About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2013 (2013), Article ID 410972, 12 pages
http://dx.doi.org/10.1155/2013/410972
Research Article

Gait Impairment in a Rat Model of Focal Cerebral Ischemia

1Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1 C, 70210 Kuopio, Finland
2A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
3Department of Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland

Received 5 October 2012; Revised 17 December 2012; Accepted 27 December 2012

Academic Editor: Gerlinde Metz

Copyright © 2013 Saara Parkkinen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. B. Titianova, K. Pitkänen, A. Pääkkönen, J. Sivenius, and I. M. Tarkka, “Gait characteristics and functional ambulation profile in patients with chronic unilateral stroke,” Journal of Physical Medicine & Rehabilitation, vol. 82, no. 10, pp. 778–786, 2003.
  2. E. J. A. Scherder, L. Eggermont, J. Sergeant, and F. Boersma, “Physical activity and cognition in Alzheimer's disease: relationship to vascular risk factors, executive functions and gait,” Reviews in the Neurosciences, vol. 18, no. 2, pp. 149–158, 2007. View at Scopus
  3. A. Lipsanen and J. Jolkkonen, “Experimental approaches to study functional recovery following cerebral ischemia,” Cellular and Molecular Life Sciences, vol. 68, no. 18, pp. 3007–3017, 2011.
  4. J. A. Kleim, J. A. Boychuk, and D. L. Adkins, “Rat models of upper extremity impairment in stroke,” ILAR Journal, vol. 48, no. 4, pp. 374–384, 2007. View at Scopus
  5. K. L. Schaar, M. M. Brenneman, and S. I. Savitz, “Functional assessments in the rodent stroke model,” Experimental and Translational Stroke Medicine, vol. 2, no. 1, article 13, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Wang, B. Bontempi, S. M. Hong et al., “A comprehensive analysis of gait impairment after experimental stroke and the therapeutic effect of environmental enrichment in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 12, pp. 1936–1950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Vandeputte, J. M. Taymans, C. Casteels et al., “Automated quantitative gait analysis in animal models of movement disorders,” BMC Neuroscience, vol. 11, article 92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Encarnacion, N. Horie, H. Keren-Gill, T. M. Bliss, G. K. Steinberg, and M. Shamloo, “Long-term behavioral assessment of function in an experimental model for ischemic stroke,” Journal of Neuroscience Methods, vol. 196, no. 2, pp. 247–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Hetze, C. Römer, C. Teufelhart, A. Meisel, and O. Engel, “Gait analysis as a method for assessing neurological outcome in a mouse model of stroke,” Journal of Neuroscience Methods, vol. 206, no. 1, pp. 7–14, 2012.
  10. E. Z. Longa, P. R. Weinstein, S. Carlson, and R. Cummins, “Reversible middle cerebral artery occlusion without craniectomy in rats,” Stroke, vol. 20, no. 1, pp. 84–91, 1989. View at Scopus
  11. F. J. Ortega, J. Jolkkonen, N. Mahy, and M. J. Rodríguez, “Glibenclamide enhances neurogenesis and improves long-term functional recovery after transient focal cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, 2012. View at Publisher · View at Google Scholar
  12. C. D. Mah, M. Hulliger, I. S. O'Callaghan, and R. G. Lee, “Quantitative kinematics of gait patterns during the recovery period after stroke,” Journal of Stroke and Cerebrovascular Diseases, vol. 8, no. 5, pp. 312–329, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Peeling, D. Corbett, M. R. Del Bigio, T. J. Hudzik, T. M. Campbell, and G. C. Palmer, “Rat middle cerebral artery occlusion: correlations between histopathology, T2-weighted magnetic resonance imaging, and behavioral indices,” Journal of Stroke and Cerebrovascular Diseases, vol. 10, no. 4, pp. 166–177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Nedelmann, T. Wilhelm-Schwenkmezger, B. Alessandri et al., “Cerebral embolic ischemia in rats: correlation of stroke severity and functional deficit as important outcome parameter,” Brain Research, vol. 1130, no. 1, pp. 188–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. F. P. T. Hamers, G. C. Koopmans, and E. A. J. Joosten, “CatWalk-assisted gait analysis in the assessment of spinal cord injury,” Journal of Neurotrauma, vol. 23, no. 3-4, pp. 537–548, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. S. Dellon and A. L. Dellon, “Functional assessment of neurologic impairment: track analysis in diabetic and compression neuropathies,” Plastic and Reconstructive Surgery, vol. 88, no. 4, pp. 686–694, 1991. View at Scopus
