About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2013 (2013), Article ID 128641, 13 pages
http://dx.doi.org/10.1155/2013/128641
Review Article

Rehabilitation with Poststroke Motor Recovery: A Review with a Focus on Neural Plasticity

Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan

Received 8 February 2013; Revised 9 April 2013; Accepted 10 April 2013

Academic Editor: Magdy Selim

Copyright © 2013 Naoyuki Takeuchi and Shin-Ichi Izumi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Kolominsky-Rabas, M. Weber, O. Gefeller, B. Neundoerfer, and P. U. Heuschmann, “Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study,” Stroke, vol. 32, no. 12, pp. 2735–2740, 2001. View at Scopus
  2. G. Kwakkel, B. J. Kollen, and R. C. Wagenaar, “Long term effects of intensity of upper and lower limb training after stroke: a randomised trial,” Journal of Neurology Neurosurgery and Psychiatry, vol. 72, no. 4, pp. 473–479, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Langhorne, J. Bernhardt, and G. Kwakkel, “Stroke rehabilitation,” The Lancet, vol. 377, no. 9778, pp. 1693–1702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. J. S. Balami and A. M. Buchan, “Complications of intracerebral haemorrhage,” The Lancet Neurology, vol. 11, no. 1, pp. 101–118, 2012.
  5. M. A. Taqi, N. Vora, R. C. Callison, R. Lin, and T. J. Wolfe, “Past, present, and future of endovascular stroke therapies,” Neurology, vol. 79, supplement 13, pp. S213–S220, 2012.
  6. F. Chollet and J. F. Albucher, “Strategies to augment recovery after stroke,” Current Treatment Options in Neurology, vol. 14, no. 6, pp. 531–540, 2012.
  7. G. J. Hankey, K. Jamrozik, R. J. Broadhurst, S. Forbes, and C. S. Anderson, “Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989-1990,” Stroke, vol. 33, no. 4, pp. 1034–1040, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Langhorne, F. Coupar, and A. Pollock, “Motor recovery after stroke: a systematic review,” The Lancet Neurology, vol. 8, no. 8, pp. 741–754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. B. Johansson, “Current trends in stroke rehabilitation. A review with focus on brain plasticity,” Acta Neurologica Scandinavica, vol. 123, no. 3, pp. 147–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. K. N. Arya, S. Pandian, R. Verma, and R. K. Garg, “Movement therapy induced neural reorganization and motor recovery in stroke: a review,” Journal of Bodywork and Movement Therapies, vol. 15, no. 4, pp. 528–537, 2011.
  11. L. Brewer, F. Horgan, A. Hickey, and D. Williams, “Stroke rehabilitation: recent advances and future therapies,” QJM, vol. 106, no. 1, pp. 11–25, 2013.
  12. H. Chen, J. Epstein, and E. Stern, “Neural plasticity after acquired brain injury: evidence from functional neuroimaging,” PM & R, vol. 2, supplement 12, pp. S306–S312, 2010. View at Scopus
  13. J. A. Hosp and A. R. Luft, “Cortical plasticity during motor learning and recovery after ischemic stroke,” Neural Plasticity, vol. 2011, Article ID 871296, 9 pages, 2011. View at Publisher · View at Google Scholar
  14. N. Dancause and R. J. Nudo, “Shaping plasticity to enhance recovery after injury,” Progress in Brain Research, vol. 192, pp. 273–295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Takeuchi and S. Izumi, “Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches,” Neural Plasticity, vol. 2012, Article ID 359728, 9 pages, 2012. View at Publisher · View at Google Scholar
  16. P. Talelli, R. J. Greenwood, and J. C. Rothwell, “Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation,” Clinical Neurophysiology, vol. 117, no. 8, pp. 1641–1659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Kleim and T. A. Jones, “Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage,” Journal of Speech, Language, and Hearing Research, vol. 51, supplement 1, pp. S225–S239, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Takeuchi and S. Izumi, “Noninvasive brain stimulation for motor recovery after stroke: mechanisms and future views,” Stroke Research and Treatment, vol. 2012, Article ID 584727, 10 pages, 2012. View at Publisher · View at Google Scholar
  19. K. E. Laver, S. George, S. Thomas, J. E. Deutsch, and M. Crotty, “Virtual reality for stroke rehabilitation,” Cochrane Database of Systematic Reviews, no. 9, Article ID CD008349, 2011.
  20. R. Nijland, G. Kwakkel, J. Bakers, and E. van Wegen, “Constraint-induced movement therapy for the upper paretic limb in acute or sub-acute stroke: a systematic review,” International Journal of Stroke, vol. 6, no. 5, pp. 425–433, 2011.
