About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2013 (2013), Article ID 425281, 9 pages
http://dx.doi.org/10.1155/2013/425281
Review Article

Acute Microvascular Changes after Subarachnoid Hemorrhage and Transient Global Cerebral Ischemia

Division of Neurosurgery, St. Michael's Hospital, Labatt Family Centre of Excellence in Brain Injury and Trauma Research, Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Department of Surgery, University of Toronto, Toronto, ON, Canada M5B 1W8

Received 9 January 2013; Revised 26 February 2013; Accepted 28 February 2013

Academic Editor: Fatima A. Sehba

Copyright © 2013 Michael K. Tso and R. Loch Macdonald. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Weir, M. Grace, J. Hansen, and C. Rothberg, “Time course of vasospasm in man,” Journal of Neurosurgery, vol. 48, no. 2, pp. 173–178, 1978. View at Scopus
  2. J. W. Dankbaar, M. Rijsdijk, I. C. Van Der Schaaf, B. K. Velthuis, M. J. H. Wermer, and G. J. E. Rinkel, “Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage,” Neuroradiology, vol. 51, no. 12, pp. 813–819, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. L. Macdonald, R. T. Higashida, E. Keller et al., “Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2),” The Lancet Neurology, vol. 10, no. 7, pp. 618–625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. F. A. Sehba, J. Hou, R. M. Pluta, and J. H. Zhang, “The importance of early brain injury after subarachnoid hemorrhage,” Progress in Neurobiology, vol. 97, pp. 14–37, 2012.
  5. S. M. Dorhout Mees, G. J. Rinkel, V. L. Feigin et al., “Calcium antagonists for aneurysmal subarachnoid haemorrhage,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD000277, 2007. View at Scopus
  6. I. Harukuni and A. Bhardwaj, “Mechanisms of brain injury after global cerebral ischemia,” Neurologic Clinics, vol. 24, no. 1, pp. 1–21, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. Hypothermia after Cardiac Arrest Study Group, “Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest,” The New England Journal of Medicine, vol. 346, no. 8, pp. 549–556, 2002. View at Publisher · View at Google Scholar
  8. S. A. Bernard, T. W. Gray, M. D. Buist et al., “Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia,” New England Journal of Medicine, vol. 346, no. 8, pp. 557–563, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. F. A. Sehba and V. Friedrich, “Early micro vascular changes after subarachnoid hemorrhage,” Acta neurochirurgica, vol. 110, no. 1, pp. 49–55, 2011. View at Scopus
  10. H. Kamii, I. Kato, H. Kinouchi et al., “Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase,” Stroke, vol. 30, no. 4, pp. 867–872, 1999. View at Scopus
  11. M. Sabri, H. Jeon, J. Ai et al., “Anterior circulation mouse model of subarachnoid hemorrhage,” Brain Research, vol. 1295, pp. 179–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Titova, R. P. Ostrowski, J. H. Zhang, and J. Tang, “Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm,” Neurological Research, vol. 31, no. 6, pp. 568–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Y. Du, X. D. Zhu, G. Dong et al., “Characteristics of circle of Willis variations in the mongolian gerbil and a newly established ischemia-prone gerbil group,” ILAR Journal, vol. 52, no. 1, pp. E1–E7, 2011. View at Scopus
  14. F. C. Barone, D. J. Knudsen, A. H. Nelson, G. Z. Feuerstein, and R. N. Willette, “Mouse strain differences in susceptibility to cerebral ischemia are related to cerebral vascular anatomy,” Journal of Cerebral Blood Flow and Metabolism, vol. 13, no. 4, pp. 683–692, 1993. View at Scopus
  15. R. J. Traystman, “Animal models of focal and global cerebral ischemia,” ILAR Journal, vol. 44, no. 2, pp. 85–95, 2003. View at Scopus
