About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2013 (2013), Article ID 170256, 14 pages
http://dx.doi.org/10.1155/2013/170256
Review Article

Transcranial Direct Current Stimulation in Stroke Rehabilitation: A Review of Recent Advancements

Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4

Received 10 October 2012; Revised 17 December 2012; Accepted 14 January 2013

Academic Editor: Petra Henrich-Noack

Copyright © 2013 Andrea Gomez Palacio Schjetnan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. L. Roger, A. S. Go, D. M. Lloyd-Jones et al., et al., “Heart disease and stroke statistics—2012 update: a report from the American Heart Association,” Circulation, vol. 125, no. 1, pp. e2–e220, 2012.
  2. A. Priori, “Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability,” Clinical Neurophysiology, vol. 114, no. 4, pp. 589–595, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Priori, A. Berardelli, S. Rona, N. Accornero, and M. Manfredi, “Polarization of the human motor cortex through the scalp,” NeuroReport, vol. 9, no. 10, pp. 2257–2260, 1998. View at Scopus
  4. M. A. Nitsche, D. Liebetanz, A. Antal, N. Lang, F. Tergau, and W. Paulus, “Chapter 27 Modulation of cortical excitability by weak direct current stimulation—technical, safety and functional aspects,” Supplements to Clinical Neurophysiology, vol. 56, pp. 255–276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Nitsche, D. Liebetanz, N. Lang et al., “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clinical Neurophysiology, vol. 114, no. 11, pp. 2220–2223, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” Journal of Physiology, vol. 527, part 3, no. 3, pp. 633–639, 2000. View at Scopus
  7. T. Kamida, S. Kong, N. Eshima, T. Abe, M. Fujiki, and H. Kobayashi, “Transcranial direct current stimulation decreases convulsions and spatial memory deficits following pilocarpine-induced status epilepticus in immature rats,” Behavioural Brain Research, vol. 217, no. 1, pp. 99–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. S. W. Yook, S. H. Park, J. H. Seo, S. J. Kim, and M. H. Ko, “Suppression of seizure by cathodal transcranial direct current stimulation in an epileptic patient—a case report,” Annals of Rehabilitation Medicine, vol. 35, no. 4, pp. 579–582, 2011.
  9. F. Fregni, P. S. Boggio, M. C. Santos et al., “Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease,” Movement Disorders, vol. 21, no. 10, pp. 1693–1702, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. H. Benninger, M. Lomarev, G. Lopez et al., “Transcranial direct current stimulation for the treatment of Parkinson's disease,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 10, pp. 1105–1111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. B. Pereira, C. Junqué, D. Bartrés-Faz et al., et al., “Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson's disease,” Brain Stimulation, vol. 6, no. 1, pp. 16–24, 2013, Brain Stimulation. In press.
  12. F. Fregni, P. S. Boggio, M. C. Lima et al., “A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury,” Pain, vol. 122, no. 1-2, pp. 197–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Mori, C. Codecà, H. Kusayanagi et al., “Effects of anodal transcranial direct current stimulation on chronic neuropathic pain in patients with multiple sclerosis,” Journal of Pain, vol. 11, no. 5, pp. 436–442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. F. Dasilva, M. E. Mendonca, S. Zaghi et al., “tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine,” Headache, vol. 52, no. 8, pp. 1283–1295, 2012.
