About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2012 (2012), Article ID 584727, 10 pages
http://dx.doi.org/10.1155/2012/584727
Review Article

Noninvasive Brain Stimulation for Motor Recovery after Stroke: Mechanisms and Future Views

Department of Physical Medicine and Rehabilitation, Tohoku University School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan

Received 20 July 2012; Accepted 29 August 2012

Academic Editor: Claudia Altamura

Copyright © 2012 Naoyuki Takeuchi and Shin-Ichi Izumi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Kolominsky-Rabas, M. Weber, O. Gefeller, B. Neundoerfer, and P. U. Heuschmann, “Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study,” Stroke, vol. 32, no. 12, pp. 2735–2740, 2001. View at Scopus
  2. G. Kwakkel, B. J. Kollen, and R. C. Wagenaar, “Long term effects of intensity of upper and lower limb training after stroke: a randomised trial,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 4, pp. 473–479, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. G. J. Hankey, K. Jamrozik, R. J. Broadhurst, S. Forbes, and C. S. Anderson, “Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989-1990,” Stroke, vol. 33, no. 4, pp. 1034–1040, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. B. B. Johansson, “Current trends in stroke rehabilitation. A review with focus on brain plasticity,” Acta Neurologica Scandinavica, vol. 123, no. 3, pp. 147–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Langhorne, J. Bernhardt, and G. Kwakkel, “Stroke rehabilitation,” The Lancet, vol. 377, no. 9778, pp. 1693–1702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. A. P. Reiss, S. L. Wolf, E. A. Hammel, E. L. McLeod, and E. A. Williams, “Constraint-induced movement therapy (CIMT): current perspectives and future directions,” Stroke Research and Treatment, vol. 2012, Article ID 159391, 8 pages, 2012.
  7. J. A. Hosp and A. R. Luft, “Cortical plasticity during motor learning and recovery after ischemic stroke,” Neural Plasticity, vol. 2011, Article ID 871296, 9 pages, 2011.
  8. E. Dayan and L. G. Cohen, “Neuroplasticity subserving motor skill learning,” Neuron, vol. 72, no. 3, pp. 443–454, 2011. View at Publisher · View at Google Scholar
  9. M. A. Maldonado, R. P. Allred, E. L. Felthauser, and T. A. Jones, “Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats,” Neurorehabilitation and Neural Repair, vol. 22, no. 3, pp. 250–261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Chen, J. Epstein, and E. Stern, “Neural plasticity after acquired brain injury: evidence from functional neuroimaging,” PM & R, vol. 2, no. 12, pp. S306–S312, 2010. View at Scopus
  11. N. Dancause and R. J. Nudo, “Shaping plasticity to enhance recovery after injury,” Progress in Brain Research, vol. 192, pp. 273–295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. P. Lefaucheur, “Methods of therapeutic cortical stimulation,” Neurophysiologie Clinique, vol. 39, no. 1, pp. 1–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Z. Huang, M. J. Edwards, E. Rounis, K. P. Bhatia, and J. C. Rothwell, “Theta burst stimulation of the human motor cortex,” Neuron, vol. 45, no. 2, pp. 201–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Zaghi, M. Acar, B. Hultgren, P. S. Boggio, and F. Fregni, “Noninvasive brain stimulation with low-intensity electrical currents: putative mechanisms of action for direct and alternating current stimulation,” Neuroscientist, vol. 16, no. 3, pp. 285–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” Journal of Physiology, vol. 527, no. 3, pp. 633–639, 2000. View at Scopus
  16. N. Takeuchi and S. -I. Izumi, “Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches,” Neural Plasticity, vol. 2012, Article ID 359728, 9 pages, 2012.