  17. G. C. Koopmans, R. Deumens, G. Brook et al., “Strain and locomotor speed affect over-ground locomotion in intact rats,” Physiology and Behavior, vol. 92, no. 5, pp. 993–1001, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. C. Palmer, J. Peeling, D. Corbett, M. R. Del Bigio, and T. J. Hudzik, “T2-weighted MRI correlates with long-term histopathology, neurology scores, and skilled motor behavior in a rat stroke model,” Annals of the New York Academy of Sciences, vol. 939, pp. 283–296, 2001. View at Scopus
  19. T. Virtanen, J. Jolkkonen, and J. Sivenius, “Re: External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats,” Stroke, vol. 35, no. e1, pp. e9–10, 2004.
  20. G. B. Gillis and A. A. Biewener, “Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus),” The Journal of Experimental Biology, vol. 204, no. 15, pp. 2717–2731, 2001. View at Scopus
  21. B. P. Godsil, L. Stefanacci, and M. S. Fanselow, “Bright light suppresses hyperactivity induced by excitotoxic dorsal hippocampus lesions in the rat,” Behavioral Neuroscience, vol. 119, no. 5, pp. 1339–1352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. A. A. Webb and G. D. Muir, “Compensatory locomotor adjustments of rats with cervical or thoracic spinal cord hemisections,” Journal of Neurotrauma, vol. 19, no. 2, pp. 239–256, 2002. View at Scopus
  23. A. Lipsanen, M. Hiltunen, and J. Jolkkonen, “Chronic ibuprofen treatment does not affect the secondary pathology in the thalamus or improve behavioral outcome in middle cerebral artery occlusion rats,” Pharmacology Biochemistry and Behavior, vol. 99, no. 3, pp. 468–474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. G. A. Metz and I. Q. Whishaw, “Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination,” Journal of Neuroscience Methods, vol. 115, no. 2, pp. 169–179, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. G. A. S. Metz, V. Dietz, M. E. Schwab, and H. Van de Meent, “The effects of unilateral pyramidal tract section on hindlimb motor performance in the rat,” Behavioural Brain Research, vol. 96, no. 1-2, pp. 37–46, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Schucht, O. Raineteau, M. E. Schwab, and K. Fouad, “Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord,” Experimental Neurology, vol. 176, no. 1, pp. 143–153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. S. G. Kanagal and G. D. Muir, “Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats,” Experimental Neurology, vol. 216, no. 1, pp. 193–206, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Heng and R. D. De Leon, “The rodent lumbar spinal cord learns to correct errors in hindlimb coordination caused by viscous force perturbations during stepping,” Journal of Neuroscience, vol. 27, no. 32, pp. 8558–8562, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Q. Whishaw, W. T. O'Connor, and S. B. Dunnett, “The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat,” Brain, vol. 109, no. 5, pp. 805–843, 1986. View at Scopus
  30. D. S. Stokic, T. S. Horn, J. M. Ramshur, and J. W. Chow, “Agreement between temporospatial gait parameters of an electronic walkway and a motion capture system in healthy and chronic stroke populations,” American Journal of Physical Medicine and Rehabilitation, vol. 88, no. 6, pp. 437–444, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. E. B. Titianova, S. H. Peurala, K. Pitkänen, and I. M. Tarkka, “Gait reveals bilateral adaptation of motor control in patients with chronic unilateral stroke,” Aging, vol. 20, no. 2, pp. 131–138, 2008. View at Scopus
  32. S. L. Patterson, M. M. Rodgers, R. F. Macko, and L. W. Forrester, “Effect of treadmill exercise training on spatial and temporal gait parameters in subjects with chronic stroke: a preliminary report,” Journal of Rehabilitation Research and Development, vol. 45, no. 2, pp. 221–228, 2008. View at Publisher · View at Google Scholar · View at Scopus