About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2013 (2013), Article ID 659374, 11 pages
http://dx.doi.org/10.1155/2013/659374
Review Article

Hypoxic-Ischemic Neonatal Encephalopathy: Animal Experiments for Neuroprotective Therapies

Department of Obstetrics and Gynecology and Center for Perinatal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake, Kihara, Miyazaki 889-1692, Japan

Received 22 October 2012; Accepted 20 December 2012

Academic Editor: Guodong Cao

Copyright © 2013 Hiroshi Sameshima and Tsuyomu Ikenoue. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Doi, H. Sameshima, Y. Kodama, S. Furukawa, M. Kaneko, and T. Ikenoue, “Perinatal death and neurological damage as a sequential chain of poor outcome,” Journal of Maternal-Fetal and Neonatal Medicine, vol. 25, no. 6, pp. 706–709, 2012. View at Publisher · View at Google Scholar
  2. S. L. Clark and G. D. V. Hankins, “Temporal and demographic trends in cerebral palsy—fact and fiction,” American Journal of Obstetrics and Gynecology, vol. 188, no. 3, pp. 628–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Levine, “Anoxic-ischemic encephalopathy,” The American Journal of Pathology, vol. 36, pp. 1–17, 1960.
  4. J. E. Rice, R. C. Vannucci, and J. B. Brierley, “The influence of immaturity on hypoxic-ischemic brain damage in the rat,” Annals of Neurology, vol. 9, no. 2, pp. 131–141, 1981. View at Scopus
  5. A. Ota, T. Ikeda, T. Ikenoue, and K. Toshimori, “Sequence of neuronal responses assessed by immunohistochemistry in the newborn rat brain after hypoxia-ischemia,” American Journal of Obstetrics and Gynecology, vol. 177, no. 3, pp. 519–526, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. R. C. Vannucci, D. T. Lyons, and F. Vasta, “Regional cerebral blood flow during hypoxia-ischemia in immature rats,” Stroke, vol. 19, no. 2, pp. 245–250, 1988. View at Scopus
  7. Y. X. Xia, H. Sameshima, T. Ikeda, T. Higo, and T. Ikenoue, “Cerebral blood flow distribution and hypoxic-ischemic brain damage in newborn rats,” Journal of Obstetrics and Gynaecology Research, vol. 28, no. 6, pp. 320–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Ikeda, K. Mishima, T. Yoshikawa et al., “Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats,” Behavioural Brain Research, vol. 118, no. 1, pp. 17–25, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Yager, J. Towfighi, and R. C. Vannucci, “Influence of mild hypothermia on hypoxic-ischemic brain damage in the immature rat,” Pediatric Research, vol. 34, no. 4, pp. 525–529, 1993. View at Scopus
  10. K. Mishima, T. Ikeda, T. Yoshikawa et al., “Effects of hypothermia and hyperthermia on attentional and spatial learning deficits following neonatal hypoxia-ischemic insult in rats,” Behavioural Brain Research, vol. 151, no. 1-2, pp. 209–217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Biernaskie and D. Corbett, “Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury,” Journal of Neuroscience, vol. 21, no. 14, pp. 5272–5280, 2001. View at Scopus
  12. K. Mishima, T. Ikeda, N. Aoo et al., “Hypoxia-ischemic insult in neonatal rats induced slowly progressive brain damage related to memory impairment,” Neuroscience Letters, vol. 376, no. 3, pp. 194–199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Ikeda, Y. X. Xia, M. Kaneko, H. Sameshima, and T. Ikenoue, “Effect of the free radical scavenger, 3-methyl-1-phenyl-2-pyrazolin-5-one (MCI-186), on hypoxia-ischemia-induced brain injury in neonatal rats,” Neuroscience Letters, vol. 329, no. 1, pp. 33–36, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. I. Noor, T. Ikeda, K. Mishima et al., “Short-term administration of a new free radical scavenger, edaravone, is more effective than its long-term administration for the treatment of neonatal hypoxic-ischemic encephalopathy,” Stroke, vol. 36, no. 11, pp. 2468–2474, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. I. Noor, T. Ikeda, Y. Ueda, and T. Ikenoue, “A free radical scavenger, edaravone, inhibits lipid peroxidation and the production of nitric oxide in hypoxic-ischemic brain damage of neonatal rats,” American Journal of Obstetrics and Gynecology, vol. 193, no. 5, pp. 1703–1708, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. I. Noor, Y. Ueda, T. Ikeda, and T. Ikenoue, “Edaravone inhibits lipid peroxidation in neonatal hypoxic-ischemic rats: an in vivo microdialysis study,” Neuroscience Letters, vol. 414, no. 1, pp. 5–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Kojima, Y. Ueda, B. Adatu et al., “Gene network analysis to determine the effects of antioxidant treatment in a rat model of neonatal hypoxic-ischemic encephalopathy,” Journal of Molecular Neuroscience, vol. 42, pp. 154–161, 2010. View at Publisher · View at Google Scholar