  21. J. Mehrholz, A. Hadrich, T. Platz, J. Kugler, and M. Pohl, “Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke,” Cochrane Database of Systematic Reviews, no. 6, Article ID CD006876, 2012. View at Scopus
  22. W. Y. Hsu, C. H. Cheng, K. K. Liao, I. H. Lee, and Y. Y. Lin, “Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis,” Stroke, vol. 43, no. 7, pp. 1849–1857, 2012.
  23. A. Floel and L. G. Cohen, “Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke,” Neurobiology of Disease, vol. 37, no. 2, pp. 243–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Kwakkel, B. Kollen, and E. Lindeman, “Understanding the pattern of functional recovery after stroke: facts and theories,” Restorative Neurology and Neuroscience, vol. 22, no. 3-4, pp. 281–299, 2004. View at Scopus
  25. C. M. Stinear, P. A. Barber, P. R. Smale, J. P. Coxon, M. K. Fleming, and W. D. Byblow, “Functional potential in chronic stroke patients depends on corticospinal tract integrity,” Brain, vol. 130, part 1, pp. 170–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. D. Riley, V. Le, L. Der-Yeghiaian et al., “Anatomy of stroke injury predicts gains from therapy,” Stroke, vol. 42, no. 2, pp. 421–426, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Mulder and J. Hochstenbach, “Adaptability and flexibility of the human motor system: implications for neurological rehabilitation,” Neural Plasticity, vol. 8, no. 1-2, pp. 131–140, 2001. View at Scopus
  28. B. French, L. H. Thomas, M. J. Leathley et al., “Repetitive task training for improving functional ability after stroke,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD006073, 2007. View at Scopus
  29. I. J. Hubbard, M. W. Parsons, C. Neilson, and L. M. Carey, “Task-specific training: evidence for and translation to clinical practice,” Occupational Therapy International, vol. 16, no. 3-4, pp. 175–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. N. A. Bayona, J. Bitensky, K. Salter, and R. Teasell, “The role of task-specific training in rehabilitation therapies,” Topics in Stroke Rehabilitation, vol. 12, no. 3, pp. 58–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Monger, J. H. Carr, and V. Fowler, “Evaluation of a home-based: exercise and training programme to improve sit-to-stand in patients with chronic stroke,” Clinical Rehabilitation, vol. 16, no. 4, pp. 361–367, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. S. H. Peurala, K. Pitkänen, J. Sivenius, and I. M. Tarkka, “How much exercise does the enhanced gait-oriented physiotherapy provide for chronic stroke patients?” Journal of Neurology, vol. 251, no. 4, pp. 449–453, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. K. N. Arya, R. Verma, R. K. Garg, V. P. Sharma, M. Agarwal, and G. G. Aggarwal, “Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial,” Topics in Stroke Rehabilitation, vol. 19, no. 3, pp. 193–211, 2012.
  34. N. M. Salbach, N. E. Mayo, S. Wood-Dauphinee, J. A. Hanley, C. L. Richards, and R. Côté, “A task-orientated intervention enhances walking distance and speed in the first year post stroke: a randomized controlled trial,” Clinical Rehabilitation, vol. 18, no. 5, pp. 509–519, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. S. M. Michaelsen, R. Dannenbaum, and M. F. Levin, “Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial,” Stroke, vol. 37, no. 1, pp. 186–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. H. Jang, Y. H. Kim, S. H. Cho, J. H. Lee, J. W. Park, and Y. H. Kwon, “Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients,” NeuroReport, vol. 14, no. 1, pp. 137–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. L. G. Richards, K. C. Stewart, M. L. Woodbury, C. Senesac, and J. H. Cauraugh, “Movement-dependent stroke recovery: a systematic review and meta-analysis of TMS and fMRI evidence,” Neuropsychologia, vol. 46, no. 1, pp. 3–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. F. Levin, J. A. Kleim, and S. L. Wolf, “What do motor “recovery” and “compensationg” mean in patients following stroke?” Neurorehabilitation and Neural Repair, vol. 23, no. 4, pp. 313–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. D. Döbrössy and S. B. Dunnett, “The influence of environment and experience on neural grafts,” Nature Reviews Neuroscience, vol. 2, no. 12, pp. 871–879, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Biernaskie and D. Corbett, “Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury,” The Journal of Neuroscience, vol. 21, no. 14, pp. 5272–5280, 2001. View at Scopus
  41. J. Nithianantharajah and A. J. Hannan, “Enriched environments, experience-dependent plasticity and disorders of the nervous system,” Nature Reviews Neuroscience, vol. 7, no. 9, pp. 697–709, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. Stroke Unit Trialists' Collaboration, “Organised inpatient (stroke unit) care for stroke,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD000197, 2007.