  15. F. Fregni, P. S. Boggio, M. A. Nitsche, M. A. Marcolin, S. P. Rigonatti, and A. Pascual-Leone, “Treatment of major depression with transcranial direct current stimulation,” Bipolar Disorders, vol. 8, no. 2, pp. 203–204, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. P. S. Boggio, N. Sultani, S. Fecteau et al., “Prefrontal cortex modulation using transcranial DC stimulation reduces alcohol craving: a double-blind, sham-controlled study,” Drug and Alcohol Dependence, vol. 92, no. 1–3, pp. 55–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Imamura, D. A. Cassius, and F. Fregni, “Fibromyalgia: from treatment to rehabilitation,” European Journal of Pain Supplements, vol. 3, no. 2, pp. 117–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Roizenblatt, F. Fregni, R. Gimenez et al., “Site-specific effects of transcranial direct current stimulation on sleep and pain in Fibromyalgia: a randomized, sham-controlled study,” Pain Practice, vol. 7, no. 4, pp. 297–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Fregni, R. Gimenes, A. C. Valle et al., “A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia,” Arthritis and Rheumatism, vol. 54, no. 12, pp. 3988–3998, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Kumru, D. Soler, J. Vidal et al., “The effects of transcranial direct current stimulation with visual illusion in neuropathic pain due to spinal cord injury: an evoked potentials and quantitative thermal testing study,” European Journal of Pain, vol. 17, no. 1, pp. 55–66, 2013. View at Publisher · View at Google Scholar
  21. M. D. Soler, H. Kumru, R. Pelayo et al., “Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury,” Brain, vol. 133, no. 9, pp. 2565–2577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Y. Kim, S. H. Ohn, E. J. Yang, C. I. Park, and K. J. Jung, “Enhancing motor performance by anodal transcranial direct current stimulation in subacute stroke patients,” American Journal of Physical Medicine and Rehabilitation, vol. 88, no. 10, pp. 829–836, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Fregni, P. S. Boggio, C. G. Mansur et al., “Transcranial direct current stimulation of the unaffected hemisphere in stroke patients,” NeuroReport, vol. 16, no. 14, pp. 1551–1555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Y. Kim, J. Y. Lim, E. K. Kang et al., “Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke,” American Journal of Physical Medicine & Rehabilitation, vol. 89, no. 11, pp. 879–886, 2010.
  25. S. Tanaka, K. Takeda, Y. Otaka et al., “Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke,” Neurorehabilitation and Neural Repair, vol. 25, no. 6, pp. 565–569, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. D. S. You, D.-Y. Kim, M. H. Chun, S. E. Jung, and S. J. Park, “Cathodal transcranial direct current stimulation of the right Wernicke's area improves comprehension in subacute stroke patients,” Brain and Language, vol. 119, no. 1, pp. 1–5, 2011.
  27. S. Hesse, A. Waldner, J. Mehrholz, C. Tomelleri, M. Pohl, and C. Werner, “Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 838–846, 2011.
  28. K. Suzuki, T. Fujiwara, N. Tanaka et al., “Comparison of the after-effects of transcranial direct current stimulation over the motor cortex in patients with stroke and healthy volunteers,” International Journal of Neuroscience, vol. 122, no. 11, pp. 675–681, 2012. View at Publisher · View at Google Scholar
  29. B. R. Webster, P. A. Celnik, and L. G. Cohen, “Noninvasive brain stimulation in stroke rehabilitation,” NeuroRx, vol. 3, no. 4, pp. 474–481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Floel and L. G. Cohen, “Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke,” Neurobiology of Disease, vol. 37, no. 2, pp. 243–251, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Schlaug, V. Renga, and D. Nair, “Transcranial direct current stimulation in stroke recovery,” Archives of Neurology, vol. 65, no. 12, pp. 1571–1576, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. H. Murphy and D. Corbett, “Plasticity during stroke recovery: from synapse to behaviour,” Nature Reviews Neuroscience, vol. 10, no. 12, pp. 861–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. F. C. Hummel and L. G. Cohen, “Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?” The Lancet Neurology, vol. 5, no. 8, pp. 708–712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Nitsche, A. Seeber, K. Frommann et al., “Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex,” Journal of Physiology, vol. 568, no. 1, pp. 291–303, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Schlaug