About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2013 (2013), Article ID 869327, 16 pages
http://dx.doi.org/10.1155/2013/869327
Research Article

Increased Cell Fusion in Cerebral Cortex May Contribute to Poststroke Regeneration

1Institute of General Pathology and Pathophysiology of the Russian Academy of Medical Sciences, Baltiskaya Street 8, Moscow 125315, Russia
2Russian Medical Academy of Postgraduate Education, Moscow, Russia

Received 5 October 2012; Revised 30 December 2012; Accepted 14 February 2013

Academic Editor: Iwa Antonow-Schlorke

Copyright © 2013 Alexander Paltsyn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Kempermann, H. G. Kuhn, and F. H. Gage, “Genetic influence on neurogenesis in the dentate gyrus of adult mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 19, pp. 10409–10414, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Kempermann, H. G. Kuhn, and F. H. Gage, “More hippocampal neurons in adult mice living in an enriched environment,” Nature, vol. 386, no. 6624, pp. 493–495, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Gould, A. J. Reeves, M. Fallah, P. Tanapat, C. G. Gross, and E. Fuchs, “Hippocampal neurogenesis in adult old world primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 9, pp. 5263–5267, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. D. R. Kornack and P. Rakic, “Continuation of neurogenesis in the hippocampus of the adult macaque monkey,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 10, pp. 5768–5773, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. P. S. Eriksson, E. Perfilieva, T. Björk-Eriksson et al., “Neurogenesis in the adult human hippocampus,” Nature Medicine, vol. 4, no. 11, pp. 1313–1317, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. C. B. Johansson, S. Momma, D. L. Clarke, M. Risling, U. Lendahl, and J. Frisén, “Identification of a neural stem cell in the adult mammalian central nervous system,” Cell, vol. 96, no. 1, pp. 25–34, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Doetsch, I. Caille, D. A. Lim, J. M. Garcia-Verdugo, and A. Alvarez-Buylla, “Subventricular zone astrocytes are neural stem cells in the adult mammalian brain,” Cell, vol. 97, no. 6, pp. 703–716, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Lois and A. Alvarez-Buylla, “Long-distance neuronal migration in the adult mammalian brain,” Science, vol. 264, no. 5162, pp. 1145–1148, 1994. View at Scopus
  9. C. Zhao, E. M. Teng, R. G. Summers Jr., G. L. Ming, and F. H. Gage, “Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus,” Journal of Neuroscience, vol. 26, no. 1, pp. 3–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Toni, D. A. Laplagne, C. Zhao et al., “Neurons born in the adult dentate gyrus form functional synapses with target cells,” Nature Neuroscience, vol. 11, no. 8, pp. 901–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Toni, E. M. Teng, E. A. Bushong et al., “Synapse formation on neurons born in the adult hippocampus,” Nature Neuroscience, vol. 10, no. 6, pp. 727–734, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Curtis, M. Kam, U. Nannmark et al., “Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension,” Science, vol. 315, no. 5816, pp. 1243–1249, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Gould, “How widespread is adult neurogenesis in mammals?” Nature Reviews Neuroscience, vol. 8, no. 6, pp. 481–488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Ackman, F. Siddiqi, R. S. Walikonis, and J. J. LoTurco, “Fusion of microglia with pyramidal neurons after retroviral infection,” Journal of Neuroscience, vol. 26, no. 44, pp. 11413–11422, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. R. Kornack and P. Rakic, “Cell proliferation without neurogenesis in adult primate neocortex,” Science, vol. 294, no. 5549, pp. 2127–2130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Koketsu, A. Mikami, Y. Miyamoto, and T. Hisatsune, “Nonrenewal of neurons in the cerebral neocortex of adult Macaque monkeys,” Journal of Neuroscience, vol. 23, no. 3, pp. 937–942, 2003. View at Scopus