  43. J. Z. Davis, “Task selection and enriched environments: a functional upper extremity training program for stroke survivors,” Topics in Stroke Rehabilitation, vol. 13, no. 3, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Saposnik, M. K. Kapral, S. B. Coutts, J. Fang, A. M. Demchuk, and M. D. Hill, “Do all age groups benefit from organized inpatient stroke care?” Stroke, vol. 40, no. 10, pp. 3321–3327, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Taub, G. Uswatte, V. W. Mark, and D. M. Morris, “The learned nonuse phenomenon: implications for rehabilitation,” Europa Medicophysica, vol. 42, no. 3, pp. 241–256, 2006. View at Scopus
  46. R. P. Allred and T. A. Jones, “Maladaptive effects of learning with the less-affected forelimb after focal cortical infarcts in rats,” Experimental Neurology, vol. 210, no. 1, pp. 172–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. R. P. Allred, C. H. Cappellini, and T. A. Jones, “TThe, “good” limb makes the, “bad” limb worse: experience-dependent interhemispheric disruption of functional outcome after cortical infarcts in rats,” Behavioral Neuroscience, vol. 124, no. 1, pp. 124–132, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. Kerr, S. Y. Cheng, and T. A. Jones, “Experience-dependent neural plasticity in the adult damaged brain,” Journal of Communication Disorders, vol. 44, no. 5, pp. 538–548, 2011.
  49. G. F. Wittenberg, R. Chen, K. Ishii et al., “Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation,” Neurorehabilitation and Neural Repair, vol. 17, no. 1, pp. 48–57, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Liepert, K. Haevernick, C. Weiller, and A. Barzel, “The surround inhibition determines therapy-induced cortical reorganization,” NeuroImage, vol. 32, no. 3, pp. 1216–1220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. D. Schaechter, E. Kraft, T. S. Hilliard et al., “Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study,” Neurorehabilitation and Neural Repair, vol. 16, no. 4, pp. 326–338, 2002. View at Scopus
  52. L. V. Gauthier, E. Taub, C. Perkins, M. Ortmann, V. W. Mark, and G. Uswatte, “Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke,” Stroke, vol. 39, no. 5, pp. 1520–1525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. S. L. Wolf, C. J. Winstein, J. P. Miller et al., “Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial,” Journal of the American Medical Association, vol. 296, no. 17, pp. 2095–2104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. S. L. Wolf, C. J. Winstein, J. P. Miller et al., “Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial,” The Lancet Neurology, vol. 7, no. 1, pp. 33–40, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Boake, E. A. Noser, T. Ro et al., “Constraint-induced movement therapy during early stroke rehabilitation,” Neurorehabilitation and Neural Repair, vol. 21, no. 1, pp. 14–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. A. W. Dromerick, C. E. Lang, R. L. Birkenmeier et al., “Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT,” Neurology, vol. 73, no. 3, pp. 195–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Hesse, “Recovery of gait and other motor functions after stroke: novel physical and pharmacological treatment strategies,” Restorative Neurology and Neuroscience, vol. 22, no. 3-4, pp. 359–369, 2004. View at Scopus
  58. N. L. Ifejika-Jones and A. M. Barrett, “Rehabilitation—emerging technologies, innovative therapies, and future objectives,” Neurotherapeutics, vol. 8, no. 3, pp. 452–462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. H. P. von Schroeder, R. D. Coutts, P. D. Lyden, E. Billings, and V. L. Nickel, “Gait parameters following stroke: a practical assessment,” Journal of Rehabilitation Research and Development, vol. 32, no. 1, pp. 25–31, 1995. View at Scopus
  60. Y. Laufer, R. Dickstein, Y. Chefez, and E. Marcovitz, “The effect of treadmill training on the ambulation of stroke survivors in the early stages of rehabilitation: a randomized study,” Journal of Rehabilitation Research and Development, vol. 38, no. 1, pp. 69–78, 2001. View at Scopus
  61. M. Visintin and H. Barbeau, “The effects of body weight support on the locomotor pattern of spastic paretic patients,” Canadian Journal of Neurological Sciences, vol. 16, no. 3, pp. 315–325, 1989. View at Scopus
  62. A. R. R. Lindquist, C. L. Prado, R. M. L. Barros, R. Mattioli, P. H. L. da Costa, and T. F. Salvini, “Gait training combining partial body-weight support, a treadmill, and functional electrical stimulation: effects on poststroke gait,” Physical Therapy, vol. 87, no. 9, pp. 1144–1154, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Dawes, C. Enzinger, H. Johansen-Berg et al., “Walking performance and its recovery in chronic stroke in relation to extent of lesion overlap with the descending motor tract,” Experimental Brain Research, vol. 186, no. 2, pp. 325–333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Chen and C. Patten, “Treadmill training with harness support: selection of parameters for individuals with poststroke hemiparesis,” Journal of Rehabilitation Research and Development, vol. 43, no. 4, pp. 485–498, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. H. Barbeau and M. Visintin, “Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects,” Archives of Physical Medicine and Rehabilitation, vol. 84, no. 10, pp. 