and V. Renga, “Transcranial direct current stimulation: a noninvasive tool to facilitate stroke recovery,” Expert Review of Medical Devices, vol. 5, no. 6, pp. 759–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. K. S. Utz, V. Dimova, K. Oppenländer, and G. Kerkhoff, “Electrified minds: transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology-A review of current data and future implications,” Neuropsychologia, vol. 48, no. 10, pp. 2789–2810, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. P. C. Miranda, M. Lomarev, and M. Hallett, “Modeling the current distribution during transcranial direct current stimulation,” Clinical Neurophysiology, vol. 117, no. 7, pp. 1623–1629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Ferrucci, S. Marceglia, M. Vergari et al., “Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory,” Journal of Cognitive Neuroscience, vol. 20, no. 9, pp. 1687–1697, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. C. M. Bütefisch, M. Weßling, J. Netz, R. J. Seitz, and V. Hömberg, “Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients,” Neurorehabilitation and Neural Repair, vol. 22, no. 1, pp. 4–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Fritsch, J. Reis, K. Martinowich et al., “Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning,” Neuron, vol. 66, no. 2, pp. 198–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Been, T. T. Ngo, S. M. Miller, and P. B. Fitzgerald, “The use of tDCS and CVS as methods of non-invasive brain stimulation,” Brain Research Reviews, vol. 56, no. 2, pp. 346–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. M. A. Nitsche, S. Doemkes, T. Karaköse et al., “Shaping the effects of transcranial direct current stimulation of the human motor cortex,” Journal of Neurophysiology, vol. 97, no. 4, pp. 3109–3117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Takano, T. Yokawa, A. Masuda, J. Niimi, S. Tanaka, and N. Hironaka, “A rat model for measuring the effectiveness of transcranial direct current stimulation using fMRI,” Neuroscience Letters, vol. 491, no. 1, pp. 40–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. G. C. Teskey, C. Flynn, C. D. Goertzen, M. H. Monfils, and N. A. Young, “Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat,” Neurological Research, vol. 25, no. 8, pp. 794–800, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. D. Liebetanz, R. Koch, S. Mayenfels, F. König, W. Paulus, and M. A. Nitsche, “Safety limits of cathodal transcranial direct current stimulation in rats,” Clinical Neurophysiology, vol. 120, no. 6, pp. 1161–1167, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Marquez-Ruiz, R. Leal-Campanario, R. Sánchez-Campusano et al., “Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 17, pp. 6710–6715, 2012.
  47. R. J. Nudo, W. M. Jenkins, and M. M. Merzenich, “Repetitive microstimulation alters the cortical representation of movements in adult rats,” Somatosensory and Motor Research, vol. 7, no. 4, pp. 463–483, 1990. View at Scopus
  48. M. Cambiaghi, S. Velikova, J. J. Gonzalez-Rosa, M. Cursi, G. Comi, and L. Leocani, “Brain transcranial direct current stimulation modulates motor excitability in mice,” European Journal of Neuroscience, vol. 31, no. 4, pp. 704–709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Laste, W. Caumo, L. N. S. Adachi et al., “After-effects of consecutive sessions of transcranial direct current stimulation (tDCS) in a rat model of chronic inflammation,” Experimental Brain Research, vol. 221, no. 1, pp. 75–83, 2012.
  50. K. P. Doyle, R. P. Simon, and M. P. Stenzel-Poore, “Mechanisms of ischemic brain damage,” Neuropharmacology, vol. 55, no. 3, pp. 310–318, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. T. M. Gao, W. A. Pulsinelli, and Z. C. Xu, “Changes in membrane properties of CA1 pyramidal neurons after transient forebrain ischemia in vivo,” Neuroscience, vol. 90, no. 3, pp. 771–780, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Bolay, Y. Gürsoy-Özdemir, I. Ünal, and T. Dalkara, “Altered mechanisms of motor-evoked potential generation after transient focal cerebral ischemia in the rat: implications for transcranial magnetic stimulation,” Brain Research, vol. 873, no. 1, pp. 26–33, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Thomas Carmichael, L. Wei, C. M. Rovainen, and T. A. Woolsey, “New patterns of intracortical projections after focal cortical stroke,” Neurobiology of Disease, vol. 8, no. 5, pp. 910–922, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. S. T. Carmichael, K. Tatsukawa, D. Katsman, N. Tsuyuguchi, and H. I. Kornblum, “Evolution of diaschisis in a focal stroke model,” Stroke, vol. 35, no. 3, pp. 758–763, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. C. M. Bütefisch, J. Netz, M. Weßling, R. J. Seitz, and V. Hömberg, “Remote changes in cortical excitability after stroke,” Brain, vol. 126, no. 2, pp. 470–481, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Domann, G. Hagemann, M. Kraemer, H. J. Freund, and O. W. Witte, “Electrophysiological changes in the surrounding brain tissue of photochemically induced cortical infarcts in the rat,” Neuroscience Letters, vol. 155, no. 1, pp. 69–72, 1993. