About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2013 (2013), Article ID 651958, 7 pages
http://dx.doi.org/10.1155/2013/651958
Review Article

Pathophysiological Role of Global Cerebral Ischemia following Subarachnoid Hemorrhage: The Current Experimental Evidence

Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Ludwig-Maximilians-University, Max-Lebsche Platz 3, 81377 Munich, Germany

Received 28 February 2013; Accepted 29 April 2013

Academic Editor: R. Loch Macdonald

Copyright © 2013 Nikolaus Plesnila. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. H. Pobereskin, “Incidence and outcome of subarachnoid haemorrhage: a retrospective population based study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 70, no. 3, pp. 340–343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. van Gijn and G. J. E. Rinkel, “Subarachnoid haemorrhage: diagnosis, causes and management,” Brain, vol. 124, no. 2, pp. 249–278, 2001. View at Scopus
  3. M. S. Sandvei, E. B. Mathiesen, L. J. Vatten, et al., “Incidence and mortality of aneurysmal subarachnoid hemorrhage in two Norwegian cohorts, 1984–2007,” Neurology, vol. 77, no. 20, pp. 1833–1839, 2011.
  4. M. B. Skrifvars and M. J. Parr, “Incidence, predisposing factors, management and survival following cardiac arrest due to subarachnoid haemorrhage: a review of the literature,” Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, vol. 20, article 75, 2012. View at Publisher · View at Google Scholar
  5. C. E. Lovelock, G. J. E. Rinkel, and P. M. Rothwell, “Time trends in outcome of subarachnoid hemorrhage: population-based study and systematic review,” Neurology, vol. 74, no. 19, pp. 1494–1501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. Hop, G. J. E. Rinkel, A. Algra, and J. Van Gijn, “Quality of life in patients and partners after aneurysmal subarachnoid hemorrhage,” Stroke, vol. 29, no. 4, pp. 798–804, 1998. View at Scopus
  7. S. C. Johnston, S. Selvin, and D. R. Gress, “The burden, trends, and demographics of mortality from subarachnoid hemorrhage,” Neurology, vol. 50, no. 5, pp. 1413–1418, 1998. View at Scopus
  8. J. Cahill and J. H. Zhang, “Subarachnoid hemorrhage: is it time for a new direction?” Stroke, vol. 40, pp. S86–S87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Alvarez, P. Cox, M. Pairoa, M. García, I. Delgado, and P. M. Lavados, “Incidence of subarachnoid haemorrhage in the Aconcagua Valley, Chile: a community-based, prospective surveillance project,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 81, no. 7, pp. 778–782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. L. Macdonald, R. M. Pluta, and J. H. Zhang, “Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution,” Nature Clinical Practice Neurology, vol. 3, no. 5, pp. 256–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. L. Macdonald, R. T. Higashida, E. Keller et al., “Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2),” The Lancet Neurology, vol. 10, no. 7, pp. 618–625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. H. Zhang, R. M. Pluta, J. Hansen-Schwartz et al., “Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought,” Neurological Research, vol. 31, no. 2, pp. 151–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Weir, M. Grace, J. Hansen, and C. Rothberg, “Time course of vasospasm in man,” Journal of Neurosurgery, vol. 48, no. 2, pp. 173–178, 1978. View at Scopus
  14. C. G. Harrod, B. R. Bendok, and H. H. Batjer, “Prediction of cerebral vasospasm in patients presenting with aneurysmal subarachnoid hemorrhage: a review,” Neurosurgery, vol. 56, no. 4, pp. 633–654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. A. Schubert, M. Seiz, A. A. Hegewald, J. Manville, and C. Thomé, “Acute hypoperfusion immediately after subarachnoid hemorrhage: a xenon contrast-enhanced CT study,” Journal of Neurotrauma, vol. 26, no. 12, pp. 2225–2231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. H. P. Adams Jr., N. F. Kassell, and J. C. Torner, “Early management of aneurysmal subarachnoid hemorrhage. A report of the cooperative aneurysm study,” Journal of Neurosurgery, vol. 54, no. 2, pp. 141–145, 1981. View at Scopus
  17. E. Uhl, J. Lehmberg, H. J. Steiger et al., “Intraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging,” Neurosurgery, vol. 52, no. 6, pp. 1307–1317, 2003. View at Scopus