1458–1465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Mayr, M. Kofler, E. Quirbach, H. Matzak, K. Fröhlich, and L. Saltuari, “Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis,” Neurorehabilitation and Neural Repair, vol. 21, no. 4, pp. 307–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. P. W. Duncan, K. J. Sullivan, A. L. Behrman et al., “Body-weight—supported treadmill rehabilitation after stroke,” The New England Journal of Medicine, vol. 364, no. 21, pp. 2026–2036, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. C. Enzinger, H. Dawes, H. Johansen-Berg et al., “Brain activity changes associated with treadmill training: after stroke,” Stroke, vol. 40, no. 7, pp. 2460–2467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. MacKay-Lyons, “Central pattern generation of locomotion: a review of the evidence,” Physical Therapy, vol. 82, no. 1, pp. 69–83, 2002. View at Scopus
  70. J. A. Norton and V. K. Mushahwar, “Afferent inputs to mid- and lower-lumbar spinal segments are necessary for stepping in spinal cats,” Annals of the New York Academy of Sciences, vol. 1198, pp. 10–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Verma, K. N. Arya, P. Sharma, and R. K. Garg, “Understanding gait control in post-stroke: implications for management,” Journal of Bodywork and Movement Therapies, vol. 16, no. 1, pp. 14–21, 2012.
  72. J. M. Belda-Lois, S. Mena-del Horno, I. Bermejo-Bosch, et al., “Rehabilitation of gait after stroke: a review towards a top-down approach,” Journal of Neuroengineering and Rehabilitation, vol. 8, article 66, 2011. View at Publisher · View at Google Scholar
  73. S. Hesse, C. Werner, M. Pohl, S. Rueckriem, J. Mehrholz, and M. L. Lingnau, “Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers,” Stroke, vol. 36, no. 9, pp. 1960–1966, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Masiero, A. Celia, G. Rosati, and M. Armani, “Robotic-assisted rehabilitation of the upper limb after acute stroke,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 2, pp. 142–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. P. S. Lum, S. B. Godfrey, E. B. Brokaw, R. J. Holley, and D. Nichols, “Robotic approaches for rehabilitation of hand function after stroke,” American Journal of Physical Medicine and Rehabilitation, vol. 91, supplement 11, pp. S242–S254, 2012.
  76. A. C. Lo, P. D. Guarino, L. G. Richards, et al., “Robot-assisted therapy for long-term upper-limb impairment after stroke,” The New England Journal of Medicine, vol. 362, no. 19, pp. 1772–1783, 2010.
  77. G. B. Prange, M. J. A. Jannink, C. G. M. Groothuis-Oudshoorn, H. J. Hermens, and M. J. Ijzerman, “Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke,” Journal of Rehabilitation Research and Development, vol. 43, no. 2, pp. 171–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. G. Kwakkel, B. J. Kollen, and H. I. Krebs, “Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review,” Neurorehabilitation and Neural Repair, vol. 22, no. 2, pp. 111–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Hesse, H. Schmidt, C. Werner, and A. Bardeleben, “Upper and lower extremity robotic devices for rehabilitation and for studying motor control,” Current Opinion in Neurology, vol. 16, no. 6, pp. 705–710, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. S. K. Banala, S. H. Kim, S. K. Agrawal, and J. P. Scholz, “Robot assisted gait training with active leg exoskeleton (ALEX),” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, no. 1, pp. 2–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. M. Pinter and M. Brainin, “Rehabilitation after stroke in older people,” Maturitas, vol. 71, no. 2, pp. 104–108, 2012.
  82. J. Mehrholz, C. Werner, J. Kugler, and M. Pohl, “Electromechanical-assisted training for walking after stroke,” Cochrane Database of Systematic Reviews, no. 4, p. CD006185, 2007. View at Scopus
  83. J. Stein, K. Narendran, J. McBean, K. Krebs, and R. Hughes, “Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke,” American Journal of Physical Medicine and Rehabilitation, vol. 86, no. 4, pp. 255–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. X. L. Hu, K. Y. Tong, R. Song, X. J. Zheng, and W. W. F. Leung, “A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke,” Neurorehabilitation and Neural Repair, vol. 23, no. 8, pp. 837–846, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. K. Stefan, E. Kunesch, L. G. Cohen, R. Benecke, and J. Classen, “Induction of plasticity in the human motor cortex by paired associative stimulation,” Brain, vol. 123, part 3, pp. 572–584, 2000. View at Scopus
  86. A. Wolters, F. Sandbrink, A. Schlottmann et al., “A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex,” Journal of Neurophysiology, vol. 89, no. 5, pp. 2339–2345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. S. T. Carmichael, “Cellular and molecular mechanisms of neural repair after stroke: making waves,” Annals of Neurology, vol. 59, no. 5, pp. 735–742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Di Filippo, A. Tozzi, C. Costa et al., “Plasticity and repair in the post-ischemic brain,” Neuropharmacology, vol. 55, no. 3, pp. 353–362, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. O. Schuhfried, R. Crevenna, V. Fialka-Moser, and T. Paternostro-Sluga, “Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review,” Journal of Rehabilitation Medicine, vol. 44, no. 2, pp. 99–105, 2012.