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Schiene, C. Bruehl, K. Zilles et al., “Neuronal hyperexcitability and reduction of GABA(A)-receptor expression in the surround of cerebral photothrombosis,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 5, pp. 906–914, 1996. View at Scopus
  58. H. Fujioka, H. Kaneko, S. S. Suzuki, and K. Mabuchi, “Hyperexcitability-associated rapid plasticity after a focal cerebral ischemia,” Stroke, vol. 35, no. 7, pp. e346–e348, 2004. View at Scopus
  59. C. M. Bütefisch, R. Kleiser, B. Körber et al., “Recruitment of contralesional motor cortex in stroke patients with recovery of hand function,” Neurology, vol. 64, no. 6, pp. 1067–1069, 2005. View at Scopus
  60. G. Koch, M. Oliveri, B. Cheeran et al., “Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect,” Brain, vol. 131, no. 12, pp. 3147–3155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Shimizu, A. Hosaki, T. Hino et al., “Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke,” Brain, vol. 125, no. 8, pp. 1896–1907, 2002. View at Scopus
  62. S. T. Carmichael and M. F. Chesselet, “Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult,” Journal of Neuroscience, vol. 22, no. 14, pp. 6062–6070, 2002. View at Scopus
  63. L. J. Bindman, O. C. Lippold, and J. W. Redfearn, “Relation between the size and form of potentials evoked by sensory,” The Journal of Physiology, vol. 171, pp. 1–25, 1964. View at Scopus
  64. O. D. Creutzfeldt, G. H. Fromm, and H. Kapp, “Influence of transcortical d-c currents on cortical neuronal activity,” Experimental Neurology, vol. 5, no. 6, pp. 436–452, 1962. View at Scopus
  65. D. P. Purpura and J. G. McMurtry, “Intracellular activities and evoked potential changes during polarization of motor cortex,” Journal of Neurophysiology, vol. 28, pp. 166–185, 1965.
  66. D. Reato, A. Rahman, M. Bikson, and L. C. Parra, “Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing,” Journal of Neuroscience, vol. 30, no. 45, pp. 15067–15079, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. A. Nitsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology, vol. 57, no. 10, pp. 1899–1901, 2001. View at Scopus
  68. G. Csifcsak, A. Antal, F. Hillers et al., “Modulatory effects of transcranial direct current stimulation on laser-evoked potentials,” Pain Medicine, vol. 10, no. 1, pp. 122–132, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Boros, C. Poreisz, A. Münchau, W. Paulus, and M. A. Nitsche, “Premotor transcranial direct current stimulation (tDCS) affects primary motor excitability in humans,” European Journal of Neuroscience, vol. 27, no. 5, pp. 1292–1300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. A. R. Brunoni, M. A. Vanderhasselt, P. S. Boggio et al., “Polarity- and valence-dependent effects of prefrontal transcranial direct current stimulation on heart rate variability and salivary cortisol,” Psychoneuroendocrinology, vol. 38, no. 1, pp. 58–66, 2013. View at Publisher · View at Google Scholar
  71. J. Baudewig, M. A. Nitsche, W. Paulus, and J. Frahm, “Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation,” Magnetic Resonance in Medicine, vol. 45, no. 2, pp. 196–201, 2001.
  72. A. Antal, E. T. Varga, T. Z. Kincses, M. A. Nitsche, and W. Paulus, “Oscillatory brain activity and transcranial direct current stimulation in humans,” NeuroReport, vol. 15, no. 8, pp. 1307–1310, 2004. View at Scopus
  73. A. Antal, T. Z. Kincses, M. A. Nitsche, O. Bartfai, and W. Paulus, “Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: direct electrophysiological evidence,” Investigative Ophthalmology and Visual Science, vol. 45, no. 2, pp. 702–707, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Antal, G. Kovács, L. Chaieb, C. Cziraki, W. Paulus, and M. W. Greenlee, “Cathodal stimulation of human MT+ leads to elevated fMRI signal: a tDCS-fMRI study,” Restorative Neurology and Neuroscience, vol. 30, no. 3, pp. 255–263, 2012.