  17. N. Murase, J. Duque, R. Mazzocchio, and L. G. Cohen, “Influence of interhemispheric interactions on motor function in chronic stroke,” Annals of Neurology, vol. 55, no. 3, pp. 400–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Takeuchi, T. Chuma, Y. Matsuo, I. Watanabe, and K. Ikoma, “Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke,” Stroke, vol. 36, no. 12, pp. 2681–2686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. D. A. Nowak, C. Grefkes, M. Ameli, and G. R. Fink, “Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand,” Neurorehabilitation and Neural Repair, vol. 23, no. 7, pp. 641–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Takeuchi, T. Tada, M. Toshima, Y. Matsuo, and K. Ikoma, “Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke,” Journal of Rehabilitation Medicine, vol. 41, no. 13, pp. 1049–1054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Poreisz, K. Boros, A. Antal, and W. Paulus, “Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients,” Brain Research Bulletin, vol. 72, no. 4–6, pp. 208–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Rossi, M. Hallett, P. M. Rossini, and A. Pascual-Leone, “Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research,” Clinical Neurophysiology, vol. 120, no. 12, pp. 2008–2039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Hummel, P. Celnik, P. Giraux et al., “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain, vol. 128, no. 3, pp. 490–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. H. Kim, S. H. You, M. H. Ko et al., “Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke,” Stroke, vol. 37, no. 6, pp. 1471–1476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Takeuchi, T. Tada, M. Toshima, T. Chuma, Y. Matsuo, and K. Ikoma, “Inhibition of the unaffected motor cortex by 1 HZ repetitive transcranial magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke,” Journal of Rehabilitation Medicine, vol. 40, no. 4, pp. 298–303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Di Lazzaro, P. Profice, F. Pilato et al., “Motor cortex plasticity predicts recovery in acute stroke,” Cerebral Cortex, vol. 20, no. 7, pp. 1523–1528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Pascual-Leone, F. Tarazona, J. Keenan, J. M. Tormos, R. Hamilton, and M. D. Catala, “Transcranial magnetic stimulation and neuroplasticity,” Neuropsychologia, vol. 37, no. 2, pp. 207–217, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. W. Muellbacher, U. Zlemann, J. Wissel et al., “Early consolidation in human primary motor cortex,” Nature, vol. 415, no. 6872, pp. 640–644, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Conchou, I. Loubinoux, E. Castel-Lacanal et al., “Neural substrates of low-frequency repetitive transcranial magnetic stimulation during movement in healthy subjects and acute stroke patients. A PET study,” Human Brain Mapping, vol. 30, no. 8, pp. 2542–2557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Ameli, C. Grefkes, F. Kemper et al., “Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke,” Annals of Neurology, vol. 66, no. 3, pp. 298–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. T. Carmichael, “Cellular and molecular mechanisms of neural repair after stroke: making waves,” Annals of Neurology, vol. 59, no. 5, pp. 735–742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Di Filippo, A. Tozzi, C. Costa et al., “Plasticity and repair in the post-ischemic brain,” Neuropharmacology, vol. 55, no. 3, pp. 353–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. E. M. Khedr, M. A. Ahmed, N. Fathy, and J. C. Rothwell, “Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke,” Neurology, vol. 65, no. 3, pp. 466–468, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Fregni, P. S. Boggio, A. C. Valle et al., “A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients,” Stroke, vol. 37, no. 8, pp. 2115–2122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. D. A. Nowak, C. Grefkes, M. Dafotakis et al., “Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke,” Archives of Neurology, vol. 65, no. 6, pp. 741–747, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Grefkes, D. A. Nowak, L. E. Wang, M. Dafotakis, S. B. Eickhoff, and G. R. Fink, “Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling,” NeuroImage, vol. 50, no. 1, pp. 233–242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Takeuchi and K. Ikoma, “1 Hz rTMS over unaffected hemisphere in stroke patients alters bilateral movements and coupling between motor areas,” Clinical Neurophysiology, vol. 121, supplement 1, p. s316, 2010.
  38. N. S. Ward and R. S. J. Frackowiak, “The functional anatomy of cerebral reorganisation after focal brain injury,” Journal of Physiology Paris, vol. 99, no. 4–6, pp. 425–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Talelli, R. J. Greenwood, and J. C. Rothwell, “Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation,” Clinical Neurophysiology, vol. 117, no. 8, pp. 1641–1659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Y. Hsu, C. H. Cheng, K. K. Liao, I. H. Lee, and Y. Y. Lin, “Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis,” Stroke, vol. 43, no. 7, pp. 1849–1857, 2012. View at Publisher · View at Google Scholar
  41. S. Kumar, C. W. Wagner, C. Frayne et al., “Noninvasive brain stimulation may improve stroke-related dysphagia: a pilot study,” Stroke, vol. 42, no. 4, pp. 1035–1040, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Takeuchi, T. Tada, Y. Matsuo, and K. Ikoma, “Low-frequency repetitive TMS plus anodal transcranial DCS prevents transient decline in bimanual movement induced by contralesional inhibitory rTMS after stroke,” Neurorehabilitation and Neural Repair, vol. 26, no. 8, pp. 988–998, 2012.