  18. T. Kojima, Y. Ueda, A. Sato, H. Sameshima, and T. Ikenoue, “Comprehensive gene expression analysis of cerebral cortices from mature rats after neonatal hypoxic-ischemic brain injury,” Journal of Molecular Neuroscience, 2012. View at Publisher · View at Google Scholar
  19. T. Ikeda, X. Y. Xia, Y. X. Xia, T. Ikenoue, B. Han, and B. H. Choi, “Glial cell line-derived neurotrophic factor protects against ischemia/hypoxia-induced brain injury in neonatal rat,” Acta Neuropathologica, vol. 100, no. 2, pp. 161–167, 2000. View at Scopus
  20. T. Ikeda, H. Koo, Y. X. Xia, T. Ikenoue, and B. H. Choi, “Bimodal upregulation of glial cell line-derived neurotrophic factor (GDNF) in the neonatal rat brain following ischemic/hypoxic injury,” International Journal of Developmental Neuroscience, vol. 20, no. 7, pp. 555–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Shingo, I. Date, H. Yoshida, and T. Ohmoto, “Neuroprotective and restorative effects of intrastriatal grafting of encapsulated GDNF-producing cells in a rat model of Parkinson's disease,” Journal of Neuroscience Research, vol. 69, no. 6, pp. 946–954, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Katsuragi, T. Ikeda, I. Date, T. Shingo, T. Yasuhara, and T. Ikenoue, “Grafting of glial cell line-derived neurotrophic factor secreting cells for hypoxic-ischemic encephalopathy in neonatal rats,” American Journal of Obstetrics and Gynecology, vol. 192, no. 4, pp. 1137–1145, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Katsuragi, T. Ikeda, I. Date et al., “Implantation of encapsulated glial cell line-derived neurotrophic factor-secreting cells prevents long-lasting learning impairment following neonatal hypoxic-ischemic brain insult in rats,” American Journal of Obstetrics and Gynecology, vol. 192, no. 4, pp. 1028–1037, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Ochiai, T. Ikeda, K. Mishima et al., “Local administration of glial cell line-derived neurotrophic factor improves behavioral and histological deficit of neonatal Erb's palsy in rats,” Neurosurgery, vol. 53, no. 4, pp. 973–978, 2003. View at Scopus
  25. J. C. Canterino, U. Verma, P. F. Visintainer, A. Elimian, S. A. Klein, and N. Tejani, “Antenatal steroids and neonatal periventricular leukomalacia,” Obstetrics and Gynecology, vol. 97, no. 1, pp. 135–139, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Ikeda, K. Mishima, T. Yoshikawa et al., “Dexamethasone prevents long-lasting learning impairment following neonatal hypoxic-ischemic brain insult in rats,” Behavioural Brain Research, vol. 136, no. 1, pp. 161–170, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Ikeda, K. Mishima, N. Aoo et al., “Dexamethasone prevents long-lasting learning impairment following a combination of lipopolysaccharide and hypoxia-ischemia in neonatal rats,” American Journal of Obstetrics and Gynecology, vol. 192, no. 3, pp. 719–726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Yang, H. Sameshima, T. Ikeda, and T. Ikenoue, “Lipopolysaccharide administration enhances hypoxic-ischemic brain damage in newborn rats,” Journal of Obstetrics and Gynaecology Research, vol. 30, no. 2, pp. 142–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Sameshima, A. Ota, and T. Ikenoue, “Pretreatment with magnesium sulfate protects against hypoxic-ischemic brain injury but postasphyxial treatment worsens brain damage in seven-day- old rats,” American Journal of Obstetrics and Gynecology, vol. 180, no. 3, pp. 725–730, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Sameshima and T. Ikenoue, “Long-term magnesium sulfate treatment as protection against hypoxic-ischemic brain injury in seven-day-old rats,” American Journal of Obstetrics and Gynecology, vol. 184, no. 2, pp. 185–190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Sameshima and T. Ikenoue, “Effect of long-term, postasphyxial administration of magnesium sulfate on immunostaining of microtubule-associated protein-2 and activated caspase-3 in 7-day-old rat brain,” Journal of the Society for Gynecologic Investigation, vol. 9, no. 4, pp. 203–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Tanaka, H. Sameshima, T. Ikenoue, and H. Sakamoto, “Magnesium sulfate exposure increases fetal blood flow redistribution to the brain during acute non-acidemic hypoxemia in goats,” Early Human Development, vol. 82, no. 9, pp. 597–602, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Cheyuo, A. Jacob, R. Wu, M. Zhou, G. F. Coppa, and P. Wang, “The parasympathetic nervous system in the quest for stroke therapeutics,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 5, pp. 1187–1195, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Furukawa, H. Sameshima, L. Yang, and T. Ikenoue, “Acetylcholine receptor agonist reduces brain damage induced by hypoxia-ischemia in newborn rats,” Reproductive Sciences, vol. 18, no. 2, pp. 172–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Furukawa, H. Sameshima, L. Yang, and T. Ikenoue, “Activation of acetylcholine receptors and microglia in hypoxic-ischemic brain damage in newborn rats,” Brain & Development, 2012. View at Publisher · View at Google Scholar