  18. F. A. Pennings, G. J. Bouma, and C. Ince, “Direct observation of the human cerebral microcirculation during aneurysm surgery reveals increased arteriolar contractility,” Stroke, vol. 35, no. 6, pp. 1284–1288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. F. A. Sehba, V. Friedrich, G. Makonnen, and J. B. Bederson, “Acute cerebral vascular injury after subarachnoid hemorrhage and its prevention by administration of a nitric oxide donor,” Journal of Neurosurgery, vol. 106, no. 2, pp. 321–329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. B. L. Sun, C. B. Zheng, M. F. Yang, H. Yuan, S. M. Zhang, and L. X. Wang, “Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage,” Cellular and Molecular Neurobiology, vol. 29, no. 2, pp. 235–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Friedrich, F. Müller, S. Feiler, K. Schöller, and N. Plesnila, “Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 3, pp. 447–455, 2012.
  22. J. Claassen, J. R. Carhuapoma, K. T. Kreiter, E. Y. Du, E. S. Connolly, and S. A. Mayer, “Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome,” Stroke, vol. 33, no. 5, pp. 1225–1232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Helbok, S. B. Ko, J. M. Schmidt et al., “Global cerebral edema and brain metabolism after subarachnoid hemorrhage,” Stroke, vol. 42, no. 6, pp. 1534–1539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Westermaier, A. Jauss, J. Eriskat, E. Kunze, and K. Roosen, “The temporal profile of cerebral blood flow and tissue metabolites indicates sustained metabolic depression after experimental subarachnoid hemorrhage in rats,” Neurosurgery, vol. 68, no. 1, pp. 223–229, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Feiler, B. Friedrich, K. Schöller, S. C. Thal, and N. Plesnila, “Standardized induction of subarachnoid hemorrhage in mice by intracranial pressure monitoring,” Journal of Neuroscience Methods, vol. 190, no. 2, pp. 164–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. V. Springer, J. M. Schmidt, K. E. Wartenberg, J. A. Frontera, N. Badjatia, and S. A. Mayer, “Predictors of global cognitive impairment 1 year after subarachnoid hemorrhage,” Neurosurgery, vol. 65, no. 6, pp. 1043–1050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Shigeno, E. Fritschka, and M. Brock, “Cerebral edema following experimental subarachnoid hemorrhage,” Stroke, vol. 13, no. 3, pp. 368–379, 1982. View at Scopus
  28. A. D. Mendelow, “Mechanisms of ischemic brain damage with intracerebral hemorrhage,” Stroke, vol. 24, no. 12, pp. I115–I117, 1993. View at Scopus
  29. J. F. Megyesi, B. Vollrath, D. A. Cook, and J. M. Findlay, “In vivo animal models of cerebral vasospasm: a review,” Neurosurgery, vol. 46, no. 2, pp. 448–460, 2000. View at Scopus
  30. D. Strbian, A. Durukan, and T. Tatlisumak, “Rodent models of hemorrhagic stroke,” Current Pharmaceutical Design, vol. 14, no. 4, pp. 352–358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Titova, R. P. Ostrowski, J. H. Zhang, and J. Tang, “Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm,” Neurological Research, vol. 31, no. 6, pp. 568–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Marbacher, J. Fandino, and N. D. Kitchen, “Standard intracranial in vivo animal models of delayed cerebral vasospasm,” British Journal of Neurosurgery, vol. 24, no. 4, pp. 415–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. J. B. Bederson, A. L. Levy, W. H. Ding et al., “Acute vasoconstriction after subarachnoid hemorrhage,” Neurosurgery, vol. 42, no. 2, pp. 352–360, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Hockel, K. Schöller, R. Trabold, J. Nussberger, and N. Plesnila, “Vasopressin V(1a) receptors mediate posthemorrhagic systemic hypertension thereby determining rebleeding rate and outcome after experimental subarachnoid hemorrhage,” Stroke, vol. 43, no. 1, pp. 227–232, 2012.
  35. R. Schmid-Elsaesser, S. Zausinger, E. Hungerhuber, A. Baethmann, and H. J. Reulen, “A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry,” Stroke, vol. 29, no. 10, pp. 2162–2170, 1998. View at Scopus
  36. E. Hungerhuber, S. Zausinger, T. Westermaier, N. Plesnila, and R. Schmid-Elsaesser, “Simultaneous bilateral laser Doppler fluxmetry and electrophysiological recording during middle cerebral artery occlusion in rats,” Journal of Neuroscience Methods, vol. 154, no. 1-2, pp. 109–115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Feiler, N. Plesnila, S. C. Thal, S. Zausinger, and K. Schöller, “Contribution of matrix metalloproteinase-9 to cerebral edema and functional outcome following experimental subarachnoid hemorrhage,” Cerebrovascular Diseases, vol. 32, no. 3, pp. 289–295, 2011.
  38. K. Hockel, R. Trabold, K. Schöller, E. Török, and N. Plesnila, “Impact of anesthesia on pathophysiology and mortality following subarachnoid hemorrhage in rats,” Experimental & Translational Stroke Medicine, vol. 4, no. 1, article 5, 2012.
