About this Journal Submit a Manuscript Table of Contents
Stroke Research and Treatment
Volume 2013 (2013), Article ID 948783, 7 pages
http://dx.doi.org/10.1155/2013/948783
Research Article

The Impact of Experimental Preconditioning Using Vascular Endothelial Growth Factor in Stroke and Subarachnoid Hemorrhage

1Department of Neurosurgery, Heinrich-Heine-University, Medical Faculty, 40225 Düsseldorf, Germany
2Department of Neurosurgery, University Medical Center, Hamburg-Eppendorf, 20246 Hamburg, Germany
3Department of Radiology, Heinrich-Heine-University, Medical Faculty, 40225 Düsseldorf, Germany

Received 13 November 2012; Accepted 28 February 2013

Academic Editor: Fatima A. Sehba

Copyright © 2013 Sven Oliver Eicker et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. C. Haley Jr., N. F. Kassell, W. M. Alves et al., “Phase II trial of tirilazad in aneurysmal subarachnoid hemorrhage. A report of the Cooperative Aneurysm Study,” Journal of Neurosurgery, vol. 82, no. 5, pp. 786–790, 1995. View at Scopus
  2. E. C. Haley Jr., N. F. Kassell, C. Apperson-Hansen, M. H. Maile, and W. M. Alves, “A randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in North America,” Journal of Neurosurgery, vol. 86, no. 3, pp. 467–474, 1997. View at Scopus
  3. N. F. Kassell, J. C. Torner, E. C. Haley Jr., J. A. Jane, H. P. Adams, and G. L. Kongable, “The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: overall management results,” Journal of Neurosurgery, vol. 73, no. 1, pp. 18–36, 1990. View at Scopus
  4. G. Lanzino and N. F. Kassell, “Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America,” Journal of Neurosurgery, vol. 90, no. 6, pp. 1018–1024, 1999. View at Scopus
  5. G. Lanzino, N. F. Kassell, N. W. C. Dorsch et al., “Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part I. A cooperative study in Europe, Australia, New Zealand, and South Africa,” Journal of Neurosurgery, vol. 90, no. 6, pp. 1011–1017, 1999. View at Scopus
  6. J. I. Suarez, R. W. Tarr, and W. R. Selman, “Aneurysmal subarachnoid hemorrhage,” The New England Journal of Medicine, vol. 354, no. 4, pp. 387–396, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. M. M. Treggiari, B. Walder, P. M. Suter, and J. A. Romand, “Systematic review of the prevention of delayed ischemic neurological deficits with hypertension, hypervolemia, and hemodilution therapy following subarachnoid hemorrhage,” Journal of Neurosurgery, vol. 98, no. 5, pp. 978–984, 2003. View at Scopus
  8. G. W. Weyer, C. P. Nolan, and R. L. Macdonald, “Evidence-based cerebral vasospasm management,” Neurosurgical Focus, vol. 21, no. 3, p. E8, 2006. View at Scopus
  9. J. W. Hop, G. J. E. Rinkel, A. Algra, and J. van Gijn, “Case-fatality rates and functional outcome after subarachnoid hemorrhage: a systematic review,” Stroke, vol. 28, no. 3, pp. 660–664, 1997. View at Scopus
  10. L. Cao, X. Jiao, D. S. Zuzga et al., “VEGF links hippocampal activity with neurogenesis, learning and memory,” Nature Genetics, vol. 36, no. 8, pp. 827–835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Krupinski, J. Kaluza, P. Kumar, S. Kumar, and J. M. Wang, “Role of angiogenesis in patients with cerebral ischemic stroke,” Stroke, vol. 25, no. 9, pp. 1794–1798, 1994. View at Scopus
  12. Y. Feng, P. G. Rhodes, and A. J. Bhatt, “Neuroprotective effects of vascular endothelial growth factor following hypoxic ischemic brain injury in neonatal rats,” Pediatric Research, vol. 64, no. 4, pp. 370–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Storkebaum, D. Lambrechts, and P. Carmeliet, “VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection,” BioEssays, vol. 26, no. 9, pp. 943–954, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Vezzani, “VEGF as a target for neuroprotection,” Epilepsy Currents, vol. 8, no. 5, pp. 135–137, 2008.
  15. A. Wick, W. Wick, J. Waltenberger, M. Weller, J. Dichgans, and J. B. Schulz, “Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt,” Journal of Neuroscience, vol. 22, no. 15, pp. 6401–6407, 2002. View at Scopus
  16. S. D. Croll and S. J. Wiegand, “Vascular growth factors in cerebral ischemia,” Molecular Neurobiology, vol. 23, no. 2-3, pp. 121–135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. S. Manoonkitiwongsa, R. L. Schultz, D. B. McCreery, E. F. Whitter, and P. D. Lyden, “Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 6, pp. 693–702, 2004. View at Scopus
  18. W. Zhu, Y. Mao, Y. Zhao et al., “Transplantation of vascular endothelial growth factor-transfected neural stem cells into the rat brain provides neuroprotection after transient focal cerebral ischemia,” Neurosurgery, vol. 57, no. 2, pp. 325–333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Koizumi, Y. Yoshida, T. Nakazawa, and G. Ooneda, “Experimental studies of ischemic brain edema, I: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area,” Japanes Journal of Stroke, vol. 8, pp. 1–8, 1986.