  16. H. Nornes and B. Magnaes, “Recurrent haemorrhage and haemostasis in patients with ruptured intracranial saccular aneurysms,” Acta Neurologica Scandinavica, vol. 51, pp. 473–476, 1972. View at Scopus
  17. T. Asano and K. Sano, “Pathogenetic role of no reflow phenomenon in experimental subarachnoid hemorrhage in dogs,” Journal of Neurosurgery, vol. 46, no. 4, pp. 454–466, 1977. View at Scopus
  18. J. B. Bederson, I. M. Germano, L. Guarino, and J. P. Muizelaar, “Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat,” Stroke, vol. 26, no. 6, pp. 1086–1092, 1995. View at Scopus
  19. T. Westermaier, A. Jauss, J. Eriskat, E. Kunze, and K. Roosen, “Acute vasoconstriction: decrease and recovery of cerebral blood flow after various intensities of experimental subarachnoid hemorrhage in rats. Laboratory investigation,” Journal of Neurosurgery, vol. 110, no. 5, pp. 996–1002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Tasdemiroglu, R. MacFarlane, E. P. Wei, H. A. Kontos, and M. A. Moskowitz, “Pial vessel caliber and cerebral blood flow become dissociated during ischemia-reperfusion in cats,” American Journal of Physiology, vol. 263, no. 2, pp. H533–H536, 1992. View at Scopus
  21. K. A. Hossmann, “Reperfusion of the brain after global ischemia: hemodynamic disturbances,” Shock, vol. 8, no. 2, pp. 95–101, 1997. View at Scopus
  22. R. A. Kloner, “No-reflow phenomenon: maintaining vascular integrity,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 16, pp. 244–250, 2011.
  23. A. Ames III, R. L. Wright, M. Kowada, J. M. Thurston, and G. Majno, “Cerebral ischemia. II. The no-reflow phenomenon,” American Journal of Pathology, vol. 52, no. 2, pp. 437–453, 1968. View at Scopus
  24. B. W. Böttiger, J. J. Krumnikl, P. Gass, B. Schmitz, J. Motsch, and E. Martin, “The cerebral ‘no-reflow’ phenomenon after cardiac arrest in rats-influence of low-flow reperfusion,” Resuscitation, vol. 34, no. 1, pp. 79–87, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. E. G. Fischer, A. Ames, E. T. Hedley Whyte, and S. O'Gorman, “Reassessment of cerebral capillary changes in acute global ischemia and their relationship to the ‘no reflow phenomenon’,” Stroke, vol. 8, no. 1, pp. 36–39, 1977. View at Scopus
  26. D. A. Herz, S. Baez, and K. Shulman, “Pial microcirculation in subarachnoid hemorrhage,” Stroke, vol. 6, no. 4, pp. 417–424, 1975. View at Scopus
  27. B. Friedrich, F. Muller, S. Feiler, K. Scholler, and N. Plesnila, “Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study,” Journal of Cerebral Blood Flow & Metabolism, vol. 32, no. 3, pp. 447–455, 2012.
  28. B. L. Sun, C. B. Zheng, M. F. Yang, H. Yuan, S. M. Zhang, and L. X. Wang, “Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage,” Cellular and Molecular Neurobiology, vol. 29, no. 2, pp. 235–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Sabri, J. Ai, K. Lakovic, J. D'abbondanza, D. Ilodigwe, and R. L. Macdonald, “Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage,” Neuroscience, vol. 224, pp. 26–37, 2012.
  30. G. W. Britz, J. R. Meno, I. S. Park et al., “Time-dependent alterations in functional and pharmacological arteriolar reactivity after subarachnoid hemorrhage,” Stroke, vol. 38, no. 4, pp. 1329–1335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K. W. Park, C. Metais, H. B. Dai, M. E. Comunale, and F. W. Sellke, “Microvascular endothelial dysfunction and its mechanism in a rat model of subarachnoid hemorrhage,” Anesthesia and Analgesia, vol. 92, no. 4, pp. 990–996, 2001. View at Scopus
  32. F. A. Sehba and V. Friedrich, “Cerebral microvasculature is an early target of subarachnoid hemorrhage,” Acta Neurochirurgica Supplement, vol. 115, pp. 199–205, 2013.