  43. A. Turton, S. Wroe, N. Trepte, C. Fraser, and R. N. Lemon, “Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke,” Electroencephalography and Clinical Neurophysiology, vol. 101, no. 4, pp. 316–328, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Netz, T. Lammers, and V. Hömberg, “Reorganization of motor output in the non-affected hemisphere after stroke,” Brain, vol. 120, no. 9, pp. 1579–1586, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. K. J. Werhahn, A. B. Conforto, N. Kadom, M. Hallett, and L. G. Cohen, “Contribution of the ipsilateral motor cortex to recovery after chronic stroke,” Annals of Neurology, vol. 54, no. 4, pp. 464–472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Palmer and P. Ashby, “Corticospinal projections to upper limb motoneurones in humans,” Journal of Physiology, vol. 448, pp. 397–412, 1992. View at Scopus
  47. P. Bawa, J. D. Hamm, P. Dhillon, and P. A. Gross, “Bilateral responses of upper limb muscles to transcranial magnetic stimulation in human subjects,” Experimental Brain Research, vol. 158, no. 3, pp. 385–390, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Muellbacher, C. Artner, and B. Mamoli, “The role of the intact hemisphere in recovery of midline muscles after recent monohemispheric stroke,” Journal of Neurology, vol. 246, no. 4, pp. 250–256, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. J. A. Eyre, J. P. Taylor, F. Villagra, M. Smith, and S. Miller, “Evidence of activity-dependent withdrawal of corticospinal projections during human development,” Neurology, vol. 57, no. 9, pp. 1543–1554, 2001. View at Scopus
  50. C. Gerloff, C. Braun, M. Staudt, Y. L. Hegner, J. Dichgans, and I. Krägeloh-Mann, “Coherent corticomuscular oscillations originate from primary motor cortex: evidence from patients with early brain lesions,” Human Brain Mapping, vol. 27, no. 10, pp. 789–798, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Gerloff and F. G. Andres, “Bimanual coordination and interhemispheric interaction,” Acta psychologica, vol. 110, no. 2-3, pp. 161–186, 2002. View at Scopus
  52. A. Stančák, E. R. Cohen, R. D. Seidler, T. Q. Duong, and S. G. Kim, “The size of corpus callosum correlates with functional activation of medial motor cortical areas in bimanual and unimanual movements,” Cerebral Cortex, vol. 13, no. 5, pp. 475–485, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Wagner, F. Fregni, U. Eden et al., “Transcranial magnetic stimulation and stroke: a computer-based human model study,” NeuroImage, vol. 30, no. 3, pp. 857–870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. T. Wagner, A. Valero-Cabre, and A. Pascual-Leone, “Noninvasive human brain stimulation,” Annual Review of Biomedical Engineering, vol. 9, pp. 527–565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. S. -I. Izumi, Y. Oouchida, T. Okita, et al., “Development and utility of an integrating circuit to measure a pulsed magnetic field in comparison with its theoretical magnetic field structure,” Japanese Journal of Comprehensive Rehabilitation. In press.
  56. T. Touge, W. Gerschlager, P. Brown, and J. C. Rothwell, “Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses?” Clinical Neurophysiology, vol. 112, no. 11, pp. 2138–2145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. P. B. Fitzgerald, T. L. Brown, Z. J. Daskalakis, R. Chen, and J. Kulkarni, “Intensity-dependent effects of 1 Hz rTMS on human corticospinal excitability,” Clinical Neurophysiology, vol. 113, no. 7, pp. 1136–1141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Peinemann, B. Reimer, C. Löer et al., “Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex,” Clinical Neurophysiology, vol. 115, no. 7, pp. 1519–1526, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. M. B. Iyer, U. Mattu, J. Grafman, M. Lomarev, S. Sato, and E. M. Wassermann, “Safety and cognitive effect of frontal DC brain polarization in healthy individuals,” Neurology, vol. 64, no. 5, pp. 872–875, 2005. View at Scopus
  60. H. M. Schambra, L. Sawaki, and L. G. Cohen, “Modulation of excitability of human motor cortex (M1) by 1 Hz transcranial magnetic stimulation of the contralateral M1,” Clinical Neurophysiology, vol. 114, no. 1, pp. 130–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. K. J. Werhahn, A. B. Conforto, N. Kadom, M. Hallett, and L. G. Cohen, “Contribution of the ipsilateral motor cortex to recovery after chronic stroke,” Annals of Neurology, vol. 54, no. 4, pp. 464–472, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Kobayashi, S. Hutchinson, H. Théoret, G. Schlaug, and A. Pascual-Leone, “Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements,” Neurology, vol. 62, no. 1, pp. 91–98, 2004. View at Scopus