  36. W. Chen, Q. Ma, H. Suzuki, R. Hartman, J. Tang, and J. H. Zhang, “Osteopontin reduced hypoxia-ischemia neonatal brain injury by suppression of apoptosis in a rat pup model,” Stroke, vol. 42, no. 3, pp. 764–769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Ota, T. Ikeda, K. Abe et al., “Hypoxic-ischemic tolerance phenomenon observed in neonatal rat brain,” American Journal of Obstetrics and Gynecology, vol. 179, no. 4, pp. 1075–1078, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. Q. F. Li, Y. S. Zhu, and H. Jiang, “Isoflurane preconditioning activates HIF-1α, iNOS and Erk1/2 and protects against oxygen-glucose deprivation neuronal injury,” Brain Research, vol. 1245, pp. 26–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Zhao, L. Peng, L. Li, X. Xu, and Z. Zuo, “Isoflurane preconditioning improves long-term neurologic outcome after hypoxic-ischemic brain injury in neonatal rats,” Anesthesiology, vol. 107, no. 6, pp. 963–970, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Sasaoka, M. Kawaguchi, Y. Kawaraguchi et al., “Isoflurane exerts a short-term but not a long-term preconditioning effect in neonatal rats exposed to a hypoxic-ischaemic neuronal injury,” Acta Anaesthesiologica Scandinavica, vol. 53, no. 1, pp. 46–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Solaroglu, J. Cahill, V. Jadhav, and J. H. Zhang, “A novel neuroprotectant granulocyte-colony stimulating factor,” Stroke, vol. 37, no. 4, pp. 1123–1128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Fathali, T. Lekic, J. H. Zhang, and J. Tang, “Long-term evaluation of granulocyte-colony stimulating factor on hypoxic-ischemic brain damage in infant rats,” Intensive Care Medicine, vol. 36, no. 9, pp. 1602–1608, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. L. Sirén, M. Fratelli, M. Brines et al., “Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4044–4049, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Chen, F. Spagnoli, M. Burris et al., “Nanoerythropoietin is 10-times more effective than regular erythropoietin in neuroprotection in neonatal rat model of hypoxia and ischemia,” Stroke, vol. 43, pp. 884–887, 2012. View at Publisher · View at Google Scholar
  45. X. Fan, F. van Bel, M. A. van der Kooij, C. J. Heijnen, and F. Groenendaal, “Hypothermia and erythropoietin for neuroprotection after neonatal brain damage,” Pediatric Research, 2012. View at Publisher · View at Google Scholar
  46. Y. W. Wu, L. A. Bauer, R. A. Ballard et al., “Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics,” Pediatrics, vol. 130, pp. 683–691, 2012. View at Publisher · View at Google Scholar
  47. M. Guardia Clause, P. M. Paez, A. T. Campagnoni, L. A. Pasquini, and J. M. Pasquini, “Intranasal administration of aTf protects and repairs the neonatal white matter after a cerebral hypoxic-ischemic event,” Glia, vol. 60, pp. 1540–1544, 2012. View at Publisher · View at Google Scholar
  48. S. E. Farinelli, L. A. Greene, and W. J. Friedman, “Neuroprotective actions of dipyridamole on cultured CNS neurons,” Journal of Neuroscience, vol. 18, no. 14, pp. 5112–5123, 1998. View at Scopus
  49. P. M. Pimentel-Coelho, P. H. Rosado-de-Castro, L. M. da Fonseca, and R. Mendez-Otero, “Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic-ischemic encephalopathy,” Pediatric Research, vol. 71, pp. 464–473, 2012. View at Publisher · View at Google Scholar
  50. L. Titomanlio, A. Kavelaars, J. Dalous et al., “Stem cell therapy for neonatal brain injury: perspectives and challenges,” Annals of Neurology, vol. 70, no. 5, pp. 698–712, 2011. View at Publisher · View at Google Scholar
  51. F. Scheibe, O. Klein, J. Klose, and J. Priller, “Mesenchymal stromal cess rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia,” Cellular and Molecular Neurobiology, vol. 32, no. 4, pp. 567–576, 2012. View at Publisher · View at Google Scholar
  52. M. M. Soundarapandian, X. Zhong, L. Peng, D. Wu, and Y. Lu, “Role of KATP channels in protection against neuronal excitatory insults,” Journal of Neurochemistry, vol. 103, no. 5, pp. 1721–1729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Nisticò, S. Piccirilli, L. Sebastianelli, G. Nisticò, G. Bernardi, and N. B. Mercuri, “The blockade of K+-ATP channels has neuroprotective effects in an in vitro model of brain ischemia,” International Review of Neurobiology, vol. 82, pp. 383–395, 2007. View at Publisher · View at Google Scholar · View at Scopus