  90. G. Alon, A. F. Levitt, and P. A. McCarthy, “Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study,” Neurorehabilitation and Neural Repair, vol. 21, no. 3, pp. 207–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. J. S. Knutson, M. Y. Harley, T. Z. Hisel, S. D. Hogan, M. M. Maloney, and J. Chae, “Contralaterally controlled functional electrical stimulation for upper extremity hemiplegia: an early-phase randomized clinical trial in subacute stroke patients,” Neurorehabilitation and Neural Repair, vol. 26, no. 3, pp. 239–246, 2012.
  92. G. Alon, K. McBride, and H. Ring, “Improving selected hand functions using a noninvasive neuroprosthesis in persons with chronic stroke,” Journal of Stroke and Cerebrovascular Diseases, vol. 11, no. 2, pp. 99–106, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. A. I. R. Kottink, L. J. M. Oostendorp, J. H. Buurke, A. V. Nene, H. J. Hermens, and M. J. IJzerman, “The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review,” Artificial Organs, vol. 28, no. 6, pp. 577–586, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. T. Yan, C. W. Y. Hui-Chan, and L. S. W. Li, “Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial,” Stroke, vol. 36, no. 1, pp. 80–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Laufer, H. Ring, E. Sprecher, and J. M. Hausdorff, “Gait in individuals with chronic hemiparesis: one-year follow-up of the effects of a neuroprosthesis that ameliorates foot drop,” Journal of Neurologic Physical Therapy, vol. 33, no. 2, pp. 104–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Chae, “Neuromuscular electrical stimulation for motor relearning in hemiparesis,” Physical Medicine and Rehabilitation Clinics of North America, vol. 14, supplement 1, pp. S93–S109, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. G. I. Barsi, D. B. Popovic, I. M. Tarkka, T. Sinkjær, and M. J. Grey, “Cortical excitability changes following grasping exercise augmented with electrical stimulation,” Experimental Brain Research, vol. 191, no. 1, pp. 57–66, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. V. M. Pomeroy, L. King, A. Pollock, A. Baily-Hallam, and P. Langhorne, “Electrostimulation for promoting recovery of movement or functional ability after stroke,” Cochrane Database of Systematic Reviews, no. 2, p. CD003241, 2006. View at Scopus
  99. J. P. Lefaucheur, “Methods of therapeutic cortical stimulation,” Neurophysiologie Clinique, vol. 39, no. 1, pp. 1–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Murase, J. Duque, R. Mazzocchio, and L. G. Cohen, “Influence of interhemispheric interactions on motor function in chronic stroke,” Annals of Neurology, vol. 55, no. 3, pp. 400–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  101. N. Takeuchi, T. Chuma, Y. Matsuo, I. Watanabe, and K. Ikoma, “Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke,” Stroke, vol. 36, no. 12, pp. 2681–2686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. D. A. Nowak, C. Grefkes, M. Ameli, and G. R. Fink, “Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand,” Neurorehabilitation and Neural Repair, vol. 23, no. 7, pp. 641–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. N. Takeuchi, T. Tada, M. Toshima, Y. Matsuo, and K. Ikoma, “Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke,” Journal of Rehabilitation Medicine, vol. 41, no. 13, pp. 1049–1054, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. N. Takeuchi, T. Tada, M. Toshima, T. Chuma, Y. Matsuo, and K. Ikoma, “Inhibition of the unaffected motor cortex by 1 HZ repetitive transcranial magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke,” Journal of Rehabilitation Medicine, vol. 40, no. 4, pp. 298–303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. F. Fregni, P. S. Boggio, C. G. Mansur et al., “Transcranial direct current stimulation of the unaffected hemisphere in stroke patients,” NeuroReport, vol. 16, no. 14, pp. 1551–1555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. F. Hummel, P. Celnik, P. Giraux et al., “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain, vol. 128, part 3, pp. 490–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. Y. H. Kim, S. H. You, M. H. Ko et al., “Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke,” Stroke, vol. 37, no. 6, pp. 1471–1476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. V. Di Lazzaro, P. Profice, F. Pilato et al., “Motor cortex plasticity predicts recovery in acute stroke,” Cerebral Cortex, vol. 20, no. 7, pp. 1523–1528, 2010. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Pascual-Leone, F. Tarazona, J. Keenan, J. M. Tormos, R. Hamilton, and M. D. Catala, “Transcranial magnetic stimulation and neuroplasticity,” Neuropsychologia, vol. 37, no. 2, pp. 207–217, 1998. View at Publisher · View at Google Scholar · View at Scopus
  110. W. Muellbacher, U. Zlemann, J. Wissel et al., “Early consolidation in human primary motor cortex,” Nature, vol. 415, no. 6872, pp. 640–644, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Zimerman, K. F. Heise, J. Hoppe, L. G. Cohen, C. Gerloff, and F. C. Hummel, “Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand,” Stroke, vol. 43, no. 8, pp. 2185–2191, 2012.