  75. F. Fregni, D. Liebetanz, K. K. Monte-Silva et al., “Effects of transcranial direct current stimulation coupled with repetitive electrical stimulation on cortical spreading depression,” Experimental Neurology, vol. 204, no. 1, pp. 462–466, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. D. Liebetanz, F. Fregni, K. K. Monte-Silva et al., “After-effects of transcranial direct current stimulation (tDCS) on cortical spreading depression,” Neuroscience Letters, vol. 398, no. 1-2, pp. 85–90, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Fregni, P. S. Boggio, M. Nitsche et al., “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Experimental Brain Research, vol. 166, no. 1, pp. 23–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Lang, M. A. Nitsche, W. Paulus, J. C. Rothwell, and R. N. Lemon, “Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability,” Experimental Brain Research, vol. 156, no. 4, pp. 439–443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Matsunaga, M. A. Nitsche, S. Tsuji, and J. C. Rothwell, “Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans,” Clinical Neurophysiology, vol. 115, no. 2, pp. 456–460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. M. A. Nitsche, A. Schauenburg, N. Lang et al., “Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human,” Journal of Cognitive Neuroscience, vol. 15, no. 4, pp. 619–626, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Wachter, A. Wrede, W. Schulz-Schaeffer et al., “Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat,” Experimental Neurology, vol. 227, no. 2, pp. 322–327, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Campbell Teskey, M. H. Monfils, P. M. Vandenberg, and J. A. Kleim, “Motor map expansion following repeated cortical and limbic seizures is related to synaptic potentiation,” Cerebral Cortex, vol. 12, no. 1, pp. 98–105, 2002. View at Scopus
  83. R. J. Racine, C. A. Chapman, C. Trepel, G. C. Teskey, and N. W. Milgram, “Post-activation potentiation in the neocortex. IV. Multiple sessions required for induction of long-term potentiation in the chronic preparation,” Brain Research, vol. 702, no. 1-2, pp. 87–93, 1995. View at Publisher · View at Google Scholar · View at Scopus
  84. R. J. Racine, C. A. Chapman, G. Campbell Teskey, and N. W. Milgram, “Post-activation potentiation in the neocortex. III. Kindling-induced potentiation in the chronic preparation,” Brain Research, vol. 702, no. 1-2, pp. 77–86, 1995. View at Publisher · View at Google Scholar · View at Scopus
  85. M. A. Nitsche, K. Fricke, U. Henschke et al., “Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans,” Journal of Physiology, vol. 553, no. 1, pp. 293–301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  86. D. Liebetanz, M. A. Nitsche, F. Tergau, and W. Paulus, “Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability,” Brain, vol. 125, no. 10, pp. 2238–2247, 2002. View at Scopus
  87. K. Monte-Silva, M. F. Kuo, S. Hessenthaler et al., “Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation,” Brain Stimulation. In press.
  88. U. Ziemann, F. Tergau, E. M. Wassermann, S. Wischer, J. Hildebrandt, and W. Paulus, “Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation,” Journal of Physiology, vol. 511, no. 1, pp. 181–190, 1998. View at Publisher · View at Google Scholar · View at Scopus
  89. I. Q. Whishaw, M. Alaverdashvili, and B. Kolb, “The problem of relating plasticity and skilled reaching after motor cortex stroke in the rat,” Behavioural Brain Research, vol. 192, no. 1, pp. 124–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. E. J. Plautz, S. Barbay, S. B. Frost et al., “Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates,” Neurological Research, vol. 25, no. 8, pp. 801–810, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. J. A. Kleim, E. D. Kleim, and S. C. Cramer, “Systematic assessment of training-induced changes in corticospinal output to hand using frameless stereotaxic transcranial magnetic stimulation,” Nature Protocols, vol. 2, no. 7, pp. 1675–1684, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Reis, H. M. Schambra, L. G. Cohen et al., “Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 5, pp. 1590–1595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Reis and B. Fritsch, “Modulation of motor performance and motor learning by transcranial direct current stimulation,” Current Opinion in Neurology, vol. 24, no. 6, pp. 590–596, 2011.
  94. B. Cheeran, P. Talelli, F. Mori et al., “A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS,” Journal of Physiology, vol. 586, no. 23, pp. 5717–5725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Kirkwood and M. F. Bear, “Hebbian synapses in visual cortex,” Journal of Neuroscience, vol. 14, no. 3, part 2, pp. 1634–1645, 1994. View at Scopus
  96. I. B. Gartside, “Mechanisms of sustained increases of firing rate of neurones in the rat cerebral cortex after polarization: reverberating circuits or modification of synaptic conductance?” Nature, vol. 220, no. 5165, pp. 382–383, 1968. View at Publisher · View at Google Scholar · View at Scopus
  97. T. A. Jones, R. P. Allred, D. L. Adkins, J. E. Hsu, A. O'Bryant, and M. A. Maldonado, “Remodeling the brain with behavioral experience after stroke,” Stroke, vol. 40, no. 3, supplement, pp. S136–S138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. T. V. P. Bliss and S. F. Cooke, “Long-term potentiation and long-term depression: a clinical perspective,” Clinics, vol. 66, no. 1, pp. 3–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. J. A. Kleim, S. Chan, E. Pringle et al., “BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex,” Nature Neuroscience, vol. 9, no. 6, pp. 735–737, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. S. A. McHughen, P. F. Rodriguez, J. A. Kleim et al., “BDNF val66met polymorphism influences motor system function in the human brain,” Cerebral Cortex, vol. 20, no. 5, pp. 1254–1262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. A. Antal and W. Paulus, “Investigating neuroplastic changes in the human brain induced by transcranial direct (tDCS) and alternating current (tACS) stimulation methods,” Clinical EEG and Neuroscience, vol. 43, no. 3, article 175, 2010.