  20. D. Hänggi, S. Eicker, K. Beseoglu et al., “Dose-related efficacy of a continuous intracisternal nimodipine treatment on cerebral vasospasm in the rat double subarachnoid hemorrhage model,” Neurosurgery, vol. 64, no. 6, pp. 1155–1159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Grasso, “An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage,” Brain Research Reviews, vol. 44, no. 1, pp. 49–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. F. Megyesi, B. Vollrath, D. A. Cook, and J. M. Findlay, “In vivo animal models of cerebral vasospasm: a review,” Neurosurgery, vol. 46, no. 2, pp. 448–461, 2000. View at Scopus
  23. J. B. Bederson, L. H. Pitts, and M. Tsuji, “Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination,” Stroke, vol. 17, no. 3, pp. 472–476, 1986. View at Scopus
  24. B. Turowski, D. Hänggi, A. Beck, et al., “New angiographic measurement tool for analysis of small cerebral vessels: application to a subarachnoid haemorrhage model in the rat,” Neuroradiology, vol. 49, no. 2, pp. 129–137, 2007.
  25. H. Schüller, M. Standop, A. Sobbe, N. Leipner, and T. Harder, “Parametric visualization of cerebral perfusion by intravenous digital angiography,” RoFo Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin, vol. 146, no. 3, pp. 342–347, 1987. View at Scopus
  26. J. Jośko, “Cerebral angiogenesis and expression of VEGF after subarachnoid hemorrhage (SAH) in rats,” Brain Research, vol. 981, no. 1-2, pp. 58–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. F. Emerich, E. Silva, O. Ali et al., “Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats,” Cell Transplantation, vol. 19, no. 9, pp. 1063–1071, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Brecht, K. Schwarze, V. Waetzig et al., “Changes in peptidyl-prolyl cis/trans isomerase activity and FK506 binding protein expression following neuroprotection by FK506 in the ischemic rat brain,” Neuroscience, vol. 120, no. 4, pp. 1037–1048, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. G. F. Prunell, T. Mathiesen, N. A. Svendgaard et al., “Experimental subarachnoid hemorrhage: cerebral blood flow and brain metabolism during the acute phase in three different models in the rat,” Neurosurgery, vol. 54, no. 2, pp. 426–437, 2004. View at Scopus
  30. J. Verlooy, J. Van Reempts, M. Haseldonckx, M. Borgers, and P. Selosse, “The course of vasospasm following subarachnoid haemorrhage in rats. A vertebrobasilar angiographic study,” Acta Neurochirurgica, vol. 117, no. 1-2, pp. 48–52, 1992. View at Scopus
  31. M. A. Aladag, Y. Turkoz, E. Sahna, H. Parlakpinar, and M. Gul, “The attenuation of vasospasm by using a SOD mimetic after experimental subarachnoidal haemorrhage in rats,” Acta Neurochirurgica, vol. 145, no. 8, pp. 673–677, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Vatter, S. Weidauer, J. Konczalla et al., “Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model,” Neurosurgery, vol. 58, no. 6, pp. 1190–1197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Longo, A. Blandino, G. Ascenti, G. K. Ricciardi, F. Granata, and S. Vinci, “Cerebral angiography in the rat with mammographic equipment: a simple, cost-effective method for assessing vasospasm in experimental subarachnoid haemorrhage,” Neuroradiology, vol. 44, no. 8, pp. 689–694, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. T. J. Delgado, J. Brismar, and N. A. Svendgaard, “Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries,” Stroke, vol. 16, no. 4, pp. 595–602, 1985. View at Scopus
  35. D. J. Boullin, V. Aitken, G. H. du Boulay, and P. Tagari, “The calibre of cerebral arteries of the rat studied by carotid angiography: a model system for studying the aetiology of human cerebral arterial constriction after aneurysmal rupture,” Neuroradiology, vol. 21, no. 5, pp. 245–252, 1981. View at Scopus
  36. J. M. Krum, N. Mani, and J. M. Rosenstein, “Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury,” Experimental Neurology, vol. 212, no. 1, pp. 108–117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. G. Zhang, L. Zhang, Q. Jiang et al., “VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain,” The Journal of Clinical Investigation, vol. 106, no. 7, pp. 829–838, 2000. View at Scopus
  38. M. R. Harrigan, S. R. Ennis, S. E. Sullivan, and R. F. Keep, “Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume,” Acta Neurochirurgica, vol. 145, no. 1, pp. 49–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. X. R. Zheng, S. S. Zhang, Y. J. Yang et al., “Adenoviral vector-mediated transduction of VEGF improves neural functional recovery after hypoxia-ischemic brain damage in neonatal rats,” Brain Research Bulletin, vol. 81, no. 4-5, pp. 372–377, 2010. View at Publisher · View at Google Scholar · View at Scopus