  33. K. Ley, “Molecular mechanisms of leukocyte recruitment in the inflammatory process,” Cardiovascular Research, vol. 32, no. 4, pp. 733–742, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. C. V. Carman, “Mechanisms for transcellular diapedesis: probing and pathfinding by 'invadosome-like protrusions',” Journal of Cell Science, vol. 122, no. 17, pp. 3025–3035, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Friedrich, R. Flores, A. Muller, W. Bi, E. I. Peerschke, and F. A. Sehba, “Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage,” Journal of Neuroinflammation, vol. 8, article 103, 2011. View at Publisher · View at Google Scholar
  36. M. Ishikawa, G. Kusaka, N. Yamaguchi et al., “Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage,” Neurosurgery, vol. 64, no. 3, pp. 546–553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. E. Merrill and S. P. Murphy, “Inflammatory events at the blood brain barrier: regulation of adhesion molecules, cytokines, and chemokines by reactive nitrogen and oxygen species,” Brain, Behavior, and Immunity, vol. 11, no. 4, pp. 245–263, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. L. L. Rubin and J. M. Staddon, “The cell biology of the blood-brain barrier,” Annual Review of Neuroscience, vol. 22, pp. 11–28, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. N. J. Abbott, L. Rönnbäck, and E. Hansson, “Astrocyte-endothelial interactions at the blood-brain barrier,” Nature Reviews Neuroscience, vol. 7, no. 1, pp. 41–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Park, M. Yamaguchi, C. Zhou, J. W. Calvert, J. Tang, and J. H. Zhang, “Neurovascular protection reduces early brain injury after subarachnoid hemorrhage,” Stroke, vol. 35, no. 10, pp. 2412–2417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Doczi, F. Joo, and G. Adam, “Blood-brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model,” Neurosurgery, vol. 18, no. 6, pp. 733–739, 1986. View at Scopus
  42. T. Doczi, F. Joo, S. Sonkodi, and G. Adam, “Increased vulnerability of the blood-brain barrier to experimental subarachnoid hemorrhage in spontaneously hypertensive rats,” Stroke, vol. 17, no. 3, pp. 498–501, 1986. View at Scopus
  43. A. Germanò, D. D'Avella, C. Imperatore, G. Caruso, and F. Tomasello, “Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage,” Acta Neurochirurgica, vol. 142, no. 5, pp. 575–581, 2000. View at Scopus
  44. E. W. Peterson and E. R. Cardoso, “The blood-brain barrier following experimental subarachnoid hemorrhage. Part 1: response to insult caused by arterial hypertension,” Journal of Neurosurgery, vol. 58, no. 3, pp. 338–344, 1983. View at Scopus
  45. F. A. Sehba, G. Mostafa, J. Knopman, V. Friedrich, and J. B. Bederson, “Acute alterations in microvascular basal lamina after subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 101, no. 4, pp. 633–640, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Tu, J. Fu, J. Wang, G. Fu, L. Wang, and Y. Zhang, “Extracellular matrix metalloproteinase inducer is associated with severity of brain oedema following experimental subarachnoid haemorrhage in rats,” The Journal of International Medical Research, vol. 40, pp. 1089–1098, 2012.
  47. J. Yan, C. Chen, Q. Hu et al., “The role of p53 in brain edema after 24h of experimental subarachnoid hemorrhage in a rat model,” Experimental Neurology, vol. 214, no. 1, pp. 37–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Imperatore, A. Germanò, D. D'Avella, F. Tomasello, and G. Costa, “Effects of the radical scavenger AVS on behavioral and BBB changes after experimental subarachnoid hemorrhage,” Life Sciences, vol. 66, no. 9, pp. 779–790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. C. C. Larsen, J. Hansen-Schwartz, J. D. Nielsen, and J. Astrup, “Blood coagulation and fibrinolysis after experimental subarachnoid hemorrhage,” Acta Neurochirurgica, vol. 152, no. 9, pp. 1577–1581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. F. A. Sehba, G. Mostafa, V. Friedrich, and J. B. Bederson, “Acute microvascular platelet aggregation after subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 102, no. 6, pp. 1094–1100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. V. Friedrich, R. Flores, A. Muller, and F. A. Sehba, “Luminal platelet aggregates in functional deficits in parenchymal vessels after subarachnoid hemorrhage,” Brain Research, vol. 1354, pp. 179–187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. V. Friedrich, R. Flores, A. Muller, and F. A. Sehba, “Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage,” Neuroscience, vol. 165, no. 3, pp. 968–975, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. J. M. Pisapia, X. Xu, J. Kelly et al., “Microthrombosis after experimental subarachnoid hemorrhage: time course and effect of red blood cell-bound thrombin-activated pro-urokinase and clazosentan,” Experimental Neurology, vol. 233, pp. 357–363, 2012.