  102. N. Murase, J. Duque, R. Mazzocchio, and L. G. Cohen, “Influence of interhemispheric interactions on motor function in chronic stroke,” Annals of Neurology, vol. 55, no. 3, pp. 400–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. F. Fregni and A. Pascual-Leone, “Technology insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS,” Nature Clinical Practice Neurology, vol. 3, no. 7, pp. 383–393, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. D. A. Nowak, C. Grefkes, M. Ameli, and G. R. Fink, “Interhemispheric competition after stroke: brain stimulation to enhance recovery of function of the affected hand,” Neurorehabilitation and Neural Repair, vol. 23, no. 7, pp. 641–656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. N. Bolognini, G. Vallar, C. Casati et al., “Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients,” Neurorehabilitation and Neural Repair, vol. 25, no. 9, pp. 819–829, 2011.
  106. C. Rossi, F. Sallustio, S. Di Legge, P. Stanzione, and G. Koch, “Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients,” European Journal of Neurology, vol. 20, no. 1, pp. 202–204, 2013. View at Publisher · View at Google Scholar
  107. D. L. Adkins-Muir and T. A. Jones, “Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats,” Neurological Research, vol. 25, no. 8, pp. 780–788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. F. Hummel, P. Celnik, P. Giraux et al., “Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke,” Brain, vol. 128, no. part 3, pp. 490–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. M. A. Maldonado, R. P. Allred, E. L. Felthauser, and T. A. Jones, “Motor skill training, but not voluntary exercise, improves skilled reaching after unilateral ischemic lesions of the sensorimotor cortex in rats,” Neurorehabilitation and Neural Repair, vol. 22, no. 3, pp. 250–261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. R. J. Nudo, B. M. Wise, F. SiFuentes, and G. W. Milliken, “Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct,” Science, vol. 272, no. 5269, pp. 1791–1794, 1996. View at Scopus
  111. S. T. Carmichael, “Plasticity of cortical projections after stroke,” Neuroscientist, vol. 9, no. 1, pp. 64–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  112. G. A. Metz, I. Antonow-Schlorke, and O. W. Witte, “Motor improvements after focal cortical ischemia in adult rats are mediated by compensatory mechanisms,” Behavioural Brain Research, vol. 162, no. 1, pp. 71–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. D. J. Edwards, H. I. Krebs, A. Rykman et al., “Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke,” Restorative Neurology and Neuroscience, vol. 27, no. 3, pp. 199–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. C. T. Moritz, S. I. Perlmutter, and E. E. Fetz, “Direct control of paralysed muscles by cortical neurons,” Nature, vol. 456, no. 7222, pp. 639–642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. X. Zheng, D. C. Alsop, and G. Schlaug, “Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow,” NeuroImage, vol. 58, no. 1, pp. 26–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. N. Islam, M. Aftabuddin, A. Moriwaki, Y. Hattori, and Y. Hori, “Increase in the calcium level following anodal polarization in the rat brain,” Brain Research, vol. 684, no. 2, pp. 206–208, 1995. View at Publisher · View at Google Scholar · View at Scopus
  117. E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Mechanisms, challenges and opportunities in stroke,” Nature Reviews Neuroscience, vol. 4, no. 5, pp. 399–415, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Lotze, J. Markert, P. Sauseng, J. Hoppe, C. Plewnia, and C. Gerloff, “The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion,” Journal of Neuroscience, vol. 26, no. 22, pp. 6096–6102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. C. Grefkes, D. A. Nowak, S. B. Eickhoff et al., “Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging,” Annals of Neurology, vol. 63, no. 2, pp. 236–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Bastani and S. Jaberzadeh, “Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: a systematic review and meta-analysis,” Clinical Neurophysiology, vol. 123, no. 4, pp. 644–657, 2012.