  63. N. Yozbatiran, M. Alonso-Alonso, J. See et al., “Safety and behavioral effects of high-frequency repetitive transcranial magnetic stimulation in stroke,” Stroke, vol. 40, no. 1, pp. 309–312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Kirton, R. Chen, S. Friefeld, C. Gunraj, A. M. Pontigon, and G. deVeber, “Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: a randomised trial,” The Lancet Neurology, vol. 7, no. 6, pp. 507–513, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. G. H. Moll, H. Heinrich, S. Wischer, F. Tergau, W. Paulus, and A. Rothenberger, “Motor system excitability in healthy children: developmental aspects from transcranial magnetic stimulation,” Electroencephalography and Clinical Neurophysiology, Supplement, vol. 51, pp. 243–249, 1999. View at Scopus
  66. M. C. Ridding and U. Ziemann, “Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects,” Journal of Physiology, vol. 588, no. 13, pp. 2291–2304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Sawaki, Z. Yaseen, L. Kopylev, and L. G. Cohen, “Age-dependent changes in the ability to encode a novel elementary motor memory,” Annals of Neurology, vol. 53, no. 4, pp. 521–524, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Liepert, S. Zittel, and C. Weiller, “Improvement of dexterity by single session low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in acute stroke: a double-blind placebo-controlled crossover trial,” Restorative Neurology and Neuroscience, vol. 25, no. 5-6, pp. 461–465, 2007. View at Scopus
  69. E. M. Khedr, M. R. Abdel-Fadeil, A. Farghali, and M. Qaid, “Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke,” European Journal of Neurology, vol. 16, no. 12, pp. 1323–1330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. E. M. Khedr, A. E. Etraby, M. Hemeda, A. M. Nasef, and A. A. E. Razek, “Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke,” Acta Neurologica Scandinavica, vol. 121, no. 1, pp. 30–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Seniów, M. Bilik, M. Lesniak, K. Waldowski, S. Iwanski, and A. Czlonkowska, “Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study,” Neurorehabilitation Neural and Repair. In press.
  72. A. Pascual-Leone, A. Amedi, F. Fregni, and L. B. Merabet, “The plastic human brain cortex,” Annual Review of Neuroscience, vol. 28, pp. 377–401, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. B. Picconi, A. Tortiglione, I. Barone et al., “NR2B subunit exerts a critical role in postischemic synaptic plasticity,” Stroke, vol. 37, no. 7, pp. 1895–1901, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. F. Fregni, P. S. Boggio, C. G. Mansur et al., “Transcranial direct current stimulation of the unaffected hemisphere in stroke patients,” NeuroReport, vol. 16, no. 14, pp. 1551–1555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Talelli, R. J. Greenwood, and J. C. Rothwell, “Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke,” Clinical Neurophysiology, vol. 118, no. 2, pp. 333–342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. P. S. Boggio, M. Alonso-Alonso, C. G. Mansur et al., “Hand function improvement with low-frequency repetitive transcranial magnetic stimulation of the unaffected hemisphere in a severe case of stroke,” American Journal of Physical Medicine and Rehabilitation, vol. 85, no. 11, pp. 927–930, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Málly and E. Dinya, “Recovery of motor disability and spasticity in post-stroke after repetitive transcranial magnetic stimulation (rTMS),” Brain Research Bulletin, vol. 76, no. 4, pp. 388–395, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. S. I. Izumi, T. Kondo, and K. Shindo, “Transcranial magnetic stimulation synchronized with maximal movement effort of the hemiplegic hand after stroke: a double-blinded controlled pilot study,” Journal of Rehabilitation Medicine, vol. 40, no. 1, pp. 49–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Tanaka, K. Takeda, Y. Otaka et al., “Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke,” Neurorehabilitation and Neural Repair, vol. 25, no. 6, pp. 565–569, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. S. Madhavan, K. A. Weber, and J. W. Stinear, “Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: implications for rehabilitation,” Experimental Brain Research, vol. 209, no. 1, pp. 9–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. G. Jayaram and J. W. Stinear, “The effects of transcranial stimulation on paretic lower limb motor excitability during walking,” Journal of Clinical Neurophysiology, vol. 26, no. 4, pp. 272–279, 2009. View at Scopus