  17. K. L. Spalding, R. D. Bhardwaj, B. A. Buchholz, H. Druid, and J. Frisén, “Retrospective birth dating of cells in humans,” Cell, vol. 122, no. 1, pp. 133–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Nakagomi, A. Taguchi, Y. Fujimori et al., “Isolation and characterization of neural stem/progenitor cells from post-stroke cerebral cortex in mice,” The European Journal of Neuroscience, vol. 29, no. 9, pp. 1842–1852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Saino, A. Taguchi, T. Nakagomi et al., “Immunodeficiency reduces neural stem/progenitor cell apoptosis and enhances neurogenesis in the cerebral cortex after stroke,” Journal of Neuroscience Research, vol. 88, no. 11, pp. 2385–2397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Lichtenwalner and J. M. Parent, “Adult neurogenesis and the ischemic forebrain,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 1, pp. 1–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. A. Paltsyn, E. G. Kolokol'chikova, N. B. Konstantinova, G. A. Romanova, F. M. Shakova, and A. A. Kubatiev, “Heterokaryon formation as a method for neuron regeneration in postischemic injury to cerebral cortex in rats,” Bulletin of Experimental Biology and Medicine, vol. 146, no. 4, pp. 485–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. A. Paltsyn, N. B. Konstantinova, G. A. Romanova, F. M. Shakova, Y. N. Kvashennikova, and A. A. Kubatiev, “The role of cell fusion in physiological and reparative regeneration of the cerebral cortex,” Bulletin of Experimental Biology and Medicine, vol. 148, no. 5, pp. 825–831, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Kubatiev, A. Palcyn, N. Konstantinova, et al., “Cell fusion and reprogramming nuclei-mechanism of regeneration of brain cortex,” 6th International Congress of Pathophisiology, pp. 183–187, 2010.
  24. B. D. Watson, W. D. Dietrich, and R. Busto, “Induction of reproducible brain infarction by photochemically initiated thrombosis,” Annals of Neurology, vol. 17, no. 5, pp. 497–504, 1985. View at Scopus
  25. S. V. Komissarova, S. A. Turygyna, and V. V. Aleksandrin, “Model of inflammatory site in rat brain cortex,” Pathogenesis, vol. 9, no. 1, pp. 38–42, 2011 (Russian).
  26. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Elsevier, New York, NY, USA, 6th edition, 2007.
  27. M. Alvarez-Dolado, R. Pardal, J. M. Garcia-Verdugo et al., “Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes,” Nature, vol. 425, no. 6961, pp. 968–973, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. Weimann, C. A. Charlton, T. R. Brazelton, R. C. Hackman, and H. M. Blau, “Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 2088–2093, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Weimann, C. B. Johansson, A. Trejo, and H. M. Blau, “Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant,” Nature Cell Biology, vol. 5, no. 11, pp. 959–966, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Priller, D. A. Persons, F. F. Klett, G. Kempermann, G. W. Kreutzberg, and U. Dirnagl, “Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo,” Journal of Cell Biology, vol. 155, no. 5, pp. 733–738, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. C. B. Johansson, S. Youssef, K. Koleckar et al., “Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation,” Nature Cell Biology, vol. 10, no. 5, pp. 575–583, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Rubin, D. M. Gash, J. T. Hansen, D. F. Nelson, and J. P. Williams, “Disruption of the blood-brain barrier as the primary effect of CNS irradiation,” Radiotherapy and Oncology, vol. 31, no. 1, pp. 51–60, 1994.
  33. N. Davoust, C. Vuaillat, G. Androdias, and S. Nataf, “From bone marrow to microglia: barriers and avenues,” Trends in Immunology, vol. 29, no. 5, pp. 227–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Nishiyama, Z. Yang, and A. Butt, “Astrocytes and NG2-glia: what's in a name?” Journal of Anatomy, vol. 207, no. 6, pp. 687–693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. D. L. Montgomery, “Astrocytes: form, functions and role in disease,” Veterinary Pathology, vol. 3, no. 2, pp. 145–167, 1994.
  36. A. Krawczyk and J. Jaworska-Adamu, “Synantocytes: the fifth type of glia? In comparison with astrocytes,” Folia Histochemica et Cytobiologica, vol. 48, no. 2, pp. 173–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. A. M. Butt, J. Kiff, P. Hubbard, and M. Berry, “Synantocytes: new functions for novel NG2 expressing glia,” Journal of Neurocytology, vol. 31, no. 6-7, pp. 551–565, 2002.
  38. M.-F. Guo, J. Z. Yu, and C.-G. Ma, “Mechanisms related to neuron injury and death in cerebral hypoxic ischaemia,” Folia Neuropathologica, vol. 49, no. 2, pp. 78–87, 2011. View at Scopus
  39. E. Morey-Holton, R. K. Globus, A. Kaplansky, and G. Durnova, “The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data,” Advances in Space Biology and Medicine, vol. 10, pp. 7–40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. N. B. Sviridkina, F. M. Shakova, C. V. Komissarova, I. P. Dubrovin, et al., “Morphofunctional study of antiortostatic hipokinesia action in the case of focal ischemic brain cortex damage,” Pathological Physiology and Experimental Therapy, no. 2, pp. 22–26, 2012.