  121. P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-Leone, and F. Fregni, “Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients,” Restorative Neurology and Neuroscience, vol. 25, no. 2, pp. 123–129, 2007. View at Scopus
  122. K. J. Yoon, B. M. Oh, and D. Y. Kim, “Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats,” Brain Research, vol. 1452, pp. 61–72, 2012.
  123. T. Tohyama, T. Fujiwara, J. Matsumoto et al., “Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation in a patient with severe hemiparetic stroke: a case report,” Keio Journal of Medicine, vol. 60, no. 4, pp. 114–118, 2011.
  124. P. Cicinelli, B. Marconi, M. Zaccagnini, P. Pasqualetti, M. M. Filippi, and P. M. Rossini, “Imagery-induced cortical excitability changes in stroke: a transcranial magnetic stimulation study,” Cerebral Cortex, vol. 16, no. 2, pp. 247–253, 2006. View at Publisher · View at Google Scholar · View at Scopus
  125. K. D. Harris and A. Thiele, “Cortical state and attention,” Nature Reviews Neuroscience, vol. 12, no. 9, pp. 509–523, 2011.
  126. A. H. Javadi and V. Walsh, “Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex modulates declarative memory,” Brain Stimulation, vol. 5, no. 3, pp. 231–241, 2012. View at Publisher · View at Google Scholar
  127. R. P. Chi and A. W. Snyder, “Facilitate insight by non-invasive brain stimulation,” PLoS ONE, vol. 6, no. 2, Article ID e16655, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. I. Y. Jung, J. Y. Lim, E. K. Kang, H. M. Sohn, and N. J. Paik, “The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients,” Annals of Physical and Rehabilitation Medicine, vol. 35, no. 4, pp. 460–469, 2011.
  129. N. Sharma and L. G. Cohen, “Recovery of motor function after stroke,” Developmental Psychobiology, vol. 54, no. 3, pp. 254–262, 2012.
  130. R. Lindenberg, L. L. Zhu, and G. Schlaug, “Combined central and peripheral stimulation to facilitate motor recovery after stroke: the effect of number of sessions on outcome,” Neurorehabilitation and Neural Repair, vol. 26, no. 5, pp. 479–483, 2011.
  131. M. Zimerman, K. F. Heise, J. Hoppe, L. G. Cohen, C. Gerloff, and F. C. Hummel, “Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand,” Stroke, vol. 43, no. 8, pp. 2185–2191, 2012.
  132. A. B. McCambridge, L. V. Bradnam, C. M. Stinear, and W. D. Byblow, “Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm,” Journal of Neurophysiology, vol. 105, no. 6, pp. 2937–2942, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. L. V. Bradnam, C. M. Stinear, P. Alan Barber, and W. D. Byblow, “Contralesional hemisphere control of the proximal paretic upper limb following stroke,” Cerebral Cortex, vol. 22, no. 11, pp. 2662–2671, 2012. View at Publisher · View at Google Scholar
  134. P. C. Gandiga, F. C. Hummel, and L. G. Cohen, “Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation,” Clinical Neurophysiology, vol. 117, no. 4, pp. 845–850, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. B. W. Vines, D. G. Nair, and G. Schlaug, “Contralateral and ipsilateral motor effects after transcranial direct current stimulation,” NeuroReport, vol. 17, no. 6, pp. 671–674, 2006. View at Publisher · View at Google Scholar · View at Scopus
  136. S. Hesse, C. Werner, E. M. Schonhardt, A. Bardeleben, W. Jenrich, and S. G. B. Kirker, “Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study,” Restorative Neurology and Neuroscience, vol. 25, no. 1, pp. 9–15, 2007. View at Scopus
  137. B. W. Vines, A. C. Norton, and G. Schlaug, “Non-invasive brain stimulation enhances the effects of melodic intonation therapy,” Frontiers in Psychology, vol. 2, article 230, 2011.