  112. F. Fregni, P. S. Boggio, A. C. Valle et al., “A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients,” Stroke, vol. 37, no. 8, pp. 2115–2122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restorative Neurology and Neuroscience, vol. 25, no. 2, pp. 123–129, 2007. View at Scopus
  114. J. Liepert, S. Zittel, and C. Weiller, “Improvement of dexterity by single session low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in acute stroke: a double-blind placebo-controlled crossover trial,” Restorative Neurology and Neuroscience, vol. 25, no. 5-6, pp. 461–465, 2007. View at Scopus
  115. E. M. Khedr, M. R. Abdel-Fadeil, A. Farghali, and M. Qaid, “Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke,” European Journal of Neurology, vol. 16, no. 12, pp. 1323–1330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. E. M. Khedr, A. E. Etraby, M. Hemeda, A. M. Nasef, and A. A. E. Razek, “Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke,” Acta Neurologica Scandinavica, vol. 121, no. 1, pp. 30–37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. J. Seniow, M. Bilik, M. Lesniak, K. Waldowski, S. Iwanski, and A. Czlonkowska, “Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study,” Neurorehabilitation and Neural Repair, vol. 26, no. 9, pp. 1072–1079, 2012.
  118. C. Rossi, F. Sallustio, S. Di Legge, P. Stanzione, and G. Koch, “Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients,” European Journal of Neurology, vol. 20, no. 1, pp. 202–204, 2013.
  119. P. Sale and M. Franceschini, “Action observation and mirror neuron network: a tool for motor stroke rehabilitation,” European Journal of Physical and Rehabilitation Medicine, vol. 48, no. 2, pp. 313–318, 2012.
  120. S. Silvoni, A. Ramos-Murguialday, M. Cavinato, et al., “Brain-computer interface in stroke: a review of progress,” Clinical EEG and Neuroscience, vol. 42, no. 4, pp. 245–252, 2011.
  121. M. Jeannerod, “Neural simulation of action: a unifying mechanism for motor cognition,” NeuroImage, vol. 14, supplement 1, part 2, pp. S103–S109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, “Premotor cortex and the recognition of motor actions,” Cognitive Brain Research, vol. 3, no. 2, pp. 131–141, 1996. View at Publisher · View at Google Scholar · View at Scopus
  123. V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, “Action recognition in the premotor cortex,” Brain, vol. 119, part 2, pp. 593–609, 1996. View at Scopus
  124. M. Iacoboni, R. P. Woods, M. Brass, H. Bekkering, J. C. Mazziotta, and G. Rizzolatti, “Cortical mechanisms of human imitation,” Science, vol. 286, no. 5449, pp. 2526–2528, 1999. View at Publisher · View at Google Scholar · View at Scopus
  125. J. R. Flanagan and R. S. Johansson, “Action plans used in action observation,” Nature, vol. 424, no. 6950, pp. 769–771, 2003. View at Publisher · View at Google Scholar · View at Scopus
  126. A. A. G. Mattar and P. L. Gribble, “Motor learning by observing,” Neuron, vol. 46, no. 1, pp. 153–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  127. P. Celnik, K. Stefan, F. Hummel, J. Duque, J. Classen, and L. G. Cohen, “Encoding a motor memory in the older adult by action observation,” NeuroImage, vol. 29, no. 2, pp. 677–684, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. S. Ortigue, C. Sinigaglia, G. Rizzolatti, and S. T. Grafton, “Understanding actions of others: the electrodynamics of the left and right hemispheres. A high-density EEG neuroimaging study,” PLoS ONE, vol. 5, no. 8, Article ID e12160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annual Review of Neuroscience, vol. 27, pp. 169–192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  130. G. Rizzolatti and C. Sinigaglia, “The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations,” Nature Reviews Neuroscience, vol. 11, no. 4, pp. 264–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. G. Cantarero, J. M. Galea, L. Ajagbe, R. Salas, J. Willis, and P. Celnik, “Disrupting the ventral premotor cortex interferes with the contribution of action observation to use-dependent plasticity,” Journal of Cognitive Neuroscience, vol. 23, no. 12, pp. 3757–3766, 2011.