  39. S. C. Thal, S. Sporer, M. Klopotowski et al., “Brain edema formation and neurological impairment after subarachnoid hemorrhage in rats: laboratory investigation,” Journal of Neurosurgery, vol. 111, no. 5, pp. 988–994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Westermaier, C. Stetter, F. Raslan, G. H. Vince, and R.-I. Ernestus, “Brain edema formation correlates with perfusion deficit during the first six hours after experimental subarachnoid hemorrhage in rats,” Experimental & Translational Stroke Medicine, vol. 4, article 8, 2012.
  41. K. A. Hossmann, S. Sakaki, and V. Zimmermann, “Cation activities in reversible ischemia of the cat brain,” Stroke, vol. 8, no. 1, pp. 77–81, 1977. View at Scopus
  42. T. Doczi, “The pathogenetic and prognostic significance of blood-brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies,” Acta Neurochirurgica, vol. 77, no. 3-4, pp. 110–132, 1985. View at Scopus
  43. K. Schöller, A. Trinkl, M. Klopotowski et al., “Characterization of microvascular basal lamina damage and blood-brain barrier dysfunction following subarachnoid hemorrhage in rats,” Brain Research, vol. 1142, no. 1, pp. 237–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Zetterling, L. Hallberg, L. Hillered, T. Karlsson, P. Enblad, and E. R. Engström, “Brain energy metabolism in patients with spontaneous subarachnoid hemorrhage and global cerebral edema,” Neurosurgery, vol. 66, no. 6, pp. 1102–1110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Török, M. Klopotowski, R. Trabold, S. C. Thal, N. Plesnila, and K. Schöller, “Mild hypothermia (33°C) reduces intracranial hypertension and improves functional outcome after subarachnoid hemorrhage in rats,” Neurosurgery, vol. 65, no. 2, pp. 352–359, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. F. A. Sehba, J. Hou, R. M. Pluta, and J. H. Zhang, “The importance of early brain injury after subarachnoid hemorrhage,” Progress in Neurobiology, vol. 97, no. 1, pp. 14–37, 2012.
  47. I. Yonekura, N. Kawahara, H. Nakatomi, K. Furuya, and T. Kirino, “A Model of Global Cerebral Ischemia in C57 BL/6 Mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 2, pp. 151–158, 2004. View at Scopus
  48. S. C. Thal, S. E. Thal, and N. Plesnila, “Characterization of a 3-vessel occlusion model for the induction of complete global cerebral ischemia in mice,” Journal of Neuroscience Methods, vol. 192, no. 2, pp. 219–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Paschen, “Glutamate excitotoxicity in transient global cerebral ischemia,” Acta Neurobiologiae Experimentalis, vol. 56, no. 1, pp. 313–322, 1996. View at Scopus
  50. P. Vaagenes, M. Ginsberg, U. Ebmeyer et al., “Cerebral resuscitation from cardiac arrest: pathophysiologic mechanisms,” Critical Care Medicine, vol. 24, no. 2, supplement, pp. S57–S68, 1996. View at Scopus
  51. K. A. Hossmann, “Reperfusion of the brain after global ischemia: hemodynamic disturbances,” Shock, vol. 8, no. 2, pp. 95–101, 1997. View at Scopus
  52. E. Uhl, J. Beck, W. Stummer, J. Lehmberg, and A. Baethmann, “Leukocyte-endothelium interactions in pial venules during the early and late reperfusion period after global cerebral ischemia in gerbils,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 6, pp. 979–987, 2000. View at Scopus
  53. B. K. Siesjo, K. I. Katsura, Q. Zhao et al., “Mechanisms of secondary brain damage in global and focal ischemia: a speculative synthesis,” Journal of Neurotrauma, vol. 12, no. 5, pp. 943–956, 1995. View at Scopus
  54. C. Lim, M. P. Alexander, G. LaFleche, D. M. Schnyer, and M. Verfaellie, “The neurological and cognitive sequelae of cardiac arrest,” Neurology, vol. 63, no. 10, pp. 1774–1778, 2004. View at Scopus
  55. M. P. Alexander, G. Lafleche, D. Schnyer, C. Lim, and M. Verfaellie, “Cognitive and functional outcome after out of hospital cardiac arrest,” Journal of the International Neuropsychological Society, vol. 17, no. 2, pp. 364–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. F. J. Mateen, K. A. Josephs, M. R. Trenerry, et al., “Long-term cognitive outcomes following out-of-hospital cardiac arrest: a population-based study,” Neurology, vol. 77, no. 15, pp. 1438–1445, 2011.
  57. M. Ishikawa, G. Kusaka, N. Yamaguchi et al., “Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage,” Neurosurgery, vol. 64, no. 3, pp. 546–553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. F. A. Sehba, G. Mostafa, V. Friedrich, and J. B. Bederson, “Acute microvascular platelet aggregation after subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 102, no. 6, pp. 1094–1100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. G. A. Schubert and C. Thome, “Cerebral blood flow changes in acute subarachnoid hemorrhage,” Frontiers in Bioscience, vol. 13, no. 4, pp. 1594–1603, 2008. View at Publisher · View at Google Scholar · View at Scopus