  138. R. Lindenberg, V. Renga, L. L. Zhu, D. Nair, and G. Schlaug, “Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients,” Neurology, vol. 75, no. 24, pp. 2176–2184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. M. Oliveri, P. M. Rossini, R. Traversa et al., “Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage,” Brain, vol. 122, no. 9, pp. 1731–1739, 1999. View at Publisher · View at Google Scholar · View at Scopus
  140. I. Buchkremer-Ratzmann, M. August, G. Hagemann, and O. W. Witte, “Electrophysiological transcortical diaschisis after cortical photothrombosis in rat brain,” Stroke, vol. 27, no. 6, pp. 1105–1111, 1996. View at Scopus
  141. R. Traversa, P. Cicinelli, P. Pasqualetti, M. Filippi, and P. M. Rossini, “Follow-up of interhemispheric differences of motor evoked potentials from the “affected” and “unaffected” hemispheres in human stroke,” Brain Research, vol. 803, no. 1-2, pp. 1–8, 1998. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Flöel, N. Rösser, O. Michka, S. Knecht, and C. Breitenstein, “Noninvasive brain stimulation improves language learning,” Journal of Cognitive Neuroscience, vol. 20, no. 8, pp. 1415–1422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Datta, J. M. Baker, M. Bikson, and J. Fridriksson, “Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient,” Brain Stimulation, vol. 4, no. 3, pp. 169–174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  144. H. Karbe, A. Thiel, G. Weber-Luxenburger, K. Herholz, J. Kessler, and W. D. Heiss, “Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere?” Brain and Language, vol. 64, no. 2, pp. 215–230, 1998. View at Publisher · View at Google Scholar · View at Scopus
  145. E. Warburton, C. J. Price, K. Swinburn, and R. J. S. Wise, “Mechanisms of recovery from aphasia: evidence from positron emission tomography studies,” Journal of Neurology Neurosurgery and Psychiatry, vol. 66, no. 2, pp. 155–161, 1999. View at Scopus
  146. J. B. Allendorfer, B. M. Kissela, S. K. Holland, and J. P. Szaflarski, “Different patterns of language activation in post-stroke aphasia are detected by overt and covert versions of the verb generation fMRI task,” Medical Science Monitor, vol. 18, no. 3, pp. CR135–CR137, 2012.
  147. J. Fridriksson, L. Bonilha, J. M. Baker, D. Moser, and C. Rorden, “Activity in preserved left hemisphere regions predicts anomia severity in aphasia,” Cerebral Cortex, vol. 20, no. 5, pp. 1013–1019, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. J. M. Baker, C. Rorden, and J. Fridriksson, “Using transcranial direct-current stimulation to treat stroke patients with aphasia,” Stroke, vol. 41, no. 6, pp. 1229–1236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. V. Fiori, M. Coccia, C. V. Marinelli et al., “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” Journal of Cognitive Neuroscience, vol. 23, no. 9, pp. 2309–2323, 2011. View at Publisher · View at Google Scholar · View at Scopus
  150. A. R. Brunoni, M. A. Nitsche, N. Bolognini et al., “Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions,” Brain Stimulation, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. D. Fox, “Neuroscience: brain buzz,” Nature, vol. 472, no. 7342, pp. 156–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. J. J. Crofts and D. J. Higham, “A weighted communicability measure applied to complex brain networks,” Journal of the Royal Society Interface, vol. 6, no. 33, pp. 411–414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  153. S. Muehlschlegel, J. Selb, M. Patel et al., “Feasibility of NIRS in the neurointensive care unit: a pilot study in stroke using physiological oscillations,” Neurocritical Care, vol. 11, no. 2, pp. 288–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. M. P. A. Van Meer, K. Van Der Marel, K. Wang et al., “Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity,” Journal of Neuroscience, vol. 30, no. 11, pp. 3964–3972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. L. H. A. Strens, P. Asselman, A. Pogosyan, C. Loukas, A. J. Thompson, and P. Brown, “Corticocortical coupling in chronic stroke: its relevance to recovery,” Neurology, vol. 63, no. 3, pp. 475–484, 2004. View at Scopus
  156. C. Gerloff, K. Bushara, A. Sailer et al., “Multimodal imaging of brain reorganization in motor areas of the contralesional hemisphere of well recovered patients after capsular stroke,” Brain, vol. 129, no. 3, pp. 791–808, 2006. View at Publisher · View at Google Scholar · View at Scopus
  157. L. Wang, C. Yu, H. Chen et al., “Dynamic functional reorganization of the motor execution network after stroke,” Brain, vol. 133, no. 4, pp. 1224–1238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. T. S. Olsen, “Post-stroke epilepsy,” Current Atherosclerosis Reports, vol. 3, no. 4, pp. 340–344, 2001.