  54. E. Pinard, N. Engrand, and J. Seylaz, “Dynamic cerebral microcirculatory changes in transient forebrain ischemia in rats: involvement of type I nitric oxide synthase,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 12, pp. 1648–1658, 2000. View at Scopus
  55. J. Y. Li, H. Ueda, A. Seiyama et al., “Ischemic vasoconstriction and tissue energy metabolism during global cerebral ischemia in gerbils,” Journal of Neurotrauma, vol. 24, no. 3, pp. 547–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. E. F. Hauck, S. Apostel, J. F. Hoffmann, A. Heimann, and O. Kempski, “Capillary flow and diameter changes during reperfusion after global cerebral ischemia studied by intravital video microscopy,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 4, pp. 383–391, 2004. View at Scopus
  57. W. D. Dietrich, R. Busto, and M. D. Ginsberg, “Cerebral endothelial microvilli: formation following global forebrain ischemia,” Journal of Neuropathology and Experimental Neurology, vol. 43, no. 1, pp. 72–83, 1984. View at Scopus
  58. R. Pluta, A. S. Lossinsky, M. J. Mossakowski, L. Faso, and H. M. Wisniewski, “Reassessment of a new model of complete cerebral ischemia in rats: method of induction of clinical death, pathophysiology and cerebrovascular pathology,” Acta Neuropathologica, vol. 83, no. 1, pp. 1–11, 1991. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Abels, F. Röhrich, S. Corvin, R. Meyermann, A. Baethmann, and L. Schürer, “Leukocyte-endothelium-interaction in pial vessels following global, cerebral ischaemia,” Acta Neurochirurgica, vol. 142, no. 3, pp. 333–339, 2000. View at Scopus
  60. B. S. Aspey, C. Jessimer, S. Pereira, and M. J. G. Harrison, “Do leukocytes have a role in the cerebral no-reflow phenomenon?” Journal of Neurology Neurosurgery and Psychiatry, vol. 52, no. 4, pp. 526–528, 1989. View at Scopus
  61. U. Dirnagl, K. Niwa, G. Sixt, and A. Villringer, “Cortical hypoperfusion after global forebrain ischemia in rats is not caused by microvascular leukocyte plugging,” Stroke, vol. 25, no. 5, pp. 1028–1038, 1994. View at Scopus
  62. L. Ritter, J. Funk, L. Schenkel et al., “Inflammatory and hemodynamic changes in the cerebral microcirculation of aged rats after global cerebral ischemia and reperfusion,” Microcirculation, vol. 15, no. 3, pp. 297–310, 2008. View at Scopus
  63. E. Uhl, J. Beck, W. Stummer, J. Lehmberg, and A. Baethmann, “Leukocyte-endothelium interactions in pial venules during the early and late reperfusion period after global cerebral ischemia in gerbils,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 6, pp. 979–987, 2000. View at Scopus
  64. O. Uyama, N. Okamura, M. Yanase, M. Narita, K. Kawabata, and M. Sugita, “Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence,” Journal of Cerebral Blood Flow and Metabolism, vol. 8, no. 2, pp. 282–284, 1988. View at Scopus
  65. N. V. Todd, P. Picozzi, H. A. Crockard, and R. W. R. Russell, “Duration of ischemia influences the development and resolution of ischemic brain edema,” Stroke, vol. 17, no. 3, pp. 466–471, 1986. View at Scopus
  66. Y. Q. Zheng, J. X. Liu, J. N. Wang, and L. Xu, “Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia,” Brain Research, vol. 1138, no. 1, pp. 86–94, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. R. Pluta, A. S. Lossinsky, M. Walski, H. M. Wisniewski, and M. J. Mossakowski, “Platelet occlusion phenomenon after short- and long-term survival following complete cerebral ischemia in rats produced by cardiac arrest,” Journal of Brain Research, vol. 35, no. 4, pp. 463–471, 1994. View at Scopus