  132. D. Ertelt, S. Small, A. Solodkin et al., “Action observation has a positive impact on rehabilitation of motor deficits after stroke,” NeuroImage, vol. 36, no. 2, pp. T164–T173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. P. Celnik, B. Webster, D. M. Glasser, and L. G. Cohen, “Effects of action observation on physical training after stroke,” Stroke, vol. 39, no. 6, pp. 1814–1820, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Franceschini, M. G. Ceravolo, M. Agosti, et al., “Clinical relevance of action observation in upper-limb stroke rehabilitation: a possible role in recovery of functional dexterity. A randomized clinical trial,” Neurorehabilitation and Neural Repair, vol. 26, no. 5, pp. 456–462, 2012.
  135. P. Weiss, R. Kizony, U. Feintuch, and N. Katz, “Virtual reality in neurorehabilitation,” in Textbook of Neural Repair and Rehabilitation, M. Selzer, L. Cohen, F. Gage, S. Clarke, and P. Duncan, Eds., pp. 182–197, Cambridge University Press, Cambridge, UK, 2006.
  136. A. Henderson, N. Korner-Bitensky, and M. Levin, “Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery,” Topics in Stroke Rehabilitation, vol. 14, no. 2, pp. 52–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. G. Saposnik and M. Levin, “Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians,” Stroke, vol. 42, no. 5, pp. 1380–1386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. S. H. Jang, S. H. You, M. Hallett et al., “Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 11, pp. 2218–2223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  139. S. H. You, S. H. Jang, Y. H. Kim, et al., “Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study,” Stroke, vol. 36, no. 6, pp. 1166–1171, 2005.
  140. G. Saposnik, R. Teasell, M. Mamdani et al., “Effectiveness of virtual reality using wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle,” Stroke, vol. 41, no. 7, pp. 1477–1484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. M. S. Cameirão, S. B. I. Badia, E. D. Oller, and P. F. M. J. Verschure, “Neurorehabilitation using the virtual reality based rehabilitation gaming system: methodology, design, psychometrics, usability and validation,” Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 48, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. M. D. Cameirao, I. B. S. Bermudez, E. Duarte, and P. F. Verschure, “Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system,” Restorative Neurology and Neuroscience, vol. 29, no. 5, pp. 287–298, 2011.
  143. C. S. Green and D. Bavelier, “Exercising your brain: a review of human brain plasticity and training-induced learning,” Psychology and Aging, vol. 23, no. 4, pp. 692–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. N. Birbaumer, A. R. Murguialday, and L. Cohen, “Brain-computer interface in paralysis,” Current Opinion in Neurology, vol. 21, no. 6, pp. 634–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. J. J. Daly and J. R. Wolpaw, “Brain-computer interfaces in neurological rehabilitation,” The Lancet Neurology, vol. 7, no. 11, pp. 1032–1043, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. K. K. Ang, C. Guan, K. S. Chua, et al., “A clinical study of motor imagery-based brain-computer interface for upper limb robotic rehabilitation,” Conference Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2009, pp. 5981–5984, 2009.
  147. G. Prasad, P. Herman, D. Coyle, S. McDonough, and J. Crosbie, “Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study,” Journal of NeuroEngineering and Rehabilitation, vol. 7, no. 1, article 60, 17 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. N. G. Hatsopoulos and J. P. Donoghue, “The science of neural interface systems,” Annual Review of Neuroscience, vol. 32, pp. 249–266, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. R. A. Andersen, E. J. Hwang, and G. H. Mulliken, “Cognitive neural prosthetics,” Annual Review of Psychology, vol. 61, pp. 169–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. M. A. Lebedev and M. A. Nicolelis, “Toward a whole-body neuroprosthetic,” Progress in Brain Research, vol. 194, pp. 47–60, 2011.
  151. N. Smania, S. Paolucci, M. Tinazzi et al., “Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke,” Stroke, vol. 38, no. 3, pp. 1088–1090, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. J. A. Beebe and C. E. Lang, “Active range of motion predicts upper extremity function 3 months after stroke,” Stroke, vol. 40, no. 5, pp. 1772–1779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. R. H. M. Nijland, E. E. H. van Wegen, B. C. Harmeling-van der Wel, and G. Kwakkel, “Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study,” Stroke, vol. 41, no. 4, pp. 745–750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  154. S. H. Jang, “A review of diffusion tensor imaging studies on motor recovery mechanisms in stroke patients,” NeuroRehabilitation, vol. 28, no. 4, pp. 345–352, 2011.
