About this Journal Submit a Manuscript Table of Contents
Science and Technology of Nuclear Installations
Volume 2011 (2011), Article ID 941239, 10 pages
http://dx.doi.org/10.1155/2011/941239
Research Article

CFD Modeling of Wall Steam Condensation: Two-Phase Flow Approach versus Homogeneous Flow Approach

1Electricité de France R&D Division, 6 Quai Watier, 78400 Chatou Cedex, France
2INCKA, 85, Avenue Pierre Grenier, 92100 Boulogne Billancourt, France

Received 14 March 2011; Revised 3 May 2011; Accepted 6 May 2011

Academic Editor: Giorgio Galassi

Copyright © 2011 S. Mimouni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Vendel, J. Malet, A. Bentaib et al., “Conclusions of the ISP-47 containment thermal-hydraulics,” in Proceedings of the 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH '07), Pittsburgh, Pa, USA, September-October 2007.
  2. S. Mimouni, J.-S. Lamy, J. Lavieville, S. Guieu, and M. Martin, “Modelling of sprays in containment applications with A CMFD code,” Nuclear Engineering and Design, vol. 240, no. 9, pp. 2260–2270, 2010. View at Publisher · View at Google Scholar
  3. I. Kljenak, M. Babić, B. Mavko, and I. Bajsić, “Modeling of containment atmosphere mixing and stratification experiment using a CFD approach,” Nuclear Engineering and Design, vol. 236, no. 14–16, pp. 1682–1692, 2006. View at Publisher · View at Google Scholar
  4. N. Forgione and S. Paci, “Computational analysis of vapour condensation in presence of air in the TOSQAN facility,” in Proceedings of the 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH '05), Avignon, France, October 2005.
  5. J. Malet, L. Blumenfeld, S. Arndt, et al., “Sprays in containment : final results of the SARNET spray benchmark,” in Proceedings of the 3rd European Review Meeting on Severe Accident Research (ERMSAR '08), Nesseber, Bulgaria, September 2008.
  6. M. Andreani, D. Paladino, and T. George, “On the unexpectedly large effect of the re-vaporization of the condensate liquid film in two tests in the PANDA facility revealed by simulations with the GOTHIC code,” in Proceedings of the XCFD4NRS Workshop, Grenoble, France, September 2008.
  7. S. Mimouni, A. Foissac, and J. Lavieville, “CFD modelling of wall steam condensation by a two-phase flow approach,” Nuclear Engineering and Design. In press. View at Publisher · View at Google Scholar
  8. M. Ishii, Thermo-Fluid Dynamic, Theory of Two Phase, Collection de la Direction des Etudes et Recherches d'Electricite de France, Eyrolles, Paris, France, 1975.
  9. J.-M. Delhaye, M. Giot, and M. L. Riethmuller, Thermal-Hydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering, Hemisphere and McGraw Hill, Washington, DC, USA, 1981.
  10. A. Guelfi, D. Bestion, M. Boucker et al., “NEPTUNE: a new software platform for advanced nuclear thermal hydraulics,” Nuclear Science and Engineering, vol. 156, no. 3, pp. 281–324, 2007.
  11. S. Mimouni, M. Boucker, J. Laviéville, A. Guelfi, and D. Bestion, “Modelling and computation of cavitation and boiling bubbly flows with the NEPTUNE_CFD code,” Nuclear Engineering and Design, vol. 238, no. 3, pp. 680–692, 2008. View at Publisher · View at Google Scholar
  12. N. Mechitoua, J. Lavieville, et al., “An unstructured finite volume solver for 2-phase water/vapor flows modelling based on an elliptic oriented fractional step method,” in Proceedings of the 10th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH '03), Seoul, South Korea, October 2003.
  13. W. E. Ranz and W. R. Marschall, “Evaporation from drops,” Chemical Engineering Progress, vol. 48, pp. 173–180, 1952.
  14. N. Mechitoua, S. Mimouni, et al., “CFD modeling of the test 25 of the PANDA experiment, experimental validation and application of CFD and CMFD codes to nuclear reactor safety issues,” in Proceedings of the XCFD4NRS Workshop, Washington, DC, USA, September 2010.
  15. S. Mimouni, F. Archambeau, M. Boucker, J. Lavieville, and C. Morel, “A second order turbulence model based on a Reynolds stress approach for two-phase boiling flow. Part 1: application to the ASU-annular channel case,” Nuclear Engineering and Design, vol. 240, no. 9, pp. 2233–2243, 2010. View at Publisher · View at Google Scholar