  82. M. Hallett, “Surround inhibition,” Supplements to Clinical Neurophysiology, vol. 56, pp. 153–159, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. D. T. Jeffery, J. A. Norton, F. D. Roy, and M. A. Gorassini, “Effects of transcranial direct current stimulation on the excitability of the leg motor cortex,” Experimental Brain Research, vol. 182, no. 2, pp. 281–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. J. R. Carey, C. D. Evans, D. C. Anderson et al., “Safety of 6-Hz primed low-frequency rTMS in stroke,” Neurorehabilitation and Neural Repair, vol. 22, no. 2, pp. 185–192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Lindenberg, V. Renga, L. L. Zhu, D. Nair, and G. Schlaug, “Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients,” Neurology, vol. 75, no. 24, pp. 2176–2184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. H. Mahmoudi, A. B. Haghighi, P. Petramfar, S. Jahanshahi, Z. Salehi, and F. Fregni, “Transcranial direct current stimulation: electrode montage in stroke,” Disability and Rehabilitation, vol. 33, no. 15-16, pp. 1383–1388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Hesse, C. Werner, E. M. Schonhardt, A. Bardeleben, W. Jenrich, and S. G. B. Kirker, “Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study,” Restorative Neurology and Neuroscience, vol. 25, no. 1, pp. 9–15, 2007. View at Scopus
  88. D. J. Edwards, H. I. Krebs, A. Rykman et al., “Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke,” Restorative Neurology and Neuroscience, vol. 27, no. 3, pp. 199–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Celnik, N. J. Paik, Y. Vandermeeren, M. Dimyan, and L. G. Cohen, “Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke,” Stroke, vol. 40, no. 5, pp. 1764–1771, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. N. Bolognini, G. Vallar, C. Casati, et al., “Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients,” Neurorehabilitation Neural and Repair, vol. 25, no. 9, pp. 819–829, 2011. View at Publisher · View at Google Scholar
  91. M. P. Malcolm, W. J. Triggs, K. E. Light et al., “Repetitive transcranial magnetic stimulation as an adjunct to constraint-induced therapy: an exploratory randomized controlled trial,” American Journal of Physical Medicine and Rehabilitation, vol. 86, no. 9, pp. 707–715, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Theilig, J. Podubecka, K. Bösl, R. Wiederer, and D. A. Nowak, “Functional neuromuscular stimulation to improve severe hand dysfunction after stroke: does inhibitory rTMS enhance therapeutic efficiency?” Experimental Neurology, vol. 230, no. 1, pp. 149–155, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. U. Ziemann, F. Meintzschel, A. Korchounov, and T. V. Ilić, “Pharmacological modulation of plasticity in the human motor cortex,” Neurorehabilitation and Neural Repair, vol. 20, no. 2, pp. 243–251, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. M. A. Nitsche, W. Jaussi, D. Liebetanz, N. Lang, F. Tergau, and W. Paulus, “Consolidation of human motor cortical neuroplasticity by D-cycloserine,” Neuropsychopharmacology, vol. 29, no. 8, pp. 1573–1578, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. M. F. Kuo, W. Paulus, and M. A. Nitsche, “Boosting focally-induced brain plasticity by dopamine,” Cerebral Cortex, vol. 18, no. 3, pp. 648–651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. M. A. Nitsche, C. Lampe, A. Antal et al., “Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex,” European Journal of Neuroscience, vol. 23, no. 6, pp. 1651–1657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. N. Lang, S. Speck, J. Harms, H. Rothkegel, W. Paulus, and M. Sommer, “Dopaminergic potentiation of rTMS-induced motor cortex inhibition,” Biological Psychiatry, vol. 63, no. 2, pp. 231–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. O. B. C. Swayne, J. T. H. Teo, R. J. Greenwood, and J. C. Rothwell, “The facilitatory effects of intermittent theta burst stimulation on corticospinal excitability are enhanced by nicotine,” Clinical Neurophysiology, vol. 120, no. 8, pp. 1610–1615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. M. A. Nitsche, J. Grundey, D. Liebetanz, N. Lang, F. Tergau, and W. Paulus, “Catecholaminergic consolidation of motor cortical neuroplasticity in humans,” Cerebral Cortex, vol. 14, no. 11, pp. 1240–1245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. M. A. Nitsche, M. F. Kuo, R. Karrasch, B. Wächter, D. Liebetanz, and W. Paulus, “Serotonin affects transcranial direct current-induced neuroplasticity in humans,” Biological Psychiatry, vol. 66, no. 5, pp. 503–508, 2009. View at Publisher · View at Google Scholar · View at Scopus