  155. Y. H. Ahn, S. H. Ahn, H. Kim, J. H. Hong, and S. H. Jang, “Can stroke patients walk after complete lateral corticospinal tract injury of the affected hemisphere?” NeuroReport, vol. 17, no. 10, pp. 987–990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. M. R. Dimitrijevic, Y. Gerasimenko, and M. M. Pinter, “Evidence for a spinal central pattern generator in humans,” Annals of the New York Academy of Sciences, vol. 860, pp. 360–376, 1998. View at Publisher · View at Google Scholar · View at Scopus
  157. H. Hultborn and J. B. Nielsen, “Spinal control of locomotion—from cat to man,” Acta Physiologica, vol. 189, no. 2, pp. 111–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. S. H. Jang, S. H. You, Y. H. Kwon, M. Hallett, Y. L. Mi, and H. A. Sang, “Cortical reorganization associated lower extremity motor recovery as evidenced by functional MRI and diffusion tensor tractography in a stroke patient,” Restorative Neurology and Neuroscience, vol. 23, no. 5-6, pp. 325–329, 2005. View at Scopus
  159. S. C. Cramer, T. B. Parrish, R. M. Levy et al., “Predicting functional gains in a stroke trial,” Stroke, vol. 38, no. 7, pp. 2108–2114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. N. Ward, “Assessment of cortical reorganisation for hand function after stroke,” The Journal of Physiology, vol. 589, part 23, pp. 5625–5632, 2011.
  161. M. Ameli, C. Grefkes, F. Kemper et al., “Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke,” Annals of Neurology, vol. 66, no. 3, pp. 298–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. R. S. Marshall, E. Zarahn, L. Alon, B. Minzer, R. M. Lazar, and J. W. Krakauer, “Early imaging correlates of subsequent motor recovery after stroke,” Annals of Neurology, vol. 65, no. 5, pp. 596–602, 2009. View at Publisher · View at Google Scholar · View at Scopus
  163. E. Zarahn, L. Alon, S. L. Ryan, et al., “Prediction of motor recovery using initial impairment and fMRI 48 h poststroke,” Cerebral Cortex, vol. 21, no. 12, pp. 2712–2721, 2011.
  164. C. Stinear, “Prediction of recovery of motor function after stroke,” The Lancet Neurology, vol. 9, no. 12, pp. 1228–1232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. K. M. Pearson-Fuhrhop and S. C. Cramer, “Genetic influences on neural plasticity,” PM & R, vol. 2, supplement 12, pp. S227–S240, 2010. View at Scopus
  166. S. C. Cramer, “A window into the molecular basis of human brain plasticity,” The Journal of Physiology, vol. 586, supplement 23, p. 5601, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. M. V. Johnston, “Plasticity in the developing brain: implications for rehabilitation,” Developmental Disabilities Research Reviews, vol. 15, no. 2, pp. 94–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. N. Takeuchi, T. Tada, T. Chuma, Y. Matsuo, and K. Ikoma, “Disinhibition of the premotor cortex contributes to a maladaptive change in the affected hand after stroke,” Stroke, vol. 38, no. 5, pp. 1551–1556, 2007. View at Publisher · View at Google Scholar · View at Scopus
  169. A. Roby-Brami, A. Feydy, M. Combeaud, E. V. Biryukova, B. Bussel, and M. F. Levin, “Motor compensation and recovery for reaching in stroke patients,” Acta Neurologica Scandinavica, vol. 107, no. 5, pp. 369–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  170. B. H. Dobkin, “Rehabilitation after stroke,” The New England Journal of Medicine, vol. 352, no. 16, pp. 1677–1684, 2005. View at Publisher · View at Google Scholar · View at Scopus
  171. T. Schallert, “Behavioral tests for preclinical intervention assessment,” NeuroRx, vol. 3, no. 4, pp. 497–504, 2006. View at Publisher · View at Google Scholar · View at Scopus
  172. S. Schwerin, J. P. A. Dewald, M. Haztl, S. Jovanovich, M. Nickeas, and C. MacKinnon, “Ipsilateral versus contralateral cortical motor projections to a shoulder adductor in chronic hemiparetic stroke: implications for the expression of arm synergies,” Experimental Brain Research, vol. 185, no. 3, pp. 509–519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  173. J. Liepert, H. Bauder, W. H. R. Miltner, E. Taub, and C. Weiller, “Treatment-induced cortical reorganization after stroke in humans,” Stroke, vol. 31, no. 6, pp. 1210–1216, 2000. View at Scopus
  174. A. Roby-Brami, S. Jacobs, N. Bennis, and M. F. Levin, “Hand orientation for grasping and arm joint rotation patterns in healthy subjects and hemiparetic stroke patients,” Brain Research, vol. 969, no. 1-2, pp. 217–229, 2003. View at Publisher · View at Google Scholar · View at Scopus