogrammetry. Part 2: instrumental errors,” Gait and Posture, vol. 21, no. 2, pp. 197–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. C. M. Kim and J. J. Eng, “Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed,” Gait and Posture, vol. 20, no. 2, pp. 140–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. J. J. Kavanagh and H. B. Menz, “Accelerometry: a technique for quantifying movement patterns during walking,” Gait and Posture, vol. 28, no. 1, pp. 1–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Iosa, A. Fusco, G. Morone, et al., “Assessment of upper-body dynamic stability during walking in patients with subacute stroke,” Journal of Rehabilitation Research and Development, vol. 49, no. 3, pp. 439–450, 2012.
  78. H. H. C. M. Savelberg and A. L. H. D. Lange, “Assessment of the horizontal, fore-aft component of the ground reaction force from insole pressure patterns by using artificial neural networks,” Clinical Biomechanics, vol. 14, no. 8, pp. 585–592, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Forner Cordero, H. J. F. M. Koopman, and F. C. T. van der Helm, “Use of pressure insoles to calculate the complete ground reaction forces,” Journal of Biomechanics, vol. 37, no. 9, pp. 1427–1432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. S. K. Ng and H. J. Chizeck, “Fuzzy model identification for classification of gait events in paraplegics,” IEEE Transactions on Fuzzy Systems, vol. 5, no. 4, pp. 536–544, 1997. View at Scopus
  81. H. J. Luinge and P. H. Veltink, “Inclination measurement of human movement using a 3-D accelerometer with autocalibration,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, no. 1, pp. 112–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. W. Tao, T. Liu, R. Zheng, and H. Feng, “Gait analysis using wearable sensors,” Sensors, vol. 12, no. 2, pp. 2255–2283, 2012.
  83. D. A. Winter, “Human balance and posture control during standing and walking,” Gait and Posture, vol. 3, no. 4, pp. 193–214, 1995. View at Scopus
  84. J. J. Kavanagh, R. S. Barrett, and S. Morrison, “Upper body accelerations during walking in healthy young and elderly men,” Gait and Posture, vol. 20, no. 3, pp. 291–298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Mazzà, M. Iosa, F. Pecoraro, and A. Cappozzo, “Control of the upper body accelerations in young and elderly women during level walking,” Journal of NeuroEngineering and Rehabilitation, vol. 5, article 30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. D. S. Marigold and A. E. Patla, “Age-related changes in gait for multi-surface terrain,” Gait and Posture, vol. 27, no. 4, pp. 689–696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Mazzà, M. Iosa, P. Picerno, and A. Cappozzo, “Gender differences in the control of the upper body accelerations during level walking,” Gait and Posture, vol. 29, no. 2, pp. 300–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Mazzà, M. Zok, and A. Cappozzo, “Head stabilization in children of both genders during level walking,” Gait and Posture, vol. 31, no. 4, pp. 429–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Mizuike, S. Ohgi, and S. Morita, “Analysis of stroke patient walking dynamics using a tri-axial accelerometer,” Gait and Posture, vol. 30, no. 1, pp. 60–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Iosa, T. Marro, S. Paolucci, and D. Morelli, “Stability and harmony of gait in children with cerebral palsy,” Research in Developmental Disabilities, vol. 33, no. 1, pp. 129–135, 2012.
  91. C. J. Lamoth, O. G. Meijer, P. I. Wuisman, J. H. van Dieën, M. F. Levin, and P. J. Beek, “Pelvis-thorax coordination in the transverse plane during walking in persons with nonspecific low back pain,” Spine, vol. 27, no. 4, pp. E92–E99, 2002. View at Scopus
  92. C. J. Lamoth, F. J. van Deudekom, J. P. van Campen, B. A. Appels, O. J. de Vries, and M. Pijnappels, “Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people,” Journal of NeuroEngineering and Rehabilitation, vol. 8, no. 1, article 2, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Paradiso, G. Loriga, and N. Taccini, “Wearable system for vital signs monitoring,” Studies in Health Technology and Informatics, vol. 108, pp. 253–259, 2004. View at Scopus
  94. E. Rocon, J. M. Belda-Lois, A. F. Ruiz, M. Manto, J. C. Moreno, and J. L. Pons, “Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 15, no. 3, pp. 367–378, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Esquenazi, M. Talaty, A. Packel, and M. Saulino, “The reWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury,” American Journal of Physical Medicine & Rehabilitation, vol. 91, no. 11, pp. 911–921, 2012.
  96. S. H. Kim, S. K. Banala, E. A. Brackbill, S. K. Agrawal, V. Krishnamoorthy, and J. P. Scholz, “Robot-assisted modifications of gait in healthy individuals,” Experimental Brain Research, vol. 202, no. 4, pp. 809–824, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Marceglia, S. Bonacina, V. Zaccaria, C. Pagliari, and F. Pinciroli, “How might the iPad change healthcare?” Journal of the Royal Society of Medicine, vol. 105, no. 6, pp. 233–241, 2012.
  98. M. Flores, K. Musgrove, S. Renner, et al., “A comparison of communication using the Apple iPad and a picture-based system,” Augmentative and Alternative Communication, vol. 28, no. 2, pp. 74–84, 2012.
  99. D. Haubenberger, D. Kalowitz, F. B. Nahab et al., “Validation of digital spiral analysis as outcome parameter for clinical trials in essential tremor,” Movement Disorders, vol. 26, no. 11, pp. 2073–2080, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Hesse, C. Werner, E. M. Schonhardt, A. Bardeleben, W. Jenrich, and S. G. B. Kirker, “Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study,” Restorative Neurology and Neuroscience, vol. 25, no. 1, pp. 9–15, 2007. View at Scopus
  101. D. J. Edwards, H. I. Krebs, A. Rykman et al., “Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke,” Restorative Neurology and Neuroscience, vol. 27, no. 3, pp. 199–207, 2009. View at Publisher · View at Google Scholar · View at Scopus